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 This research aims to improve the prediction’s model for survival time of 

lung cancer patients by using outlier detection, hyper-parameter 

optimization, and machine learning technique. The research compares the 

performance of several methods including multilayer perceptron (MLP), 

decision tree (DT), linear regression (LR), Bagging, XGBoost, and random 

forest (RF). The dataset used for the experiment is obtained from the 

surveillance, epidemiology, and end result (SEER) cancer database, which 

contains diagnoses data from 2004 to 2015. The total number of records 

used is 196,031 with 22 features. 10-fold cross-validation is used for training 

and testing sets. The evaluation metrics are root mean square error (RMSE), 

mean squared error (MSE), R-squared (R2), and mean absolute error (MAE). 

The results show that the lung cancer patient survival prediction model using 

the optimized XGBoost (O-XGBoost) model performs the best with an 

RMSE of 13.74 and outperforms the baseline-XGBoost model as well as 

other models. This research will be useful for developing a clinical decision 

support system for the care of lung cancer patients. Physicians can use the 

developed model to assess the patient’s chance of survival in order to plan 

more effective treatment. 
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1. INTRODUCTION 

In 2022, lung cancer was the second most common type of cancer and the leading cause of  

cancer-related deaths. It is particularly prevalent among men [1]. The primary cause of lung cancer is 

smoking, with smokers having a 20-30 times higher risk of developing lung cancer compared to non-smokers 

[2]. Cigarette smoke contains over 4,000 chemicals, including at least 69 known carcinogens and other 

toxins. Other causes of lung cancer include a history of respiratory diseases (such as asthma, pneumonia, 

tuberculosis, chronic bronchitis, and chronic obstructive pulmonary disease), exposure to workplace 

carcinogens, genetic factors [3], and environmental air pollution, especially prolonged exposure to fine 

particulate matter (PM2.5), which has been linked to an increased risk of lung cancer [4]. 

Predicting the survival time of cancer patients from the initial diagnosis can help patients and 

caregivers plan their time and resources, as well as guide the medical team’s care and treatment approach [5]. 

However, predicting the survival time of cancer patients requires specialized expertise, posing a challenge in 

areas lacking sufficient specialists. Therefore, artificial intelligence (AI) tools built with machine learning 

techniques can address this issue. Machine learning can utilize historical cancer patient data, stored in 
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databases, to accurately predict patient survival times [6]. This not only helps avoid unnecessary treatments, 

surgeries, and expenses for patients but also reduces diagnostic time and alleviates stress for doctors. 

Traditional lung cancer survival prediction research has focused primarily on classification tasks, 

grouping patients into broad survival categories, such as survived/not survived or achieving five-year 

survival [7]–[12]. However, classification often lacks sufficient detail for precise survival estimates, limiting 

its usefulness for individualized patient care. As a result, interest has shifted toward regression models that 

predict continuous survival times rather than discrete categories, providing a finer and more accurate view of 

patient prognosis. Techniques like linear regression (LR), decision tree (DT), and random forest (RF) are 

frequently used to enhance model performance and reduce prediction error, especially in terms of root mean 

square error (RMSE) [6]. Ensemble methods that combine multiple algorithms further improve accuracy, 

producing models more resistant to overfitting and more closely aligned with actual survival outcomes  

[5], [6], [13]. Recently, large datasets like the surveillance, epidemiology, and end result (SEER) database 

have been utilized with traditional machine learning methods, including LR, gradient boosting machines 

(GBM), and support vector machines (SVM), to predict lung cancer survival times, with GBM and ensemble 

models generally demonstrating the highest predictive accuracy, particularly for patients with shorter survival 

times [6]. By incorporating key patient attributes such as age, tumor size, and stage these models often 

perform comparably to established statistical approaches. Although deep learning has also been explored for 

survival prediction, traditional machine learning methods remain reliable and interpretable, making them 

effective alternatives for predicting continuous survival outcomes in lung cancer patients [5]. 

A major challenge in using large datasets for prediction is that the collected raw data is often not 

ready for training machine learning algorithms. It requires several preprocessing steps, such as handling 

missing values, standardizing the data format, transforming data into suitable forms for the algorithms, 

feature selection and outliers removal. Preprocessing not only prepares the data for learning but can also 

enhance model performance. For instance, outliers removal [14], [15] and feature selection [16], [17] can 

significantly improve model performance. Neglecting these steps can result in highly inaccurate models 

which unsuitable for practical use. Additionally, during the learning process, model performance can be 

further optimized by hyper-parameter optimization [18]–[21] and using suitably ensemble methods. 

Ensemble methods, which develop by multiple training iterations, typically provide better performance than 

single techniques [11], [21]–[24]. 

This research presents an improvement in the performance of survival time prediction models for 

lung cancer patients using machine learning algorithms. The research processes include outliers removal 

using isolation forest (IF) [25] and auto encoding (AE) [26], hyper-parameter optimization using Bayesian 

methods [27], as well as model construction using various machine learning techniques. Models performance 

is evaluated using 10-fold cross-validation, and the effectiveness is measured by RMSE, mean squared error 

(MSE), R-squared (R2), and mean absolute error (MAE). Once the model demonstrates the best performance, 

it will be used to develop an application for predicting the survival time of lung cancer patients.  

The objectives of this research are as follows. First, to improve the performance of survival time 

prediction models for lung cancer patients constructed using traditional machine learning techniques under 

regression problems that generating continuous outcomes. Second, to compare the efficacy of individual 

algorithms, including LR, DT, and multilayer perceptron (MLP), with ensemble methods such as Bagging, 

XGBoost, and RF in predicting the survival time of lung cancer patients. 

 

 

2. LITERATURE REVIEW 

Enhancing a machine learning model’s performance can be achieved through effective data 

preprocessing steps. Outlier detection is the process of identifying data that differs significantly from most of 

the data in a dataset. These outliers may result from errors in data collection or from data that is markedly 

different from normal data [25]. The IF algorithm is one method used for outlier detection, developed in [14]. 

This method relies on the principles of DT that create a large number of DT. The main concept of IF is that 

outliers are often isolated points that differ from most data points, while normal data points are distributed 

throughout the main data area [25]. Another popular method is AE techniques which employ special types of 

neural networks comprising an encoder part for compressing data into lower dimensions and a decoder part 

for reconstructing the data back to its original dimensions. AE is first trained with normal data. When new 

data is passed through this network, the reconstruction error is calculated. If the error exceeds a certain 

threshold, the data is considered an outlier because it cannot be compressed and reconstructed accurately. 

This principle is used to rank the degree of data outlier [26]. 

Optimizing hyper-parameters is another method to enhance the performance of machine learning 

models [18], [19]. The Bayesian method employs Bayesian probability theory to iteratively refine  

hyper-parameter selection for AI model construction. Beginning with a prior probability distribution, 

typically based on expert knowledge or assumptions about hyper-parameter ranges, the method samples 
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values and evaluates them by training the model and assessing performance metrics like error rates or 

accuracy. Using Bayes’ theorem, the prior distribution is updated to a posterior distribution that better reflects 

observed data, enhancing the probability estimates for subsequent iterations. This iterative process continues, 

with each cycle using updated probabilities to guide the selection of new hyper-parameter values, aiming to 

optimize model performance effectively. This approach significantly reduces the computational burden 

compared to exhaustive search methods, ensuring more efficient and effective hyper-parameter tuning [27]. 

In recent studies, various machine learning models have been applied to predict cancer patient 

survival periods using the SEER dataset. Thomgkam et al. [28] conducted a comparative study on models 

predicting breast cancer survival, analyzing 115,184 records from 2004 to 2014. They categorized survival 

outcomes into two classes: less than 5 years and more than 5 years. The machine learning techniques 

compared included naïve Bayes, partial decision tree (PART), MLP, SVM, and Bagging of the four methods. 

Their findings indicated that Bagging of PART had the best performance, with a sensitivity of 99.39%, 

specificity of 96.85%, and accuracy of 98.89%. The researchers suggested that the model and decision rules 

could be developed into a disease surveillance system for early risk screening by physicians. Similarly, 

Doppalapudi et al. [5] used SEER data to understand factors related to lung cancer patient survival and 

developed predictive models using deep learning techniques like artificial neural networks (ANN), 

convolutional neural networks (CNN), and recurrent neural networks (RNN). They defined three survival 

categories for classification: less than or equal to 6 months, more than 6 months up to 2 years, and more than 

2 years, with ANN achieving the highest accuracy at 71.18%. For regression, CNN showed the best 

performance with an RMSE of 13.50 and an R² of 0.5066. Lynch et al. [13] proposed a linear model for 

predicting lung cancer patient survival, comparing it with SVM, DT, RF, GBM, and a custom ensemble. 

Their study, which analyzed data from 2004 to 2009 with 18 features and 10,442 records, found the custom 

ensemble to be the most effective, with an RMSE of 15.30.  

Bartholomai and Frieboes [6] studied the prediction of lung cancer patients’ survival times in 

months using regression and classification models based on SEER database data. They observed that while 

models were highly accurate for predicting short survival times (less than 6 months), their accuracy 

diminished for longer survival periods. Their approach utilized RF for classification and a combination of 

LR, GBM, and RF for regression. Model accuracy was evaluated using a confusion matrix and RMSE. The 

study found that RF performed best for predicting survival times of ≤6 months (RMSE 10.52) and >24 

months (RMSE 20.51), while GBM was most effective for 7–24 months (RMSE 15.65). Their findings 

suggest that regression models are more reliable for shorter survival predictions than RMSE values might 

indicate. Overall, these studies highlight the effectiveness of machine learning techniques in predicting 

cancer patient survival and suggest further development and integration of these models into clinical practice 

for early risk screening and improved patient management. 

 

 

3. METHOD 

3.1.  Research framework 

This research applies the cross-industry standard process for data mining (CRISP-DM). The  

CRISP-DM process consists of the following steps: business understanding, data understanding, data 

preparation, modeling, model evaluation, and deployment [29]. In this research, the workflow is divided into 

seven stages, as shown in Figure 1, with the following details. 

 

 

 
 

Figure 1. Research framework 
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3.1.1. Data gathering 

The collection of lung cancer patient data from the SEER database, which is a comprehensive 

cancer registry and epidemiologic surveillance program of the United States. Data spanning from 1973 to 

2015 is gathered using the SEER*Stat application [30]. The SEER database contains a sufficient amount of 

data for developing models and applications to predict survival time. From the data collection, it was found 

that there are a total of 721,697 records of lung cancer patients, each comprising 35 attributes. 

 

3.1.2. Data cleaning 

This process consists of two sub-steps: i) missing value handling: management of missing data, 

where it was found that 70% of the collected lung cancer patient data contained missing values that cannot be 

used for model building. Therefore, data with missing values was removed from the dataset. Additionally, 

features with missing values exceeding 70% were also excluded. ii) outliers removal: removal of abnormal 

data from the dataset. In this research, the effectiveness of two outlier detection techniques, IF and AE, was 

compared. A maximum threshold of 20% of the total data was set for outliers’ removal. 

 

3.1.3. Data preprocessing 

Preparation of data prior to processing to ensure readiness for machine learning techniques includes: 

i) transformation using one-hot encoding, applied to nominal categorical features that cannot be processed 

mathematically, and ii) scaling of numeric features (numeric) through feature scaling, specifically using 

normalization to standardize values within the range of 0 to 1. This prevents biases towards features with 

larger or smaller values that could affect the final model outcomes. This study follows the data scaling 

procedures similar in [13] to expedite model adjustments and achieve optimal research outcomes. 

 

3.1.4. Data splitting 

Data splitting is a critical step in machine learning where the preprocessed dataset is divided into 

two main subsets: a training dataset comprising 80% of the data used to train the model by learning patterns 

and relationships, and a testing dataset comprising 20% used to evaluate the model’s performance on unseen 

data. This approach ensures the model’s ability to generalize well and make accurate predictions beyond the 

training data. By separating training and testing data, machine learning practitioners can assess the model’s 

effectiveness in real-world applications, guarding against issues like overfitting or underfitting, and ensuring 

robust performance across different datasets. 

 

3.1.5. Modeling 

In this process, the training dataset is used to allow machine learning algorithms to learn and discover 

patterns collectively within the data. This involves cross-validation with 10 folds and adjusting hyper-

parameters of the algorithms to find the most suitable values. The learning methods employed include single 

methods such as DT, LR, and MLP, as well as ensemble methods such as Bagging, XGBoost, and RF. Hyper-

parameter tuning for these methods utilizes Bayesian methods to determine the optimal hyper-parameter 

values, as demonstrated in Table 1. 

 

3.1.6. Model evaluation 

Model evaluation involves assessing the effectiveness of the trained model using the testing dataset. 

This evaluation is crucial for determining how well the model generalizes to new, unseen data. Metrics such 

as RMSE, MSE, MAE, and R2 are utilized. RMSE, MSE, and MAE measure the average magnitude of errors 

between predicted and actual values, with lower values indicating better accuracy. R2, on the other hand, 

quantifies the proportion of the variance in the dependent variable that is predictable from the independent 

variables; a higher R2 value (closer to 1) suggests that the model explains a larger portion of the variance in 

the data. These metrics collectively provide insights into the model’s predictive performance and its ability to 

make reliable predictions in practical applications. 

 

3.1.7. Application development 

The last stage involves transforming the highest-performing model into a sophisticated web 

application tailored specifically for predicting the survival duration of lung cancer patients. This application 

aims to provide healthcare professionals with comprehensive preliminary data essential for making informed 

medical assessments and treatment decisions. By leveraging advanced machine learning techniques and 

intuitive user interfaces, the application seeks to streamline the prediction process, ensuring accuracy and 

reliability in prognosis. Emphasis will be placed on integrating scalable architecture and robust backend 

systems to support seamless deployment and utilization in clinical settings. Ultimately, the application aims 

to enhance the efficiency of medical practitioners in delivering personalized care and improving patient 

outcomes through timely and accurate prognostic insights. 
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Table 1. Hyper-parameter scape for each modeling approach used to find the optimal hyper-parameter values 
Algorithms Hyper-parameters Space of hyper-parameters 

DT ccp_alpha [0, 10] 

criterion [‘squared_error’, ‘friedman_mse’, ‘poisson’] 

max_depth [1, 20] 

min_samples_leaf [1, 100] 

min_samples_split [0, 0.9] 
splitter [‘best’, ‘random’] 

MLP alpha [0, 1] 

batch_size [1, 800] 

hidden_layer_sizes [ (100), (200), (300), (400), (123), (246), (61)] 

activation [‘tanh’, ‘relu’, ‘identity’, ‘logistic’] 
learning_rate_init [0, 1] 

max_iter [10, 200] 

learning_rate [‘constant’, ‘adaptive’, ‘invscaling’] 

momentum [0, 1] 

XGB max_depth [1, 30] 
gamma [0, 1] 

learning_rate [0, 1.0] 

min_child_weight [1, 20] 

alpha [0, 1] 

subsample [0, 1] 
colsample_bytree [0, 1] 

max_delta_step [0, 10] 

n_estimators [100, 800] 

Bag n_estimators [1, 300] 

max_samples [0.2, 1.0] 
max_features [0, 1] 

RF n_estimators [1, 350] 

max_depth [1, 20] 

min_samples_leaf [1, 100] 

min_samples_split [0.001, 0.9] 

max_features [1, 21] 
 

 

3.2.  Dataset detail 

The data utilized for this research originates from lung cancer patients sourced from the SEER 

database of the United States of America. After undergoing comprehensive missing data handling 

procedures, the dataset encompasses a total of 245,034 patient records, each comprising 22 distinct attributes. 

These records span the period from 2004 to 2015, with survival durations ranging from 0 to 191 months.  

The 22 attributes include demographic information, clinical characteristics, and survival outcomes, all 

meticulously documented and stored within the SEER database. These details serve as data for developing 

predictive models aimed at forecasting survival times for lung cancer patients, thereby supporting clinical 

decision-making processes in healthcare settings. The details of all 22 features are presented in Table 2. 
 
 

Table 2. Characteristics of lung cancer patient data from the SEER database 
# Variable name Original name Data type 

1 AGE Age Nominal 

2 SEX Gender Binary 

3 RACE Races recode (W, B, AI, API) Nominal 

4 PRIMARY_SITE Primary Site Nominal 
5 GRADE GRADE Nominal 

6 HIST_BROAD_GROUP Histology Record – Broad Groupings Nominal 

7 SEQUENCE_NUMBER Sequence Number Binary 

8 REGIONAL_NODES_POSITIVE Regional nodes positive (1988+) Numeric 

9 REGIONAL_NODES_EXAMINED Regional nodes examined (1988+) Numeric 
10 REASON_SURG Reason no cancer-directed surgery Nominal 

11 RXSUMM_SURG_PRIM_SITE RX Summ – Surg Prim Site (1998+) Nominal 

12 RXSUMM_SCOPE_REG_LN_SUR RX Summ – Scope Reg LN Sur (2003+) Nominal 

13 DIANOSTIC_CONFIRM Diagnostic Confirmation Nominal 

14 CSEXTENSION CS extension (2004-2015) Nominal 
15 CSTUMOR_SIZES CS tumor size (2004-2015) Numeric 

16 CSLYMPH_NODES CS lymph nodes (2004-2015) Nominal 

17 SUMMARY_STAGE Summary stage 2000 (1998-2017) Nominal 

18 T Derived AJCC T, 6th ed (2004-2015) Nominal 

19 N Derived AJCC N, 6th ed (2004-2015) Nominal 
20 M Derived AJCC M, 6th ed (2004-2015) Nominal 

21 STAGE Derived AJCC Stage Group, 6th ed (2004-2015) Nominal 

22 SURVIVAL_MONTH survival months Numeric 

Note: Further study details can be found on the website https://seer.cancer.gov 
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4. RESULTS AND DISCUSSION 

4.1.  Results of outliers removal 

The results after removing outliers data from the dataset using the IF and AE methods, each with a 

removal rate of 20%, show that the initial dataset, which contained 245,034 records, was reduced to 196,031 

records using both methods. This reduction in data will be used for subsequent experimental steps. Despite 

the two datasets being equal in size, they differ significantly in content because the IF and AE methods 

employ distinct processes to identify and remove outliers. The IF method detects anomalies based on how 

isolated the data points are in a feature space, while AE uses neural networks to encode data and identify 

deviations from the norm. Therefore, the datasets resulting from these methods, although numerically 

equivalent, vary in the specific data they contain due to these methodological differences. The details of the 

comparison between the initial dataset and the datasets after outliers removal is presented in Table 3. 

 

 
Table 3. Comparison the results of the data before and after removing outliers 
Algorithms Original instants Good instants Anomaly instants % Removal 

Isolation forest 245,034 196,031 49,003 20.0 

Auto encoding 245,034 196,031 49,003 20.0 

 

 
When training the algorithms with both datasets, it was observed that the models exhibited improved 

results and predictive performance compared to those trained with data that retained outliers. The reduced 

dataset size also contributed to faster model creation. A detailed comparison of MSE, RMSE, MAE, and R2 

values revealed that the dataset processed with the IF method yielded superior results across all metrics, 

except for the R2 value in the DT algorithm. Additionally, when the XGBoost algorithm was trained with the 

IF-processed dataset, it demonstrated the highest predictive performance among all models and datasets. This 

indicates that the IF method not only enhances prediction accuracy but also streamlines the modeling process 

by effectively identifying and removing outliers. The comprehensive comparison and performance details are 

illustrated in Figure 2. 

From Figure 2, when considering the overall picture, the experimental results can be explained as 

follows: i) removing outliers using the IF method sufficiently reduces MSE as shown in Figure 2(a), RMSE 

in Figure 2(b), and MAE in Figure 2(c) across all methodological steps when compared to both datasets: the 

dataset without outliers removal and the dataset with outliers removal using the AE method. ii) outliers 

removal with the AE method, however, slightly decreases the overall performance of the models, evidenced 

by higher MSE as shown in Figure 2(a), RMSE in Figure 2(b), and MAE in Figure 2(c) values, as well as 

decreased R2 in Figure 2(d) values when compared to the dataset without outliers removal. iii) although 

outliers removal with the IF method leads to decreased MSE as shown in Figure 2(a), RMSE in Figure 2(b), 

and MAE in Figure 2(c) values in DT, the R2 value decreases as well as shown in Figure 2(d). This is due to 

the DT method’s initial hyper-parameters, which do not specify a maximum depth and leaf nodes, resulting 

in an unnecessary proliferation of leaf nodes during training. Consequently, the final learned results show an 

inaccurate average of each record mixed within the excessive leaf nodes. iv) despite the decreased R2 as 

shown in Figure 2(d) value in DT after outliers removal with the IF method, other methods show an 

improvement in R2 values in Figure 2(d). 

Based on the experimental findings, it was evident that the dataset treated with the IF outliers 

removal method consistently exhibited superior performance compared to both the dataset processed with the 

AE method and the original dataset without outliers removal. Consequently, the IF-processed dataset was 

selected for further model development stages. Specifically, across the six models evaluated (MLP, LR, DT, 

XGBoost, and Bagging) it was noted that five of these models demonstrated enhanced predictive capabilities 

when trained on the IF-processed dataset. This enhancement was reflected in improved metrics such as 

reduced RMSE, MAE, and MSE, as well as higher R2 values, indicating better model accuracy and 

robustness. These results underscore the effectiveness of the IF method in enhancing data quality by 

effectively identifying and removing outliers, thereby contributing to improved model performance across 

various machine learning algorithms. 

 
4.2.  The results of hyper-parameters’ optimization 

In Table 4, the hyper-parameter values obtained through the Bayesian search method, using the 

dataset processed with IF outliers removal, were used to build models. The models were evaluated using  

K-folds cross-validation with K set to 10. This resulted in average performance metrics across all 10 folds for 

each of the 6 methods, as shown in Table 5. 
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(a) 

 

(b) 

  
(c) (d) 

 

Figure 2. Comparison the results of the models trained on data before and after outlier removal on (a) MSE 

value, (b) RMSE value, (c) MAE value, and (d) R2 value 

 

 

Table 4. Results of hyper-parameters optimization using Bayesian search 
Algorithms Hyper-parameter Best parameters 

DT ccp_alpha 0.00339225 

criterion squared_error 

max_depth 8 

min_samples_leaf 61 

min_samples_split 0.860951952 
splitter random 

XGB max_depth 24 

gamma 0.173941856 

learning_rate 0.05028551 

min_child_weight 9.006166167 
alpha 0.26153907 

subsample 0.700633533 

colsample_bytree 0.403669676 

max_delta_step 6 

n_estimators 480 
MLP alpha 0.203240288 

batch_size 798 

hidden_layer_sizes 200 

activation relu 
learning_rate_init 0.000542794 

max_iter 82 

learning_rate constant 

momentum 0.637558948 

Bagging n_estimators 296 
max_samples 0.695150026 

max_features 0.207177187 

RF n_estimators 114 

max_depth 12 

min_samples_leaf 82 
min_samples_split 0.003641991 

max_features 16 

 

 

In Table 5, it is evident that after adjusting the hyper-parameters to optimal values, the DT, MLP, 

LR, RF, Bagging, and optimized XGBoost (O-XGBoost) models all showed varying degrees of 
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improvement. Notably, the O-XGBoost model emerged as the top performer across all evaluation metrics 

(MSE, RMSE, MAE, and R2) indicating its robustness and superior predictive capabilities. Following 

XGBoost, the MLP, Bagging, RF, LR, and DT models sequentially exhibited commendable performance 

improvements. Specifically, the O-XGBoost model achieved impressive metrics with RMSE at 13.74,  

R2 of 0.4747, MAE of 0.0876, and MSE of 0.0190. Comparatively, when compared to the Baseline-XGBoost 

model trained on the initial dataset, the XGBoost model refined through the data mining process showcased 

sufficiently enhanced performance. These findings underscore the effectiveness of hyper-parameter tuning 

and data preprocessing techniques in optimizing model accuracy and reliability across diverse machine 

learning algorithms. 

 

 

Table 5. Results of the models after adjusting hyper-parameters to appropriate values 
Models MSE RMSE MAE R2 

DT 0.0233 15.2200 0.1007 0.3554 

MLP 0.0193 13.8600 0.0880 0.4656 

LR 0.0197 13.9900 0.0906 0.4555 

RF 0.0196 13.9600 0.0899 0.4579 

Bagging 0.0195 13.9100 0.0908 0.4610 
O-XGBoost 0.0190 13.7400 0.0876 0.4747 

 

 

4.3.  Results discussion 

In Table 6, the comparative analysis between the O-XGBoost and Baseline-XGBoost models shows 

that the O-XGBoost model outperforms the baseline across all evaluation metrics. The O-XGBoost model 

achieved a lower MSE at 0.0190 compared to 0.0231, and a lower RMSE at 13.74 compared to 15.13, 

indicating more precise and accurate predictions. Additionally, the MAE is reduced from 0.0999 to 0.0876, 

further confirming the model’s improved accuracy. The R² value increased from 0.4537 to 0.4747, 

demonstrating that the optimized model explains a greater proportion of variance in the data. Overall, the  

O-XGBoost model provides more reliable predictions for lung cancer patient survival times. This aligns with 

the research in [18], [19], which used hyper-parameter optimization to enhance the performance of XGBoost.  

 

 

Table 6. Comparison of XGBoost model, Baseline-XGBoost and other models 
Models Instances Attributes Survival time (months) MSE RMSE MAE R2 

Custom ensemble [13] 10,442 19 0-72 - 15.30 - - 

RF [6] 10,442 25 0-6 - 10.52 - - 
GBM [6] 10,442 25 7-24 - 15.65 - - 

RF [6] 10,442 25 >24 - 20.51 - - 

GBM [5] 702,411 15 0-60 0.023 15.30 - 0.3664 

RF [5] 702,411 15 0-60 0.022 14.87 - 0.4015 

CNN [5] 702,411 15 0-60 0.018 13.50 - 0.5066 
Baseline-XGBoost 196,031 22 0-191 0.023 15.13 0.099 0.4537 

O-XGBoost 196,031 22 0-191 0.019 13.74 0.087 0.4747 

 

 

The findings of this research align with previous studies that have demonstrated the efficacy of 

machine learning models in predicting cancer patient survival times using SEER data. Similar to the study 

[28] on breast cancer, and similarly to the study [5], [13] research on lung cancer, our study confirms  

the superior performance of ensemble methods and advanced algorithms. Notably, our use of outlier 

detection and hyper-parameter optimization has further enhanced model accuracy, with XGBoost 

outperforming other models, achieving RMSE of 13.74. This result surpasses the performance metrics 

reported by Bartholomai and Frieboes [6], who highlighted the variability in accuracy across different 

survival periods. The success of XGBoost in our study underscores its potential for clinical application, 

providing physicians with a robust tool for assessing patient prognosis. This aligns with the suggestion by 

Thomgkam et al. [28] and other researchers that predictive models can sufficiently aid in early risk screening 

and the formulation of more effective treatment plans. Our research contributes to the ongoing development 

of clinical decision support systems, enhancing the precision and reliability of survival predictions for lung 

cancer patients. 

O-XGBoost is a powerful tool for survival analysis, while CNN can also be effective, particularly 

with image or spatial data. CNN excel at extracting essential features from complex datasets, making them 

suitable for applications like medical imaging and geographic data analysis. However, CNN generally require 

larger datasets and greater computational resources for effective training [31]. In contrast, O-XGBoost is 

typically more interpretable, handling tabular data efficiently and often requiring fewer resources. The choice 
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between O-XGBoost and CNN ultimately depends on the problem, data characteristics, and required 

interpretability. In Table 6, it’s also noted that this experimental comparison with previous studies is based on 

differing datasets, so no definitive conclusion can be made about which model is superior. In this study, we 

also created a web application that predicts the survival time of lung cancer patients using the O-XGBoost 

models, as illustrated in Figure 3. 
 

 

 
 

Figure 3. A web application of lung cancer survival prediction using O-XGBoost model 

 
 

5. CONCLUSION 

This research, an ensemble model is developed to enhance the prediction of lung cancer patient 

survival times by incorporating both outlier detection and hyper-parameter optimization techniques. The 

ensemble approach combines multiple training iterations of base algorithm which each trained through 

multiple iterations to optimize their performance. For outlier detection, the IF algorithm is employed to 
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identify and manage data points that deviate from the norm, ensuring that the model is trained on clean and 

relevant data. Additionally, Bayesian optimization is used to fine-tune hyper-parameters, efficiently refining 

the model parameters through iterative updates based on performance metrics. The dataset for this study is 

sourced from the SEER cancer database, including 196,031 records with 22 attributes collected between 2004 

and 2015. The research utilizes 10-fold cross-validation for comprehensive model training and testing to 

ensure robust performance evaluation. The ensemble model’s effectiveness is measured using metrics such as 

RMSE, MSE, R², and MAE. Results indicate that the XGBoost algorithm achieves the highest accuracy with 

an RMSE of 13.74, surpassing other models and the baseline-XGBoost. This research underscores the 

effectiveness of utilizing the ensemble methods with outlier detection and Bayesian optimization to improve 

prediction performance, providing sufficient contributions to the development of clinical decision support 

systems that can enhance treatment planning and patient care. Future work could explore more complex 

algorithms, thorough feature selection, or feature weighting techniques to enhance the model’s performance. 
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