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 To optimize and enhance the efficiency of broiler chicken farming, it is 

essential to maintain the chickens’ welfare, as heat stress can decrease 

growth efficiency. The temperature-humidity index (THI) is a key indicator 
used to determine if chickens are experiencing heat stress. Precision 

livestock farming (PLF) based on computer vision is one method that can 

assist farmers in continuously and automatically monitoring the condition of 

their chickens. This research developed a computer vision-based PLF system 
to observe chickens with CP 707 strain in a commercial farm using the Mask 

region-based convolutional neural network (Mask R-CNN) method and 

object tracking algorithms to analyze features such as the cluster index, 

unrest index, and the distance traveled by broilers. The results indicated that 
all features tend to inversely correlate with the THI value, with the cluster 

index showing the most noticeable tendency. Additionally, it was found that 

external factors, such as the presence of farmers around the observation area, 

can affect the chickens' behavior, although the cluster index feature is 
relatively resilient to disturbances if the operator is not captured by the 

camera. It was concluded that there is a relationship between the features 

and the THI value; however, these features are not yet sufficient to 

distinguish the condition of chickens under high and low THI conditions in 
real-time. 
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1. INTRODUCTION 

The consumption of poultry meat as a primary source of animal protein globally is expected to 

increase from 39.4% in 2022 to 40.8% by 2030 [1]. Therefore, maintaining the efficiency of poultry growth 

is crucial, given the impact of heat stress which can hinder the growth of broiler chickens, especially at  

21-22 days of age [2], [3]. The temperature-humidity index (THI) is a measure used to determine the heat 

stress condition in broilers, based on temperature and humidity values [4], [5]. Previous studies have shown 

that the optimal THI value for broilers is around 21 °C [4], [5]. Furthermore, guidelines for broiler farming 

suggest that the optimal THI value for broilers aged 22 days is around 25 °C [6], [7]. 

Efforts to optimize production efficiency and animal welfare have driven research into precision 

livestock farming (PLF), which enables continuous and automatic monitoring using various sensors [8]. 

Image-based approaches have emerged as effective methods to study poultry behavior under varying 

environmental conditions [9]. These methods provide non-invasive insights into poultry behavior. Recent 

https://creativecommons.org/licenses/by-sa/4.0/
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studies have utilized computer vision and machine learning technologies to obtain behavioral features in 

poultry activities. For instance, Joo et al. [10] used Mask region-based convolutional neural network  

(R-CNN) and YOLOv4 models to classify nine chicken postures and behaviors, while Guo et al. [11] 

compared five convolutional neural network (CNN)-based machine learning models to detect four different 

chicken behaviors. Moreover, Eijk et al. [12] evaluated computational resource efficiency in detecting 

broilers by comparing Mask R-CNN and U-Net models. Additionally, Massari et al. [2] evaluated the cluster 

index and unrest index in broilers under heat stress by segmenting images based on morphological 

operations, while Lin et al. [13] examined the correlation between THI values and chicken movement 

detected using Faster R-CNN. 

Despite several previous studies, there has less research on commercial poultry farms used in the 

farming industry as most studies have been conducted in a controlled laboratory environment. Factors such as 

natural sunlight and larger inconsistent numbers of chickens typical in commercial farms have not been 

considered in previous research. In this research, broiler with CP 707 strain is observed on a commercial 

farm to explore and analyze the relation between THI values and broiler activities represented as the cluster 

index, unrest index, and average broiler movement obtained using Mask R-CNN model for instance 

segmentation to detect individual chickens. Detected chickens are tracked using an object tracking algorithm 

and the result was compared with previous results to test whether laboratory results can be applied in 

commercial farms. If successful, these features will be used to develop a system for detecting chicken 

conditions under heat stress. 
 
 

2. METHOD 

In this research, the computer vision-based PLF system architecture shown in Figure 1 was used to 

obtain segments of each chicken to be tracked. The Mask R-CNN instance segmentation model was proposed 

as a method to recognize individual chickens due to its good performance in terms of inference speed and 

segmentation accuracy produced [14]. The segmentation results are used for the tracker, and feature 

extraction will be carried out in the form of the unrest index, cluster index, and kinematic features such as the 

average displacement of tracked chickens. Finally, correlation analysis was carried out between the features 

and the measured THI value. If there is a correlation between the features and the THI value, a supervised 

learning-based model will be developed in future research to model chicken behavior under heat stress 

conditions in real-time. 
 

 

 
 

Figure 1. Proposed system architecture for broiler chicken monitoring 
 

 

2.1.  Experimental setup 

In this study, experiments were conducted in a commercial chicken farm measuring 120×12×2 m 

located in Subang, West Java, Indonesia. This study observed broilers with strain CP-707 from PT. Charoen 

Pokphand Indonesia [6]. Broilers were recorded using an IP Camera Uniarch IPC-T124 installed on the 

ceiling of the farm with a resolution and sampling ratio of 2560×1440@20fps. The IP Camera was positioned 

as shown in Figures 2(a) and 2(b), capturing the area where chickens consistently stay in frame during the 

brooding period, including equipment within the farm. The IP cameras were connected to a network video 
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recorder (NVR) Dahua PFS3010-8ET-96 to record video every day from 06:00 to 20:00 (local time). 

Industrial temperature and humidity sensors (SM7820B) were connected to a mini-PC server to record data 

every second. The server time and NVR were then synchronized to a local network time protocol (NTP) 

server, and all camera and sensor recording data was stored on the server. 
 
 

  
(a) 

 

 
(b) 

 

Figure 2. Experiment setup of: (a) camera and server installation and (b) location of camera installation 
 

 

2.2.  Data collection and annotation 

To train the instance segmentation model, video data recorded from August 19, 2023, to  

September 23, 2023, was used as the dataset. A sample of 50 images containing broilers and 3 kinds of coop 

equipment was annotated as shown in Figure 3 using open-source labeling software AnyLabeling. From 

these sampled images, the dataset was divided into training, validation, and testing, with each set containing 

data as shown in Table 1. The training set was used to train the model in this research, while the validation 

set was employed during the training process to evaluate model performance and prevent overfitting. Finally, 

the testing set was used for the final evaluation after training to assess the performance of the trained model. 
 
 

 
 

Figure 3. Dataset annotation on 4 classes 
 

 

Table 1. Dataset splitting 
Object Training (30 Imgs (%))  Validation (10 Imgs (%)) Testing (10 Imgs (%)) Total (50 Imgs (%)) 

feedbowl 30 (60) 10 (20) 10 (20) 50 (100) 

broiler 3,010 (59.54) 1,069 (21.15) 976 (19.31) 5,055 (100) 

drinkline 220 (62.14) 67 (18.93) 67 (18.93) 354 (100) 

feedline 100 (62.12) 31 (19.25) 30 (18.63) 161 (100) 
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2.3.  Instance segmentation and multi object tracking 

The segmentation process was conducted by comparing the Mask R-CNN model [14], with the best 

backbone then used as the tracker for multi-object tracking using an algorithm based on the simple online and 

realtime tracking (SORT) algorithm [15]. This study utilized a computer running Ubuntu 22.04 operating 

system with Python 3.11.9 and Pytorch 2.3.0 with GPU support installed. The research was conducted on an 

PC installed with Processor Intel i7-13700K, 128 GB sized RAM, and an Nvidia GeForce RTX 4070 GPU 

with 12 GB of memory. 

 

2.3.1. Mask region-based convolutional neural network 

Mask R-CNN is an extension of the Faster R-CNN object detection algorithm [16], which 

incorporates a semantic segmentation algorithm using a fully convolutional network (FCN) [17] on the 

region of interest (RoI) layer for object segmentation [14]. In this study, the ResNet50 backbone with a 

feature pyramid network (FPN) [18], as depicted in Figure 4, was utilized. Other than that, ResNet-101-FPN 

and ResNeXt-101-FPN backbones were trained to compare and evaluate the performance of each backbone 

model. The training process for each backbone was conducted over 3,000 iterations, with transfer learning 

using model that had previously been pretrained on the MS COCO dataset were performed to further train the 

model to recognize broilers using the created dataset. Inference using Mask R-CNN produces outputs such as 

object segmentation masks, bounding boxes, and object centroid coordinates based on the segmentation 

results. These outputs were then utilized as the tracker for object tracking using the SORT-based tracking 

algorithm. 

 

 

 
 

Figure 4. Mask R-CNN architecture 

 

 

2.3.2. Simple online and realtime tracking 

SORT is a multi-object tracking algorithm that utilizes the Kalman filter [19], assuming a constant 

velocity model for object motion [15]. The Kalman filter is employed to estimate changes in object positions 

from the previous frame and match them with detections in the current frame. Once matched, these frames 

are used to update the Kalman filter state [15]. In this study, the tracking process based on the SORT 

algorithm was implemented using the norfair framework [20], as illustrated in Figure 5. 

 

 

 
 

Figure 5. SORT-based tracking algorithm 
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In this research, the centroid coordinates from the segmentation results of broiler class were used as 

features for calculating the distance between frames. The closest object distances meeting a specified 

threshold were used as parameters to match objects across frames. The tracking algorithm outputs object 

identities along with information of segmentation masks, bounding boxes, and centroid coordinates for each 

tracked frame. 
 

2.4.  Feature extraction 

To model broiler conditions during heat stress, feature extraction was performed based on the 

tracking results. This study focuses on testing and analyzing three features, namely unrest index [21], cluster 

index [22], and average travel distance [13]. The first feature, unrest index, measures the difference between 

sets of objects across two frames within a specific time interval, defined by (1). 
 

Unrest Index(i,i−1) = 𝑘. dH(F(i), F(i−1)) (1) 

 

Where dH represents the symmetric Hausdorff distance [23] between sets of centroid coordinates of objects 

in the current frame F(i) and the previous frame F(i−1). 𝑘 is the proportionality factor of the image capture 

camera, defined by (2). 
 

𝑘 =
2𝐻 tan(𝛼/2)

𝑤
 (2) 

 

The value of the proportionality factor 𝑘 depends on the camera height 𝐻, lens aperture angle 𝛼, and 

the pixel width 𝑤 of the charge-coupled device (CCD) sensor. The next feature is the cluster index, which 

represents how densely objects are clustered at a given time, defined by (3). 

 

Cluster Index(i) =
2×𝐴̅×√ℎ2+𝑤2

𝑃̅×𝐷̅×𝑛𝐴
− 1 (3) 

 

Where 𝐴̅ and 𝑃̅ are the average area and perimeter of detected object segments, ℎ and 𝑤 are the height and 

width of the image, 𝐷̅ is the average distance between centroids of segments, and 𝑛𝐴 is the number of 

detected segments. The final feature to be tested is the average travel distance, calculated using (4): 
 

Avg. Dist(i,i−1) =
∑ 𝑑(𝑆j(i),𝑆j(i−1))

𝑛𝐴
j=1

𝑛𝐴
 (4) 

 

With 𝑑 is the distance function between object segments 𝑆 for index j in frame i and the previous frame 
(i − 1). Various metrics can be used for 𝑑; however, in this study, Euclidean distance was used to calculate 

object displacement between frames. 

For the testing process, videos recorded on September 2, 2023, from 06:00 to 20:00 with 22-day-old 

broilers [2] were selected. This period was chosen to observe and track chicken behavior during heat stress 

conditions. Tracking was conducted with a sampling interval of 1 second to capture significant changes in 

broiler behavior. Following feature extraction, further analysis was performed to determine correlations 

between these features and THI values. 

 

2.5.  Temperature-humidity index calculation 

THI is a metric developed to assess thermal conditions in livestock. For broiler chickens, THI is 

typically calculated as a linear combination of dry bulb temperature (𝑡𝑑𝑏) and wet bulb temperature (𝑡𝑤𝑏) with 

specific weights that depend on the type of livestock being observed. For broilers, THI is defined by (5) [4]. 

 

𝑇𝐻𝐼 = 0.85𝑡𝑑𝑏 + 0.15𝑡𝑤𝑏 (5) 
 

In this study, the wet bulb temperature (𝑡𝑤𝑏) is approximated using the empirical equation given by (6) [24]: 
 

𝑡𝑤𝑏 = 𝑡𝑑𝑏 atan[0.151977(𝑅𝐻% + 8.313659)1/2 ] + atan(𝑡𝑑𝑏 + 𝑅𝐻%) − atan(𝑅𝐻% − 1.676331) +

0.00391838(𝑅𝐻%)
3

2 atan(0.023101𝑅𝐻%) − 4.686035 (6) 
 

With 𝑡𝑑𝑏 is the dry bulb temperature reading from the temperature sensor, and 𝑅𝐻% is the relative humidity 

reading from the humidity sensor. These values are used to calculate the wet bulb temperature (𝑡𝑤𝑏), which 

is then used in (5) to determine the THI value in the study. 
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3. RESULTS AND DISCUSSION 

3.1.  Instance segmentation using Mask R-CNN 

The training process for each backbone of the Mask R-CNN model was conducted over 3,000 

iterations. Model evaluation was performed using the intersection over union (IoU) metric, defined as the 

ratio of the intersection to the union of the reference segment (𝑆𝑟) and the predicted segment (𝑆𝑝), in (7). 

 

𝐼𝑜𝑈(𝑆𝑟 , 𝑆𝑝) =
𝑆𝑟∩𝑆𝑝

𝑆𝑟∪𝑆𝑝
 (7) 

 

IoU ranges from 0 to 1, where a value of 0 indicates no overlap between the segments, while a value of 1 

indicates perfect overlap. A prediction is considered a true positive (TP) if it meets three criteria: it has the 

same class as the reference, the prediction probability exceeds a predefined threshold, and the IoU value 

exceeds a specified threshold. Model performance was evaluated using the COCO evaluation method, 

assessing average precision (AP) values at IoU thresholds ranging from 50% to 95% in increments of 5%.  

In this study, AP evaluation was conducted at IoU thresholds of 50%, 75%, and the mean AP over the range 

50-95% mean average precision (mAP) shown in Table 2. 

 

 

Table 2. Evaluation result from training Mask R-CNN 
No Backbone Bbox mAP Bbox AP50 Bbox AP75 Segm mAP Segm AP50 Segm AP75 

1 ResNet-50-FPN 74.8 83.5 81.6 75.2 83.5 81.5 

2 ResNet-101-FPN 70.6 81.6 79.7 73.2 81.6 80.2 

3 ResNeXt-101-FPN 71.6 80.0 76.8 71.3 80.0 77.6 

 

 

Based on Table 2, for the training process with 3,000 iterations, the best results were achieved with 

the ResNet-50-FPN backbone, showing a value of 2-3 higher AP compared to the next best backbone. This 

performance improvement was observed both in bounding box evaluation and segmentation results. The 

comparison of AP evaluation across IoU threshold variations for each class category is illustrated in Figure 6. 

Based on Figure 6, it is evident that AP values for each backbone decrease around the IoU region of ~85%. 

Generally, the AP values for segmentation in the broiler class are better than the AP values for bounding 

boxes, while for other classes, the AP values for bounding boxes are the same or better than those for 

segmentation. This indicates that the segmentation results, especially for the broiler class, are more suitable 

for use as features in the object tracking process. 

The model with ResNet-50-FPN as the backbone achieved the best results, particularly for the 

broiler class, as shown in Figure 6(a). At an IoU threshold of 0.70, the AP values did not show a significant 

decline. In contrast, models with ResNet-101-FPN and ResNeXt-101-FPN exhibit a notable decline in AP 

values at the same IoU threshold, as illustrated in Figures 6(b) and 6(c). Among the four classes trained with 

various backbones, the drinkline class performed the worst, as indicated by its AP values, which were 

considerably lower than those of the other classes. 

Additionally, the findings from the visualization results of the segmentation models show that the 

ResNet-50-FPN backbone (Figure 6(a)) produces better results with fewer errors compared to other 

backbones. Other backbones (Figures 6(b) and 6(c)) exhibit significant errors. These include incorrectly 

detecting parts of the operator captured on camera. Which are less pronounced with the ResNet-50-FPN 

backbone. 

 

3.2.  Feature comparison with THI 

After the segmentation process was successfully conducted, feature values were calculated using  

(1) to (4), and the THI values were computed using (5) and (6). Figure 7(a) shows the THI graph in blue, 

while the bar graph represents the histogram of normalized average values for each feature to facilitate 

visualization and observation, with a 95% confidence interval (CI). It can be observed that between 

approximately 9:30 and 14:30, there were fluctuations in THI values due to the automatic control system in 

the farm, which activated the cooling pump to cool the incoming air as the THI inside the farm rose too high, 

reaching up to 30 °C. 

Based on the observation of the features, the cluster index generally exhibited an inverse 

relationship with the THI values, especially at the beginning when the THI values were very low, consistent 

with the findings of Pereira’s [22] research. The unrest index also showed an inverse trend, though it was less 

pronounced compared to the cluster index. This difference is attributed to the less significant temperature 

variation within the farm, aligning with the findings of Valle et al. [21], who noted that the unrest index for 

broilers showed significant changes at temperatures around 35 °C, corresponding to THI values of 
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approximately 33 to 34 °C. The average displacement index was primarily noticeable between 08:00 and 

16:00, with a distribution similar to the findings of Lin et al. [13]. 

 

 

 

 

(a) 

 

 

(b) 

 

 

(c) 

 

Figure 6. Comparison of backbones (a) ResNet-50-FPN, (b) ResNet-101-FPN, and (c) ResNeXt-101-FPN 

 

 

A deeper analysis of the index data sampled per second, as shown in Figure 7(b), revealed several 

instances where feature values significantly increased. Further analysis and observation of the video 

recordings indicated that these peaks corresponded to instances where an operator or farmer entered the farm 

and was captured on camera, as illustrated in Figure 8. Other peaks in the average displacement feature were 

due to sudden and simultaneous movements of the chickens, triggered by the presence of a farmer or operator 

not captured by the camera. This suggests that the cluster index and unrest index features are more resilient to 

external disturbances caused by farmers or operators in the data collection area compared to the average 

displacement. 
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(a) 

 

 
(b) 

 

Figure 7. THI calculation (a) cumulative (b) sampled every second 

 

 

  
 

Figure 8. Example of operator captured on camera 
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The cluster index is more resistant to disturbances because its calculation is not based on two 

different frame conditions. The cluster index value only increases if the farmer or operator is captured by the 

camera, causing many chickens to move away and not be captured. A reduced number of chickens (𝑛𝐴) 

results in a minimum value in the denominator of (3), leading to an increase in the cluster index value. If the 

farmer or operator is not captured by the camera, the cluster index value is not significantly affected even if 

the chickens move, because they are still detected and captured by the camera. 

In contrast, both the unrest index and average displacement features depend on the comparison 

between the two frames. Whether the operator is captured or not, if the operator or farmer is near the 

chickens and causes increased movement, both index values will rise. When comparing the unrest index and 

average displacement, the unrest index is more resistant to disturbances because it uses the Hausdorff 

distance, which only compares the spread of central points between two frames without considering the 

identity of each object. For example, if two objects switch positions between two frames, the unrest index 

calculation, which does not account for the identity of each object, results in a minimal Hausdorff distance 

evaluation due to the nearly identical positions. In contrast, the average displacement calculation tracks the 

movement of objects by maintaining the same identity; thus, when positions are switched, there is still 

displacement, resulting in a non-zero displacement value. To analyze further whether these three features can 

classify the condition of chickens under heat stress, an exploratory data analysis (EDA) of the features was 

conducted by plotting mean of each features on each THI range, calculating Pearson correlation matrix [25] 

to determine linear correlation between the variables, and lastly plotting all the features on 3D scatter plot, 

with THI values as the heatmap of the data point. 

Figure 9 shows mean of each feature on different THI ranges, having negative trend on cluster index 

and unrest index which align with the results from previous research [2], [21], [22], while displacement 

shows negative trend in low temperatures and positive trend on middle and higher temperature. This happens 

because there was disturbance from the operators which made the chickens move. Hence further data 

processing such as data cleaning or filtering were needed to process the data for further use.  

 

 

 
 

Figure 9. Normalized features mean on different THI range 

 

 

The Pearson correlation matrix in Figure 10 shows that cluster index having a negative correlation 

with value of -0.5 with THI while the other two have a low correlation with THI. This means that cluster 

index has some linear correlation inversely to some extend with THI, which correspond with the results from 

Figure 7. Unrest index also has a negative correlation with low value, indicating that these features are have 

an inverse correlation, but not linearly correlated with THI. Similar results show on the displacement feature 

that have very low correlation with THI, because of the same disturbance by the operators around the 

observation area. 
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Figure 10. Pearson correlation matrix of THI and each feature 

 

 

Figures 11(a) and 11(b) show that conditions with high (red) and low (blue) THI values are quite 

overlapping, making it difficult to distinguish the chicken's condition under high and low THI. However, the 

direction of cluster index axis stands out as it can better differentiate between high and low THI conditions. 

Compared to the other two axis, with better visibility of the separation between red and blue color. 

 

 

  
(a) (b) 

 

Figure 11. Scatter plot of 3 features on (a) 3D Scatter Plot and (b) 2D Slice of the 3D plot 

 

 

Based on the findings, all three features are related to the chickens' conditions under high and low 

THI, as observed in the cumulative evaluation results in Figure 7(a). However, a more in-depth analysis 

reveals that it's not yet clear if these features alone are sufficient for real-time chicken condition recognition. 

From Figures 7, 9, and 11, the cluster index feature appears to have a better capability to distinguish chicken 

conditions under high and low THI compared to the other two features. 

The data segmentation process in this study, by using the Mask R-CNN method may influence feature 

extraction. Previous studies used mathematical segmentation methods like filtering, mathematical morphology 

operations, and binarization for feature extraction of the cluster index and unrest index [2], [21], [22].  

These methods allow for consistent detection of chickens as long as they have a distinct color contrast from 
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the background and consistent lighting, while there were no other objects with similar color with the 

chickens. However, in commercial farms, lighting conditions cannot be consistently maintained due to 

external factors, and some visual disturbances like the presence of the operators captured on camera, making 

the Mask R-CNN method a viable solution for commercial farm applications. Caution is needed with Mask 

R-CNN, as poorly trained models can result in misdetections, either falsely identifying non-chickens as 

chickens or failing to detect chickens. 

Furthermore, previous feature testing was conducted in laboratory-scale farms with a small number 

of chickens and small farm sizes, ensuring all chickens and the farm were captured by the camera  

[2], [13], [21], [22]. This setup minimizes the chance of chickens moving in and out of the camera's field of 

view, maintaining a consistent number of chickens for feature calculations. In commercial farm applications, 

chickens' free movement can lead to extreme conditions, such as no chickens or very high numbers of 

chickens being captured, affecting feature calculations. External factors like operators entering the farm can 

also influence chicken behavior, indicating the need for further development in recognizing chicken behavior 

relative to THI changes. 

To apply this system in commercial farms, further development could include additional features 

like sound detection [26], which could improve behavior recognition accuracy. Additionally, more research 

on the use of cluster index and unrest index in commercial farm conditions is necessary. This study aims to 

pave the way for further development of PLF in recognizing heat stress in chickens, potentially helping 

farmers improve livestock quality in commercial settings. 

 

 

4. CONCLUSION 

This research explores the potential of applying a computer vision-based PLF system using  

Mask R-CNN to estimate the chicken heat stress under different THI conditions. Several Mask R-CNN 

backbones were trained and compared, demonstrating their ability to effectively identify broilers and 

equipment in the coop. Feature extraction from the best-performing backbone included cluster index, unrest 

index, and average displacement, which were analyzed for their correlation with THI. The analysis revealed 

that these features have a relationship with THI values, with the cluster index emerging as the best feature for 

correlating with THI. However, further development of these features is necessary for effective application in 

commercial farms. 
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