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 Electrical vehicles (EVs) are crucial nowadays due to their reduction in 

greenhouse gas emissions, decreasing dependence on remnant fuels, and 

improving air quality. For EVs, the battery is the heart that determines range, 

performance, and efficiency. Also, it directly impacts the cost and overall 

vehicle life span. Lithium-ion (Li-ion) batteries are pivotal in powering 

modern portable electronics and electric vehicles due to their high energy 

density and durability. Issues with current batteries include slow charging, 

short cycles, and low energy density. Most of the problems with current 

batteries are resolved by Li-ion batteries, which also helps explain why EV 

usage is increasing globally. However, to guarantee maximum performance 

and safety, estimating the remaining useful life and health state of these 

batteries remains a major difficulty. To improve battery lifetime of the 

battery and to overcome the problems of delayed charging, this study 

introduces a tiny machine learning (TinyML) method. An innovative 

machine learning approach is put forth that allows for effective learning on 

devices with limited resources, which enables real-time monitoring of the 

health status of the Li-ion batteries.  
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1. INTRODUCTION 

Lithium-ion (Li-ion) batteries are essential to contemporary portable gadgets and electric vehicles, 

because of their extended lifespan and high energy density [1]. However, maximizing performance and 

guaranteeing safety depends on precisely estimating the remaining usable life (RUL) and health state of these 

batteries [2], [3]. For example, drone operators frequently replace batteries after a predetermined number of 

cycles to reduce dangers, even if the batteries might still be acceptable for a few shorter flights. Also, since 

the demand for portable and sustainable energy sources continues to grow, the importance of effective and 

reliable Li-ion batteries has never been more highlighted [4]. These batteries power enormous devices, from 

smartphones to laptops to electrical vehicles (EVs) and renewable energy storage systems. Despite their 

extensive use, Li-ion batteries face significant challenges related to their life cycle and health monitoring [5]. 

Traditional battery management technologies often depend on complex and resource demanding methods to 

monitor battery health which is costly and inefficient. Recent advancements in tiny machine learning 

(TinyML) exhibit a promising solution to these challenges. TinyML influences the capabilities of machine 
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learning on resource constrained devices, enabling real-time and precise monitoring of battery health with 

reduced computational overhead [6]. By incorporating TinyML techniques in battery management systems, it 

is possible to optimize battery life, improve performance, and predict potential crashes before they happen, 

ensuring safer and more effective operation of batteries under various situations. The RUL of Li-ion batteries 

is strongly influenced by temperature and load (current or depth of discharge). These factors accelerate 

degradation through mechanisms like capacity fade and internal resistance growth. The following is a 

commonly used model to estimate RUL: a degradation-based RUL model for Li-ion batteries often combines 

the Arrhenius equation (temperature dependence) and load-dependent cycling damage as in (1). 

 

𝑅𝑈𝐿 =
𝑄𝑚𝑎𝑥−𝑄𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝑘1⋅𝑒

−𝐸𝑎
𝑘𝐵𝑇+𝑘2⋅𝐶𝑟𝑎𝑡𝑒

𝑏

 (1) 

 

Where 𝑄𝑚𝑎𝑥 is initial battery capacity (Ah), 𝑄𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is current battery capacity (Ah), 𝑘1,𝑘2 are empirical 

degradation rate constants for temperature and cycling, 𝐸𝑎 is activation energy, kB is Boltzmann constant 

(1.38×10−23 J/K), T is absolute temperature (Kelvin), 𝐶𝑟𝑎𝑡𝑒 is charge/discharge rate (relative to 1 C, e.g.,  

0.5 C or 2 C), and b is exponent reflecting load dependency. RUL in battery health monitoring predicts the 

time a battery can continue to perform effectively before needing replacement, enabling proactive 

maintenance and optimization.  

The integration of TinyML in battery health monitoring has emerged as a promising area of 

research, incorporating advancements in machine learning with the practical needs of battery management 

technology. Early research in deploying machine learning to battery health monitoring set the base for data-

driven methods. Severson et. al. [7] conducted an innovative study where they applied machine learning 

algorithms to predict the life cycles of Li-ion batteries using early charge-discharge information. This 

approach considerably enhanced the accuracy of predictions while comparing them to the traditional 

methods, highlighting the potential of machine learning in battery lifetime analysis. Further extending this 

work, various machine learning methods, including support vector machines and neural networks were 

explored to predict the battery lifetime and capacity discharging [8]. Their observations underestimated the 

importance of feature selection and the promise of ensemble learning methods in improving the accuracy of 

prediction. The paradigm shift towards TinyML signifies a step forward in battery health monitoring, 

focusing on deploying machine learning methods on resource-controlled devices. A lightweight neural 

network optimized for microcontrollers, capable of real-time health predictions for Li-ion batteries [9]. This 

method not only reduced the computational load but also maintained high accuracy, making it ideal for 

portable EVs. Building on this, TinyML with IoT devices for remote monitoring of battery health was 

incorporated to study the exhibited possibility of implementing TinyML models on edge devices, permitting 

continuous monitoring without relentless connectivity to cloud servers. This integration enabled robust data 

collection and real-time analysis, paving the way for predictive maintenance and fault diagnosis in battery 

monitoring [10]. Gruosso and Gajani [11] demonstrated the comparison of machine learning algorithms in 

TinyML for the estimation of battery state. ANN based prediction methods are deployed and compared in 

terms of cost, memory, and computational power. Furthermore, Lord and Kaplan [12] analyzed the 

application of two different neural networks in TinyML frameworks for battery anomaly detection. Finally, 

the optimized model was mounted in the microcontrollers, indicating significant improvements in the 

accuracy detection with low power consumption. 

The integration of IoT and TinyML further improved the abilities of battery health monitoring 

system [13]. Studies in research suggested a hybrid model that combined a traditional battery monitoring 

system with TinyML enhancements, resulting in enhanced accuracy in estimating the remaining useful life of 

batteries [14]. Moreover, Wang et. al. [15] created an IoT based framework for devoted battery health 

monitoring. This study employed TinyML models deployed on edge devices, enabling real time analysis, and 

decision making. The architecture reduced the support on centralized cloud servers, improving the robustness 

and scalability of the monitoring system. While the existing research applications of TinyML battery health 

monitoring show promising results, there are challenges to address [16]. The key challenge is shortage of 

standardized data sets and benchmarking frameworks to evaluate the performance of TinyML models across 

different applications. Moreover, ensuring the robustness and security of TinyML models implemented on 

edge devices is critical, particularly in safety critical applications with EVs [17]. To overcome these 

limitations of the existing works, a real-time battery health monitoring system is proposed for Li-ion batteries 

which enables real-time analysis on edge devices. ESP32 microcontroller, a simple and low-cost chip that 

makes the solution accessible and affordable, is a crucial component of our implementation. This 

implementation shows how useful TinyML is for estimating battery health in practical applications [18]. To 

select the optimal battery charging procedures, the state of charge (SoC) estimation is essential. Particularly 

regarding rapid charging, which allows for a substantial reduction in charging time without compromising 
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the battery's overall lifespan [19]. TinyML battery health assessment is being advanced to assist larger 

objectives of improving performance and safety because Li-ion batteries are extremely explosive [20], [21], 

and Li-ion battery longevity is the major requirement in a variety of applications [22], [23]. This helps to 

create more effective and sustainable energy solutions internationally, which is good for businesses and 

consumers alike. Our study extends battery lifespan and promotes sustainability by optimizing EV charging 

cycles, preventing unplanned shutdowns, and increasing user experience through improved battery life 

projections. To assure dependable predictions under TinyML limitations, we investigate a variety of machine 

learning techniques appropriate for resource-constrained contexts, weighing inference speed, model size, and 

accuracy. Our research uses TinyML, a cutting-edge technology that enables machine learning on devices 

with limited resources, to tackle this problem. 

 

 

2. METHODOLOGY 

Our objective is to use TinyML to create a small, precise prediction model for Li-ion battery 

capacity estimation. The various steps involved in this process are data preparation, model development, 

conversion, optimization, and deployment. The proposed model was trained on thorough and pertinent data 

by utilizing the NASA battery dataset, which enabled accurate and effective real-time predictions on a device 

with limited resources. This dataset is ideal for capacity prediction because the discharging and charging 

patterns are fixed. The SoC estimation is influenced by a battery's charging and discharging efficiencies. 

 

2.1.  Convolutional neural networks 

The NASA battery dataset is preprocessed to prepare the dataset for efficient use in convolutional 

neural network (CNN) model training. Preparing the data for CNN-based analysis involves activities, 

including feature engineering, normalization, and data cleaning. The NASA battery dataset's raw data, which 

includes variables like voltage, current, and temperature, is transformed to ensure consistency and 

applicability during the training phase [24], [25]. Furthermore, the alignment of time series and the resolution 

of missing values are essential components in getting the data ready for effective CNN model training. By 

improving the dataset's quality and consistency, these preprocessing procedures should help the CNN model 

learn and predict more accurately during training [25]. 

CNN models are built using a set of architectural parameters, including the number of convolutional 

layers, the size of feature maps inside each layer, and the connectivity between them. The CNN architecture 

is ultimately customized according to the dataset's complexity and the model's intended ability to accurately 

capture spatial patterns and feature hierarchies pertinent to the task at hand. Determining the ideal number of 

layers, feature map size and organization, and layer connection are all included in this careful design. CNNs 

are capable of effectively extracting significant information from the input data and capturing the spatial 

relationships necessary for precise prediction by carefully planning their architecture [26]. Therefore, the 

foundation for attaining high performance and resilience in a variety of CNN-based applications is a  

well-designed CNN architecture. The purpose of this validation dataset is to evaluate the model's ability to 

generalize to previously undiscovered data independently. Different assessment metrics are frequently used 

to measure the difference between the predicted values and the actual ground truth labels in the validation 

dataset. Examples of these metrics are mean absolute error (MAE) and root mean squared error (RMSE). 

These measures shed light on how the predictions made by CNN are accurate and dependable [27]. 

Researchers and practitioners can learn a great deal about CNN's predictive accuracy by examining the 

evaluation findings. To further improve the model's performance, they can also spot possible areas for 

improvement, such as altering the model architecture or fine-tuning hyperparameters. To reduce the amount 

of memory and processing power needed, this entails model quantization or decreasing the precision of 

weights. After that, the models are transformed into a format that is compatible with TinyML, allowing 

devices with low processing power to use them. By optimizing the models for TinyML, the approach 

becomes relevant for edge computing and IoT devices, as it guarantees that the models can be implemented 

on microcontrollers.  

 

 

3. HARDWARE IMPLEMENTATION 

The development of a reliable Li-ion battery capacity prediction system is essential for the efficient 

management and longevity of batteries in various applications [28]. Our project utilizes a customized ESP32 

microcontroller-based hardware setup, coupled with a CNN model, to predict the remaining capacity of  

Li-ion batteries. This system integrates advanced sensors and a custom printed circuit board (PCB) to ensure 

accurate data collection and robust performance, even in challenging conditions. The ESP32 is a versatile 

microcontroller featuring a dual-core Xtensa LX6 processor with a 32-bit architecture and clock speeds of  



Int J Artif Intell  ISSN: 2252-8938  

 

Optimizing battery life: a TinyML approach to lithium-ion battery health … (Kamaraj Lalitha Nisha) 

3861 

up to 240 MHz [29]. It includes 520 KB of SRAM, 4 MB of flash memory (expandable to 16 MB), and  

built-in Wi-Fi (2.4 GHz, IEEE 802.11 b/g/n) and Bluetooth v4.2 (BR/EDR and BLE) for wireless 

connectivity. Figure 1 shows all the hardware components used in the project. Key to our design is the use of 

the INA219 voltage and current sensor, which provides precise digital measurements. The sensor operates by 

measuring the voltage drop across a shunt resistor, allowing it to calculate the current and voltage of the 

battery. The digital nature of the data ensures that the integrity of the transmitted values remains intact, even 

when the microcontroller is positioned at a distance from the sensor. This is crucial for maintaining accuracy 

in real-world applications where sensor placement flexibility is needed. For temperature monitoring, the 

DS18B20 probe-type sensor is employed. This sensor directly connects to the battery body, providing 

accurate temperature readings. The DS18B20 uses a 1-wire protocol, which is advantageous as it addresses 

the limitations of analog ports and simplifies the wiring requirements. The sensor can be positioned precisely 

to monitor the battery's surface temperature, which is crucial for accurate capacity prediction as temperature 

significantly affects battery performance. The probe's robust design ensures reliable operation in various 

environmental conditions, making it ideal for long-term monitoring. 

 

 

 
 

Figure 1. Hardware components 

 

 

Our custom PCB design enhances the functionality of the standard ESP32 development board. By 

eliminating the on-board programmer, which consumes significant power, we have optimized the board for 

low-power operation. The custom PCB features direct ports for connecting sensors and a 16×2 LCD display, 

which provides real-time feedback and data visualization. To ensure a stable power supply, we integrated two 

voltage regulators: an LM7805, which provides a 5 V output at 1 A to power the LCD, INA219 sensor, and 

DS18B20 sensor, and an LM1117IC, which steps down the voltage to deliver an 800-mA output for the 

ESP32. This dual-regulator setup not only supports all components with adequate power but also enhances 

the overall reliability and efficiency of the system by preventing power surges and ensuring consistent 

voltage levels.  

A large switch is incorporated into the system, serving multiple functions such as initiating data 

collection, calibrating the system, or resetting the device, without necessitating additional switches. 

Additionally, a rocket switch with a single-pole single-throw (SPST) configuration is included. This switch 

provides a reliable and simple means of powering the system on and off. Its straightforward operation 

enhances the user interface by providing a clear, tactile method for controlling the power state of the device, 

thereby improving overall usability and user experience. To complete the system, a customized 3D printed 

enclosure with a slanted, waveful model is used for assembly. This enclosure is designed with inputs and 

outputs on both the left and right sides, allowing for versatile positioning on any surface. The slanted design 

minimizes glare on the LCD display, ensuring optimal visibility in various lighting conditions. This 

thoughtful enclosure design enhances the usability and aesthetic appeal of the system while maintaining its 

functionality in diverse environments. In conclusion, our Li-ion battery capacity prediction system combines 

sophisticated sensor integration with a custom-designed ESP32 PCB to deliver accurate and reliable capacity 

predictions. The use of digital sensors and optimized power management ensures data integrity and robust 

performance, making it suitable for various practical applications. The integration of the INA219 for current 

and voltage measurements, the DS18B20 for temperature monitoring, and a well-designed power 

management system all contribute to the system's effectiveness. This system represents significant 



                ISSN: 2252-8938 

Int J Artif Intell, Vol. 14, No. 5, October 2025: 3858-3868 

3862 

advancement in battery management technology, providing a valuable tool for extending the life and 

efficiency of Li-ion batteries. 

 

 

4. INTEGRATING SOFTWARE MODEL INTO HARDWARE-COMPATIBLE SYSTEM FOR ESP32 

4.1.  Model design and optimization for ESP32 deployment 

To achieve efficient deployment of our neural network model on the ESP32 microcontroller, we 

meticulously designed a lightweight and optimized architecture. This section details the structure of our 

model. It also explains the innovative approach we employed to handle input data, ensuring minimal memory 

overhead and efficient processing.  

 

4.2.  Model architecture 

The CNN model is designed as follows: 

− Input layer: comprising 8 neurons with 'relu' activation function to process the input features. 

− Hidden layer 1: 8 neurons with 'relu' activation for initial feature extraction. 

− Hidden layer 2: 4 neurons with 'relu' activation for further feature refinement. 

− Output layer: a single neuron to output the predicted battery capacity. 

 

4.3.  Handling input data 

A key aspect of our model is its input data handling strategy. Typically, we have 10 samples of two 

parameters: voltage and current. Instead of feeding these samples separately, which would increase memory 

usage and complexity, we transformed the input data into a one-dimensional array of 20 values. The 

transformation is done as follows:  

− The first element of the array is the first voltage value. 

− The second element is the corresponding current value. 

− This pattern continues, alternating between voltage and current values for each sample. 

This method offers several advantages: 

− Reduced memory overhead: by condensing the input data into a single-dimensional array, we 

significantly reduce the memory required to store and process the data. This is crucial for running 

models on resource-constrained devices like the ESP32. 

− Efficient processing: the simplified input format allows the model to process data more efficiently, 

leading to faster inference times. This is particularly beneficial for real-time applications where quick 

predictions are essential. 

− Streamlined data handling: the alternating pattern of voltage and current values ensures that the model 

receives a balanced and continuous flow of information, enhancing its ability to learn and make 

accurate predictions. 

− Simplified data management: without this method, managing two queue-like data structures would be 

necessary. Each queue would handle voltage and current values separately, requiring a complex system 

where new values are appended to the end, and values at the other end are popped out. This would 

involve moving all values in both arrays separately, leading to additional processing overhead and 

increased complexity. 

 

4.4.  Deployment on ESP32 

The final step involved is converting the trained model into a format directly compatible with the 

ESP32. Notably, instead of converting the model to TensorFlow Lite, we took advantage of the model's small 

size and directly converted it into a C header file, containing the model as a char array. This approach 

simplifies deployment and integration, allowing for efficient real-time inference on the ESP32. By 

meticulously designing our model architecture and optimizing the data handling process, we ensured that the 

model is not only compatible with the ESP32 but also performs efficiently in real-time applications. This 

integration highlights the potential of combining software innovations with hardware capabilities to create 

robust and effective solutions for battery management systems. Although we initially trained a traditional 

CNN model, we optimized and deployed it in a way that adheres to the principles of TinyML. Here is a 

detailed explanation of the steps we followed: initially, we trained an ordinary CNN model using standard 

machine-learning techniques. Given the constraints of the ESP32 platform (low processing power, limited 

memory), we focused on reducing the size of the model to make it feasible for deployment on such 

embedded systems. The model was optimized to be as compact as possible, with a focus on retaining 

accuracy while ensuring it could run efficiently within the resource limits of the ESP32 module. After 

training, we used the tf_porter library from the ‘everywhereml’ package to convert the optimized CNN model 
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into C++ code. This step was crucial for making the model compatible with embedded platforms like the 

ESP32. The output of this conversion was a .h header file, which contained the entire model structure and 

weights in a compact, efficient format. This allowed us to integrate the model directly into an embedded 

environment. The converted .h file, which now contained the CNN model, was then used in conjunction with 

the Eloquent TinyML library. This library is specifically designed to enable the running of machine learning 

models on resource-constrained devices such as the ESP32. Eloquent TinyML facilitates running deep 

learning models directly on microcontrollers without relying on cloud-based computation, making it a prime 

example of TinyML. By leveraging this library, we were able to deploy our model efficiently on the ESP32-

based system, achieving real-time predictions for battery RUL estimation. The embedded platform for real-

time RUL forecasts is the microcontroller ESP32. To verify the deployed model's functionality in an actual 

setting, it is put to the test in a variety of scenarios (Figure 2). Assuring smooth integration, evaluating 

computational effectiveness, and verifying the precision of forecasts on the microcontroller are all included 

in this block. 

 

 

 
 

Figure 2. Block schematic illustrating the suggested approach 

 

 

The predictive maintenance algorithm has taken a big stride toward real-world use with its 

deployment on a microcontroller. Making timely and informed maintenance decisions depends on the 

microcontroller's algorithm's capacity to function effectively in real-time, which is validated by testing it on 

the device. The algorithm can be executed directly on the microcontroller, allowing maintenance jobs to be 

completed independently and without the need for outside processing power. This makes the algorithm more 

useful and applicable in real-world situations where prompt maintenance requirements replies are crucial. 

Furthermore, the algorithm's implementation on a microcontroller lessens the requirement for constant data 

transmission and lowers latency, making it appropriate for situations with limited resources or those that are 

remote. Overall, microcontroller testing validates that the algorithm is ready to be implemented in real-world 

maintenance applications, opening the door to enhanced asset dependability and management. 
 

4.5.  Memory footprint of the proposed model 

The size of the .h file generated for our model is 17.7 KB (18,213 bytes). The Sketch used  

419,077 bytes (31%) of program storage space. The maximum capacity of program storage space is 

1,310,720 bytes. Global variables used 35,660 bytes (10%) of dynamic memory, leaving 292,020 bytes for 

local variables. The maximum capacity is 327,680 bytes. During the compilation of the Arduino sketch, the 

memory usage statistics were as follows: 

− Program storage space (flash memory): the sketch uses 419,077 bytes, which accounts for 31% of the 

available program storage space (maximum: 1,310,720 bytes). This memory is utilized for storing the 

compiled code and static content such as constants and libraries. With 69% of flash memory still 

available, the program is highly memory-efficient, allowing for future scalability and the integration of 

additional features. 

− Dynamic memory (SRAM): the sketch utilizes 35,660 bytes, which is 10% of the total dynamic 

memory available (maximum: 327,680 bytes). Dynamic memory is used for global variables, static 

variables, and dynamic allocations during runtime. 292,020 bytes are free for local variables, stack, and 

runtime operations. Hence, the low dynamic memory usage ensures stable runtime performance with no 

risk of stack/heap collisions in the current design. 

It is evident from the above data that the compiled sketch demonstrates efficient memory utilization. 

Flash memory usage is well within the limits, ensuring room for future enhancements or library additions. 

SRAM utilization is minimal, providing adequate space for runtime operations, local variables, and stack 

growth. These results confirm that the sketch is optimized for both storage and runtime performance, making 

it reliable and scalable for deployment on the target Arduino-compatible ESP32 system. 

 

 

5. RESULTS AND DISCUSSION 

Results from the application of TinyML for Li-ion battery management capacity prediction on 

ESP32 are encouraging and the developed hardware model is depicted in Figure 3. Our 3D-printed 

Data pre-processing 
[NASA dataset]

CNN model Training Model evaluation
Deployment in 

hardware
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enclosure and customized PCB allowed us to design a small, effective real-time capacity forecast system. 

The startup step began when the system was powered on and a test battery and a 12V bulb were connected 

as a load. The machine collected ten voltage and current readings every ten seconds throughout this 

period. It displayed the previous capacity it had estimated and started predicting the battery capacity 

simultaneously. It will begin to provide the live capacity prediction utilizing real-time data shortly after 

the initializing phase, as seen in Figure 4. 

The evaluation of our Li-ion battery management capacity prediction model using TinyML on 

ESP32 yielded promising results. We evaluated our model on the training, validation, and test sets. The 

performance metrics for each dataset are summarized in Table 1. 

− Training set: with mean squared error (MSE) of 0.0118, MAE of 0.0874, mean absolute percentage 

error (MAPE) of 8.2735%, and RMSE of 0.1088, the model produced a loss of 0.0059. These numbers 

show that the model has a good fit, low error rates, and high prediction accuracy to the training set. 

− Validation set: with loss of 0.0060, MSE of 0.0119, MAE of 0.0880, MAPE of 8.3724%, and RMSE of 

0.1092, the validation set's metrics are extremely similar to those of the training set. The model 

performs well without noticeably overfitting, showing that it generalizes well to new data, according to 

the similarity between the training and validation measures. 

− Test set: the model produced loss of 0.0057, MSE of 0.0114, MAE of 0.0854, MAPE of 7.9660%, and 

RMSE of 0.1068 on the test set. These findings validate the model's robustness and dependability for 

real-world applications by showing that it retains its accuracy and low error rates on entirely fresh data. 
 

 

  
  

Figure 3. Hardware module with ESP32 Figure 4. Capacity prediction 
 

 

Table 1. Evaluation metrics comparison 
Dataset Loss MSE MAE MAPE RMSE 

Training 0.0059 0.0118 0.0874 8.2735 0.1088 
Validation 0.0060 0.0119 0.0880 8.3724 0.1092 

Test 0.0057 0.0114 0.0854 7.9660 0.1068 

 

 

Figure 5 elucidates the training and validation loss throughout 50 epochs. The plot shows that within 

the first few epochs, both the training and validation losses drop quite quickly before stabilizing, indicating 

strong convergence without appreciable overfitting. The RMSE for the training and validation sets is 

displayed in Figure 5.  

For both datasets, the RMSE steadily drops throughout the first few epochs until stabilizing at 

roughly the same amount, which illustrates how consistently the model reduces prediction errors. Figure 6 

displays the MAE for the training and validation sets. Like the other measures, the MAE drops rapidly before 

staying somewhat steady, indicating that the model can successfully lower the average size of errors. The 

MSE for the training and validation datasets is shown in Figures 7 and 8. The model's effectiveness in 

reducing prediction errors is further demonstrated by the MSE's quick drop and subsequent stabilization, 

which supports the findings of the RMSE and MAE plots.  

The consistency of the model's performance throughout the training, validation, and test sets is 

indicative of its stability and capacity for generalization. The model appears to estimate the Li-ion battery's 

capacity accurately based on the low values of MSE, MAE, MAPE, and RMSE. The deployed model can be 

used to manage batteries in real-time, making it possible to monitor and use battery capacity properly. Even 

if the performance of the existing model is adequate, there is still room for improvement in terms of accuracy 

and robustness. This may involve incorporating additional features or fine-tuning the model architecture. 

TinyML's connection with ESP32 allows for low-power edge computing capabilities, which makes the model 

appropriate for deployment in contexts with limited resources. Overall, the findings show that the Li-ion 

battery management capacity prediction system was successfully implemented, with potential advantages in a 

range of applications requiring effective battery monitoring and use.  
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Figure 5. Training and validation loss 
 

Figure 6. Training and validation RMSE 
 

 

  
 

Figure 7. Training and validation MAE 
 

Figure 8. Training and validation MSE 
 

 

6. CONCLUSION 

In summary, we have achieved a ground-breaking result in our quest to create a CNN-based RUL 

prediction method. Our achieved results not only meet industry norms but also greatly exceed them, which is 

a major step forward for predictive maintenance. Our CNN-based model has shown an unmatched degree of 

precision and accuracy, transforming the field of battery health prognostics. It was trained using the NASA 

battery dataset. The results of the CNN model's painstaking construction and training speak loudly about how 

well it can identify complex spatial patterns in the data. The model's exceptional performance is 

demonstrated by its extraordinary metrics, which include a negligible loss of 0.0063, a microscopic MSE of 

0.0127, and an incredibly low MAE of 0.0897. The dependability and stability of our CNN model are further 

confirmed by the MAPE of 8.2753% and the RMSE of 0.1129. In addition to its numerical performance, our 

CNN model signifies a revolution in the use of sophisticated neural network architectures for predictive 

maintenance. It has not only fulfilled the expectations but also raised the bar for what is possible in terms of 

estimating the battery's remaining useful life. The combination of state-of-the-art technology and domain 

knowledge has produced a predictive algorithm that not only satisfies but surpasses the industry's strict 

requirements for accuracy and dependability. The adventure doesn't end here as we aim toward the future. 

This shift to edge computing reflects our dedication to providing our algorithm with both accuracy and 
usability for real-world applications across a range of contexts. Essentially, our CNN-based RUL prediction 

system is proof of the potential that results from combining creativity and accuracy. Predictive maintenance 

is in its infancy, and our algorithm is leading the way, poised to raise the bar for practicality, efficiency, and 

accuracy in the field. It is more than just a model; it is a force for revolutionary change, a signpost for a new 

age in predictive analytics, and evidence of the unbounded potential of artificial intelligence to revolutionize 

markets and push the boundaries of knowledge. Future work can explore deploying the CNN-based RUL 

prediction model on edge devices for real-time battery health monitoring. Additionally, integrating 

multimodal sensor data could enhance model robustness and generalizability across diverse battery 

chemistries and usage conditions. 
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