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 Implementing monitoring methods is a viable method to reduce substantial 

damage to cooling water centrifugal pumps. Engaging in manual vibration 

analysis requires considerable time and a requisite level of competence. 

Small datasets pose challenges when applying classification systems that 

utilize linear classification models and deep learning. Given these issues, our 

proposal entails developing a system capable of autonomously, precisely, 

and accurately diagnosing vibrations using a limited dataset. The system is 
anticipated to possess the capability to detect multiple categories of 

mechanical defects, such as static imbalance, dynamic imbalance, 

misalignment, cavitation, looseness, and bearing corrosion. The Bayesian 

network (BN) structure was constructed using the MATLAB software. The 
input data parameters comprise vibration signals measured in the frequency 

domain and values representing phase differences. The constructed 

intelligent system was subsequently assessed using a dataset including 120 

samples. The smart system can rapidly anticipate and precisely identify 
every form of harm with exceptional accuracy and sensitivity, relying on test 

outcomes. The test data analysis reveals that the intelligent system attained 

an average accuracy of 94.74%, precision of 95.32%, sensitivity (recall) of 

93.67%, and F-score of 94.36%.  
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1. INTRODUCTION 

A pump is a device that can move fluid from a higher elevation or an area with lower pressure to a 

location with higher pressure [1], [2]. The kinetic energy or velocity of the impeller is altered during the 

pumping process to facilitate its rotation and provide the necessary power for fluid movement [3]. Vibration 

results from the pump's rotational movement, which causes the impeller, pump shaft, clutch, and other moving 

parts to rotate. Excessive vibration in the pump can lead to detrimental effects such as shaft and bearing 

damage, noise generation, decreased head and capacity, and even lower pump efficiency [4]. Utilizing 

predictive maintenance approaches can help take preventive steps to limit the likelihood of abrupt pump 

breakdowns. This entails predicting possible engine harm by examining quantifiable parameters and 

conducting a comprehensive analysis. Vibration analysis is a proactive measure to mitigate excessive vibration 

in the pump. Vibration can adversely affect a pump's operation, leading to noise, reduced performance, and 

even harm to critical components like shafts and bearings [5]. Vibration analysis is crucial for predicting 

damage as it is a significant tool for identifying and detecting mechanical issues. By studying current vibration 

characteristics, it is possible to evaluate equipment deterioration without disassembly [6], [7].  

https://creativecommons.org/licenses/by-sa/4.0/
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The most recent iteration of vibration monitoring equipment exhibits enhanced capabilities and 

automated operations compared to earlier models. Specific devices display an entire vibration spectrum on 

three axes concurrently, providing a holistic depiction of the operational characteristics of any particular 

machine. To effectively utilize contemporary vibration measuring systems, it is essential to have a basic 

understanding of vibration analysis, notwithstanding the numerous technological features and automated 

functions they offer. Analyzing several parameters in collecting vibration data might provide helpful 

knowledge of the exact damage inflicted on the equipment. Therefore, doing a thorough analysis can generate 

suitable recommendations for efficiently handling every occurrence of equipment failure. Several vibration 

measurements instruments do not possess diagnostic intelligence skills, particularly when classifying damage 

caused by the imbalance [8], [9]. Users must have a basic comprehension of the fundamentals of vibration 

analysis concerning different types of structural damage. Even professionals require significant time to 

diagnose damage caused by imbalance. This is mainly attributed to the constrained functionalities of the 

existing tools, which generally provide imbalanced damage parameters. Therefore, the user must undertake a 

sequence of data analysis methods to ascertain the precise nature of the damage that has taken place. 

A Bayesian network (BN) is a model that is represented visually, depicting probabilistic interactions 

between interconnected variables, illustrating causal linkages and dependencies [10]–[12]. BN can offer four 

distinct methods: BN demonstrates proficiency in properly handling instances of data incompleteness or 

issues. Moreover, using BNs enables the gathering of knowledge about cause-and-effect correlations. 

Gaining information and skills is crucial for comprehending the extent of the problem domain. Furthermore, 

BN can support the amalgamation of domain knowledge and data. Overall, BN offers a scientifically rigorous 

and efficient approach to mitigate the issue of overfitting in data processing. The process of constructing a 

model in BN comprises two separate stages: the first step includes establishing the network structure.  

In contrast, the subsequent steps entail estimating the probability values associated with each node. 

MATLAB is a software program that enables the construction of BN algorithms. Due to the scarcity of 

available datasets, the numerous advantages of BN as a decision-making tool, and the endorsement from 

multiple scientific journals, BN was chosen as the preferred method for creating a diagnostic system for 

water-cooled centrifugal pump engines [13], [14].  

Numerous inquiries have been conducted in this area of research [15]–[17]. Our previous study also 

discussed the design of an intelligent system to detect types of imbalances by utilizing BN, and satisfactory 

results were obtained [18]. The damage location can be determined by examining the vibration signal, in which 

the amplitude of the vibration will be quantified. The results will be displayed in the frequency domain utilizing 

the fast Fourier transform (FFT) approach. The study conducted by Castellanos et al. [3] specifically examined 

the analysis of vibrations in motors and pumps. The vibration analysis was performed manually using the FFT 

technology. This method is employed to assess the extent of harm inflicted on the pump, as evidenced by 

frequency spectrum measurements. Empirical data indicates that harmonic amplitudes measured at whole number 

multiples of engine speed, precisely at 1, 2, and 3, can be used as a dependable signal for detecting misalignment 

issues in the presence of variations in motor leg height. In addition, researchers have examined centrifugal pumps 

utilized in cooling water systems to assess the magnitude of vibration-induced harm. The pump's vibration data is 

subsequently processed using FFT techniques to enable visual examination and determination of the specific type 

of damage that has occurred [19]. Analysis of the vibration spectrum indicates the presence of mechanical 

looseness damage in the motor and pump components. The engine condition assessment is often conducted 

according to the ISO 10816-3 standard, encompassing speed and acceleration modes. According to data spectrum 

investigations, the primary cause of damage is rotor imbalance. Within vibration analysis, expert systems 

prioritize the dependability of BNs in efficiently addressing circumstances that involve uncertainty. The BN 

method is widely regarded as a practical way to develop intelligent vibration detection applications [20]–[22].  

Our proposed research aims to provide a novel approach for constructing a system capable of 

diagnosing damage to the P-9114B type water cooling centrifugal pump using vibration data. We have developed 

a method to interpret the root mean square (RMS) as a performance indicator based on the ISO 10816-3 standard. 

We utilize a novel BN model to analyze the spectrum, enabling it to make determinations based on the specific 

type of machinery damage. This study yielded a highly efficient approach that can be utilized explicitly for 

diagnosing pumps. This research aims to aid industry personnel in efficiently and accurately identifying various 

types of machine damage, even without a comprehensive knowledge of the fundamental principles and ideas of 

vibration analysis. Researching the utilization of BN to diagnose industrial machinery. The research findings can 

potentially serve as a basis for establishing a diagnostic system on a broader scale. 
 

 

2. METHOD 

Pump vibration data was obtained through the conduction of vibration measurements. Data was 

collected using the VibXpert II instrument at both the bearings at the drive end (DE) and the one at the non- 
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drive end (NDE) positions. Measurements were conducted in horizontal, vertical, and axial orientations on both 

the motor and pump sides. After that, the data processing operation was executed using MATLAB software. 

 

2.1.  Vibration data acquisition 

Vibxpert II measurement instruments are employed in this investigation to quantify pump vibrations 

as shown in Figure 1. The instruments used to acquire vibrational data are depicted in Figure 1(a). Table 1 

displays the specifications of the Vibxpert II vibration measuring device, while Table 2 displays the 

specifications of the vibration accelerometer sensor, which are 6.142. For this analysis, we utilized a cooling 

water centrifugal pump, depicted in Figure 1(b), a crucial element of the cooling tower system. The 

centrifugal pump, rotating at a speed of 1,450 rpm, has a power output of 114.4 kW. At PT SAU, the fluid is 

transferred from a cooling tower to a heat exchanger using the P9114B pump. The P9114B DE pump utilizes 

a 3314-type angular contact bearing, while the NDE and DE-NDE motor side utilizes a ball cushion in the 

6314-type groove. The gland packing kind is used to seal asbestos rather than provide lubrication. The specs 

for the P9114B centrifugal cooling water pump are displayed in Table 3. 
 

 

  
(a) (b) 

 

Figure 1. Vibration measurement setup of centrifugal pump P9114B, (a) VibXpert II data collector with 

sensor 6.142 used for vibration analysis and (b) centrifugal pump with labeled measurement points at  

DE-NDE motor and pump 
 

 

Table 1. VibXpert II specification 
Name Specification 

Range frequency 0.5 Hz–40 kHz 

Environment protection IP65 

Temperature operational 0-50 °C 

Data memori 128 MB DDR RAM 

Tipe baterai Li-ion rechargeable (7.3 V/5.3 Ah–38.7 Wh) 

Dimension 186×162×52 mm (LxWxH) 

 

 

Table 2. Vibration sensor specification 
Name Specification 

Transmision factor 1.0 µA/m/s2 

Resonance frequency 36 kHz 

Temperature range -40-100 °C 

Case material Stainless steel VA 1.4305 

Environment protection IP 65 

 

 

Table 3. Centrifugal pump P9114B specification 
Name Specification 

Pump type  Centrifugal pump 

Model 3K 10 X 8-16/156 

Brand DURCO MARK III 

Suction pressure 5.5 Bar 

RPM  1,450 

Power 114.4 kW 

 

 

2.2.  Primary fault frequency component 

Frequency requirements and computations are crucial in investigating machine failure, particularly 

bearing frequencies [23]. The pump utilizes type 6,314 ball bearings and is accompanied by comprehensive 

specifications. In (1) to (4) display the frequencies specific to different bearing components, such as the inner 

and outer races, balls or rollers, and cages. If a bearing element frequency is confirmed, it signifies a bearing 
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issue associated with pump damage. In (1) can be used to calculate the frequency of ball passes frequency in 

the inner ring (BPFI). 
 

𝐵𝑃𝐹𝐼 =
𝑅𝑃𝑀

120
(1 +

𝐷𝐵

𝐷𝑃
𝑐𝑜𝑠 𝛽) (1) 

 

Where 
B

D is a ball diameter of 20 mm, 
P

D is a pitch diameter of 100 mm,  In this case, the contact angle 

is 0o, and the motor centrifugal pump speed is 1,450 rpm or 24.17 Hz. In (2) can be used to determine the 

outer ring's ball pass frequency outer (BPFO).  
 

𝐵𝑃𝐹𝑂 =
𝑅𝑃𝑀

120
(1 +

𝐷𝐵

𝐷𝑃
𝑐𝑜𝑠 𝛽) ⋅ 𝑁𝐵 (2) 

 

Where 
B

N is the number of ball bearings equal to 8 ball bearings. Fundamental train frequency (FTF) is 

calculated using (3). 
 

𝐹𝑇𝐹 =
𝑅𝑃𝑀

120
(1 −

𝐷𝐵

𝐷𝑃
𝑐𝑜𝑠 𝛽) (3) 

 

Meanwhile, ball spin frequency (BSF) can be obtained from (4). 
 

𝐵𝑆𝐹 =
𝑅𝑃𝑀

120
(1 − (

𝐷𝐵

𝐷𝑃
𝑐𝑜𝑠 𝛽)

2

) ⋅
𝐷𝑃

𝐷𝐵
 (4) 

 

The centrifugal pump impeller has six blade angles. Use (5) to compute the frequency generated by the pump 

impeller, i.e., ball pass frequency (BPF). 
 

𝐵𝑃𝐹 =
𝐵𝑁

60
× 𝑅𝑃𝑀 (5) 

 

In addition to the frequencies mentioned in (1) to (5), another significant frequency is the one associated with 

motor spinning. The motor rotation frequency of 21.17 Hz is commonly referred to as 1X and can also be 

referred to as multiples, such as 2X, 3X, and so forth. 
 

2.3.  Vibration assessment 

The time domain vibration data is obtained using the RMS approach, as in (6) [24]. The findings of 

the RMS computation will be compared against the ISO 10816-3 standard. This study aims to assess the 

pump's magnitude and state of vibration. ISO 10816, as referenced in [25], outlines standards for evaluating 

when taking readings of vibration levels directly at the measurement site. 
 

𝑥𝑅𝑀𝑆 = √
1

𝑁
∑ |𝑥𝑛|2
𝑁
𝑛=1  (6) 

 

The above criteria pertain to machine devices with a power rating exceeding 15 kW and an operational 

speed ranging from 120 to 15,000 revolutions per minute. The ISO 10816-3:2009 standard, based on velocity 

measurements, evaluates the vibration levels in machines with a rotating speed exceeding 600 rpm. Vibration 

assessment typically uses units of mm/s RMS. Suppose the RMS value is under the specified limit of 4.5 mm/s, 

as stated in the ISO 10816-3 group 2 standard for a rigid foundation type. In that case, the vibration level of the 

pump is considered acceptable. Therefore, there is no need to continue with the subsequent procedure. 

However, if the vibration surpasses 4.5 mm/s, it is necessary to examine and identify the origin of the damage. 
 

2.4.  System flowchart 

Figure 2 depicts a detailed flowchart illustrating the flow of a particular system. The BN method 

will calculate the probability value using the input data. This process involves several stages, including 

solving for each damage symptom by finding its parameter value and calculating the probability value under 

certain conditions. Once the data is collected, the algorithm will determine the combined and posterior 

probability value for every form of damage. The BN framework is changed, and the posterior probability 

estimation is utilized to make a probability inference regarding the damage. BN utilizes two-way propagation 

between nodes that receive and send data to provide relational information and conditional probabilities.  

In practical applications, multistate nodes are commonly used. Based on the user's consultation, they will 

receive information on the specific damage to the machine and the percentage of errors.  

Users are required to compile data in the format of machine specs and vibration data. The system 

will analyze the numbers that make up the vibration spectrum to generate information whose output the BN 
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can utilize. The provided spectrum data is further analyzed to determine the frequency of each machine 

component. The details about the machine's specifications will be a reference for frequency calculations and 

will be fine-tuned to match the spectrum. If the computed frequency value is present in the spectrum, it will 

serve as evidence for BN. Conversely, if the frequency value is not found in the spectrum, it will not provide 

any proof of JB. JB's input data is categorized into two distinct kinds. Frequency lines empirically verified by 

frequency calculation are classified as input type 1 (true). This input requires that the frequency amplitude be 

equal to or greater than 2 mm/s RMS. However, if the data does not contain a frequency line supported by the 

computation or a frequency amplitude value of less than 2 mm/s RMS, it is classified as input type 2 (false). 
 

 

Overall 
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Figure 2. System flowchart 
 

 

2.5.  System performance calculations 

Assessment is conducted within the framework of supervised learning. As the literature illustrates, 

each matrix row denotes an actual class occurrence, while each column denotes a predicted class occurrence. 

An alternative structure proposed in the academic literature entails the alignment of each row with 

anticipated class events and each column with actual class events. This nomenclature aims to enhance the 

identification process if the system inaccurately assigns the same category to two distinct groups, frequently 

leading to misclassification. The examined contingency table comprises two dimensions: "actual" and 

"predicted." Both dimensions encompass identical "classes." Each variable in a contingency table is a 

distinctive combination of classifications and dimensions. A true positive (TP) is a situation in which the 

actual value and the prediction are both positive. A true negative (TN) is a situation in which both the precise 

number and the prediction are negative. A false positive (FP) is a situation in which the prediction is positive, 

even though the truth is negative. It is also referred to as a type 1 error. A false negative (FN) is a situation in 

which the truth is positive, but the prediction is negative. It is also referred to as a type 2 error. 

System performance is evaluated by calculating accuracy, precision, sensitivity (or recall), 

specificity, and F-score. In (7) can be used to calculate the precision of the system's prediction findings: 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (7) 

 

In (8) is used to determine the system's performance, which is expressed as the recall value or sensitivity. 
 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (8) 

 

Determine the system's precision in forecasting the specific type of machine damage by utilizing (9). 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (9) 
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The specificity parameters and F-score are computed using (10) and (11), respectively. 
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
 (10) 

 

F-𝑠𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
 (11) 

 

 

3. RESULTS AND DISCUSSION 

This intelligent system specifically intends to detect vibrations in centrifugal pumps by analyzing 

spectrum data. This can potentially minimize the requirement for professional individuals to be involved in 

the diagnosis process. A sophisticated technique was developed to detect centrifugal vibrations by examining 

frequency lines in the spectrum using a pre-established knowledge base. Users can efficiently and effortlessly 

access sophisticated systems to ascertain centrifuge conditions promptly.  
 

3.1.  Test data collection of measurement results 

The intelligent system underwent testing utilizing training data, including spectrum data, DE-NDE 

phase bearing differences, and vertical horizontal phase differences. The test data comprises 20 sets, each 

containing misalignment damage data, static unbalanced damage data, dynamic unbalanced damage data, 

looseness damage data, cavitation damage data, and bearing damage data. A maximum of 120 samples can be 

gathered to evaluate the efficacy of the developed intelligent system application. Test data generation involves 

utilizing pump frequency values, bearing frequency values, BFP frequency values, vibration diagnosis charts, 

and ISO 10816-13 [25]. In addition, test data were gathered from the P911B cooling water pump. Here are some 

examples of spectrum data used for testing intelligent systems. Figure 3 shows the fault indication of FFT 

results, Figure 3(a) depicts a spectrum data graph illustrating the effects of imbalance damage. The graph 

indicates a significant magnitude at a frequency of 24.17 Hz, corresponding to one revolution per minute of the 

centrifugal pump. According to sources, single high amplitude is distinguishing feature of unbalanced damage. 

Figure 3(b) presents a spectral data graph that demonstrates the occurrence of cavitation damage. 

The graph displays a conspicuous peak with a large magnitude at a frequency of 145 Hz, six times the 

rotational speed or frequency at which the blades of a centrifugal pump pass by. The graph illustrates that 

cavitation damage in centrifugal pumps is characterized by a significant amplitude at 6 times the revolutions 

per minute (RPM). Figure 3(c) presents a spectrum graph illustrating the extent of damage to the looseness of 

the bearing housing or foundation. The graph exhibits notable peaks at 12.08, 24.17, 48.33, and 72.5 Hz. The 

frequencies are 0.5, 1, 2, and 3 times the RPM. An elevated peak in this frequency signifies an issue with the 

foundation or bearing. The presence of significant peaks at 1X, 2X, and 3X values suggests the existence of 

misalignment issues [23], [26], [27]. Figure 3(d) presents a spectrogram illustrating the presence of bearing 

damage. The graph exhibits notable peaks at 9.67, 58, 72.5, and 115.97 Hz frequencies. The frequencies 

mentioned are FTF, BSF, BPFO, and BPFI. If the magnitude of any of the FTF, BSF, BPFO, or BPFI 

increases significantly, it suggests a problem with the bearing [23].  
 

 

  
(a) (b) 

  

  
(c) (d) 

 

Figure 3. Fault indication of FFT results of (a) unbalance, (b) cavitation, (c) looseness, and (d) bearing 
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3.2.  Bayesian network modeling 

The design outcomes of the BN will serve as a benchmark for developing intelligent system 

applications, as depicted in Figure 4. The BN is structured on three hierarchical layers. The initial stage 

comprises a set of characteristics that result in detrimental effects on the pump. The following is a clarification 

provided in Table 4. The second-level arrangement comprises the factors that result in harm, which are the 

same parameters that produce damage at level 1. Table 5 depicts the organization at the second level. 

Additionally, the second level is determined using vibration diagnostics, which analyzes the characteristics 

responsible for the damage identified in both the first and second levels, as outlined in Table 6.  
 

 

BedaPhaseHV

BedaPhaseDeNde 1X 2X 3X

0.5X

BPFI

FTF

BPFO

BSF

BPF

BF

Harmo

StaticUnbalance

DynamicUnbalance

MisAlignment

Looseness

Bearing

Cavitation

 
 

Figure 4. BN architecture 
 

 

Table 4. Prior probability 
Node Description 

1X When the amplitude is large, and the frequency is 1X 

2X When the amplitude is large, and the frequency is 2X 

3X When the amplitude is large, and the frequency is 3X 

0.5X When the amplitude is large, and the frequency is 0.5X 

BedaPhaseHV Different phase bearings DE and NDE 

BedaPhaseDeNde Different horizontal and vertical phases 

BPFI Occurs when the magnitude is elevated at the BPFI frequency 

BPFO Occurs when the magnitude is elevated at the BPFO frequency 

BSF Occurs when the magnitude is elevated at the BSF frequency 

FTF Occurs when the magnitude is elevated at the FTF frequency 

BPF Occurs when the magnitude is elevated at the BPF frequency 

 

 

Table 5. Conditional probability 1 
Node Description 

Harmo Harmonics with parameters 1X, 2X, 3X 

BF Bearing Frequency with symptoms of BPFI, BPFO, BSF, FTF 

 

 

Table 1. Conditional probability 2 
Node Parameter 

Staticunbalance BedaPhaseHV, BedaPhaseDeNde, 1X, Conditional 

Dynamicunbalance BedaPhaseHV, BedaPhaseDeNde, 1X, Conditional 

Misalingment 1X, 2X, 3X, Conditional 

Looseness 0.5X, 1X, Harmo 

Bearing Harmo, BF 

Cavitation Harmo, BPF 

 

 

3.3.  Recognition of input data 

The intelligent system identifies input data values by establishing their value boundaries, including 

the overall vibration value in RMS, frequency spectrum data, DE NDE phase difference values, and 

horizontal and vertical phase difference values. The RMS value assesses the pump's condition according to 

ISO 10816-3. Table 7 provides a comprehensive record of the vibration levels observed in centrifugal pumps. 

The frequency spectrum data identification process is employed to analyze amplitude values and extract 
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frequency data values, such as 1X, 2X, 3X, 0.5X, BPF, and bearing frequencies. The damage to the 

centrifugal pump can be determined by calculating the prior probability and conditional probability based on 

the identified frequency. Table 8 contains the specifications for identifying vibration spectrum data. The 

minimal value indicates that the system will not generate evidence for BN unless the amplitude surpasses the 

specified minimum threshold, as outlined in Table 8. 

 

 

Table 7. Overall vibration assessment 
Overall Vibration Value in RMS Machine condition 

0 mm/s to <=1.4 mm/s Good condition 

>1.4 mm/s to <=2.8 mm/s Long-term operation is still permitted 

>2.8 mm/s to <=4.5 mm/s Short-term operation is still permitted 

>4.5 mm/s Stop operation; vibration will cause damage 

 

 

Table 8. Vibration spectrum data assessment 
Frequency (Hz) Minimum amplitude (mm/s) 

1X (24.17) 2 

2X (48.33) 1 

3X (72.50) 1 

0.5X (12.08) 0.5 

BPFI (115.97) 0.3 

BPFO (77.31) 0.3 

BSF (58) 0.3 

FTF (9.66) 0.3 

BPF (9.66) 0.5 

 

 

3.4.  Different phase DE-NDE and H-V assessment 

The identification of DE NDE phase difference values and horizontal and vertical phase differences 

is used to ascertain static and dynamic unbalance. If the phase difference between the DE and NDE is within 

the range of 0º±30º, it indicates the presence of static unbalance. If the disparity between the DE and NDE is 

greater than 30º, it suggests the presence of dynamic unbalance. A phase difference of 90º±30º between the 

vertical and horizontal sides of the bearing indicates a significant likelihood of imbalance. A phase difference 

between the vertical and horizontal sides of the bearing that falls outside the range of 90º±30º suggests a low 

probability of imbalance damage. 

 

3.5.  Bayesian network probability 

The Microsoft belief network generates probabilities, serving as a framework for developing 

intelligent system applications with MATLAB. Probability is derived from the conditional probability table 

(CPT). The CPT displays the likelihood of a specific condition happening, given that certain conditions are 

satisfied. The probability of diagnosing vibration in centrifugal pumps can be shown in Tables 9 to 13.  

Table 9 displays the CPT of static unbalanced damage. The P9114B cooling water pump damage caused by 

static unbalance is affected by the phase discrepancies between the DE and NDE, both horizontally and 

vertically, and by high amplitude at a particular frequency. The greatest likelihood occurs when the 

difference in phase between DE and NDE and the difference in phase between H and V are constant, and 

there is a significant amplitude at the frequency of 1X, provided that the amplitude at 1X is larger than at 2X.  

Table 11 presents the CPT results for looseness damage. The damage caused by looseness in 

centrifugal pumps is affected by harmonic waves, particularly those with high amplitude at 0.5 and 1 time the 

main frequency. The greatest likelihood occurs when harmonic waves (Harmo) have a high amplitude at 

frequencies of 0.5X and 1X. The CPT for misalignment damage is displayed in Table 11. Misalignment 

damage in centrifugal pumps is distinguished by significant amplitudes occurring at the fundamental 

frequency and its harmonics, including twice and three times the frequency. Additionally, there are 

conditional factors that might influence the extent of the damage. The maximum likelihood occurs when the 

amplitude is elevated at frequencies of 1X, 2X, and 3X, with the amplitude at 1X being smaller than that at 

2X. Table 12 displays the CPT (cavitation damage) values. The extent of cavitation damage to machines is 

determined by the high amplitude of the pump's BPF and harmonic waves. The maximum likelihood occurs 

when the amplitude is elevated at the bandpass filter's frequency, and several harmonic waves are present. 

Table 13 displays the CPT for bearing failure. The occurrence of bearing damage in centrifugal pumps is 

affected by high amplitudes of specific bearing frequencies, particularly BPFI, BPFO, BSF, FTF, and 

harmonic waves. The maximum likelihood occurs when the amplitude is elevated at the frequency associated 

with the bearing and other harmonic waves are present.  
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Table 9. Probability of dynamic unbalance 
Parent node(s) Dynamic unbalance 

BedaPhaseDeNde BedaPhaseHV 1X Yes No Bar charts 

Static Static Yes 0.3 0.7 ||||||||||||||| 

No 0.1 0.9 ||||| 

Dynamic Yes 0.7 0.3 ||||||||||||||||||||||||||||||||||| 

No 0.2 0.8 |||||||||| 

Dynamic Static Yes 0.7 0.3 ||||||||||||||||||||||||||||||||||| 

No 0.2 0.8 |||||||||| 

Dynamic Yes 0.9 0.1 ||||||||||||||||||||||||||||||||||||||||||||| 

No 0.3 0.7 ||||||||||||||| 

 

 

Table 10. Probability of looseness 
Parent node(s) Misalignment 

1X 2X 3X Yes No Bar charts 

Yes Yes Yes 0.95 0.05 ||||||||||||||||||||||||||||||||||||||||||||||| 

No 0.85 0.15 |||||||||||||||||||||||||||||||||||||||||| 

No Yes 0.7 0.3 ||||||||||||||||||||||||||||||||||| 

No 0.1 0.9 ||||| 

No Yes Yes 0.3 0.7 ||||||||||||||| 

No 0.1 0.9 ||||| 

No Yes 0.1 0.9 ||||| 

No 0.0 1.0   
 

Table 11. Probability of misalignment 
Parent node(s) Misalignment 

1X 2X 3X Yes No Bar charts 

Yes 

Yes 
Yes 0.95 0.05 ||||||||||||||||||||||||||||||||||||||||||||||| 

No 0.85 0.15 |||||||||||||||||||||||||||||||||||||||||| 

No 
Yes 0.7 0.3 ||||||||||||||||||||||||||||||||||| 

No 0.1 0.9 ||||| 

No 

Yes 
Yes 0.3 0.7 ||||||||||||||| 

No 0.1 0.9 ||||| 

No 
Yes 0.1 0.9 ||||| 

No 0.0 1.0  
 

 

 

Table 12. Probability of cavitation 
Parent node(s) Cavitation 

BPF Harmo Yes No. Bar charts 

Yes 
Yes 0.9 0.1 ||||||||||||||||||||||||||||||||||||||||||||| 

No. 0.85 0.15 |||||||||||||||||||||||||||||||||||||||||| 

No. 
Yes 0.4 0.6 |||||||||||||||||||| 

No. 0.1 0.9 ||||| 
 

Table 13. Probability of bearing 
Parent node(s) Bearing 

Harmo BF Yes No Bar charts 

Yes 
Yes 1.0 0.0 |||||||||||||||||||||||||||||||||||||||||||||||||| 

No 0.3 0.7 ||||||||||||||| 

No 
Yes 0.95 0.05 ||||||||||||||||||||||||||||||||||||||||||||||| 

No 0.0 1.0   
 

 

 

3.6.  Intelligent system design results 

The construction of an intelligent system application commences by integrating a program that 

allows input of data values and damage probabilities. Programming is conducted within the Live Editor 

submenu of the MATLAB software. The application's user interface includes instructions for using the 

application, a spectrum graph panel for displaying the frequency spectrum, an input data panel, a panel for 

displaying diagnosis results for failure types that occur more than 50% of the time based on the entered input 

data, and a machine condition panel that shows the machine's condition based on the RMS value. Upon entry, 

a graph illustrating the likelihood of failure is presented, depicting the percentage probability of damage or 

malfunction. The application also contains multiple command buttons. The insert spectrum button inputs 

vibration spectrum data. The start button initiates the diagnosis procedure. The reset button restores the 

intelligent system application to its original state, as depicted in Figure 5. 
 

 

 
 

Figure 5. Intelligent system application display 
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3.7.  System test results 

Once the intelligent system design is finished, the subsequent stage involves testing the developed 

intelligent system application. Intelligent system application testing is conducted to verify that the system 

developed aligns with the references, analysis, and design outcomes. Within this phase, comprehensive 

testing will be conducted on each variant of damaged input data. Subsequently, the diagnostic outcomes 

generated by the intelligent system application will be juxtaposed with the manual diagnosis, enabling the 

assessment of the efficacy of the developed system. Twenty tests were conducted for each type of damage, 

using different spectrum variants, overall vibration values, DE-NDE phase difference values, and horizontal-

vertical phase values. The objective of conducting diverse testing is to assess the efficiency of the intelligent 

system application under different types of damage scenarios on the P911B cooling water centrifugal pump. 

Figure 6 shows a graph displaying testing using input data on dynamic unbalanced damage.  

The input data consists of an RMS value of 4.39 mm/s, a DE NDE phase of 83º, a vertical-horizontal phase 

of 140º, and a frequency spectrum with high amplitude at 1 rpm. The system generates a diagnosis indicating 

a dynamic unbalanced problem with a 90% likelihood and allows for short-term operational 

recommendations. Testing was carried out to verify that the intelligent system was operating according to its 

design and to evaluate the performance of the smart system in diagnosing the condition of the centrifugal 

pump. Testing of the intelligent system produced 120 data. After testing is complete, the data is analyzed to 

evaluate the quality of the smart system that has been created. The test results were processed with the help 

of the confusion matrix method, as seen in Figure 7. 
 

 

 
 

Figure 6. Intelligent diagnosis model testing output for a cooling‑water centrifugal pump 
 

 

 
 

Figure 7. Confusion‑matrix evaluation of the proposed fault‑diagnosis model on the test set (n=120) 
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The x-axis represents the actual diagnosis outcome, while the y-axis represents the predicted harm 

from the intelligent system. In the initial assessment of the intelligent system's capability to detect bearing 

damage, it accurately diagnosed the issue (TP) 18 times and incorrectly diagnosed it (FN) 2 times. The 

intelligent system achieved an accuracy rate of 18 actual positive diagnoses and 2 FN diagnoses in detecting 

cavitation damage. The intelligent system accurately identified dynamic unbalanced damage in 18 instances 

(TP) and made incorrect diagnoses in two cases (FN). The clever technology has a diagnostic accuracy of  

20 times the rate of correctly identifying looseness damage (TP). The intelligent system accurately identifies 

misalignment in the test data 20 times (TP) and incorrectly identifies misalignment damage in other data (FP) 

6 times. The intelligent system accurately diagnoses static imbalance damage 19 times (TP), incorrectly 

diagnoses it once (FN), and misdiagnoses other types of damage once (FP).  

The specifics and computed outcomes of the confusion matrix graph can be seen in Table 14.  

The TP column represents the intelligent system's accuracy in properly diagnosing 20 instances of damage in 

the test data. In the table, the highest values occur 20 times for looseness and misalignment, while the lowest 

values occur for bearings, cavitation, and dynamic unbalance, each appearing 18 times. The term "TN" refers 

to the total number of test data points that do not pertain to the specific type of damage being tested. An FP 

occurs when the intelligent system incorrectly identifies a certain kind of damage in other test data as 

damage. In the misalignment table, it has the most occurrences, 6 times, followed by static imbalance, which 

occurs once. An FN occurs when the intelligent system incorrectly diagnoses damage based on the test data 

provided. The table displays the maximum values for bearing, cavitation, and dynamic unbalance, each 

occurring twice. Conversely, the lowest values are for misalignment and looseness, with a value of 0. 

The intelligent system demonstrates a diagnostic accuracy of 100% for identifying looseness and 

misalignment, while it achieves a lower accuracy of 94.17% for detecting bearing issues, cavitation, dynamic 

unbalance, and static unbalance. The intelligent system exhibits exceptional precision levels of 100% in bearing, 

cavitation, dynamic unbalance, and looseness. However, it demonstrates a relatively lower precision of 76.92% in 

detecting misalignment, which can be attributed to the system requesting data on other types of damage on six 

occasions. The recall or sensitivity rates were highest for looseness and misalignment, at 100%, and the lowest 

percentage for misalignment, at 76.92%. The F-score is an alternative to accuracy when the values of FP and FN 

significantly differ. In the F-score table, the highest value represents a 100% tolerance, while the lowest value 

indicates a misalignment of 86.96%. Analysis of the test data revealed that the intelligent system exhibited an 

average accuracy of 94.74%, precision of 95.32%, sensitivity (recall) of 93.67%, and an F-score of 94.36%. 
 

 

Table 14. BN performance 
Name Classes 

Bearing Cavitation Dynamic unbalance Looseness Misalignment Static unbalance 

TN 100 100 100 100 94 99 

FP 0 0 0 0 6 1 

FN 2 2 2 0 0 1 

TP 18 18 18 20 20 19 

Precision 1 1 1 1 0.7692 0.95 

Sensitivity 0.9 0.9 0.9 1 1 0.95 

Specificity 1 1 1 1 0.94 0.99 

Accuracy 0.9417 0.9417 0.9417 0.9417 0.9417 0.9417 

F-score 0.9474 0.9474 0.9474 1 0.8696 0.95 

 

 

4. CONCLUSION 

The developed intelligent system can rapidly diagnose the condition of the P911B cooling water 

centrifugal pump using a reference-based approach. A sophisticated approach was created utilizing vibration 

diagnosis charts to accurately determine the specific damage type. At the same time, ISO 10816-3 was 

employed to evaluate the overall condition of the P911B cooling water pump. The BN is formed using the 

diagnosis reference graph. A BN comprises input and output nodes that reflect misalignment, static 

imbalance, dynamic imbalance, looseness, and cavitation. Testing shall consist of 20 sets of test data, each 

containing diverse variations for every damage category. The intelligent system can rapidly anticipate and 

precisely identify each form of harm with exceptional accuracy and sensitivity, relying on test outcomes. The 

examination of the test data reveals that the intelligent system attained an average accuracy of 94.74%, 

precision of 95.32%, sensitivity (recall) of 93.67%, and F-score of 94.36%. 
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