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 Detection of attacks on internet of things (IoT) networks is an important 
challenge that requires effective and efficient solutions. This study proposes 

the use of various machine learning (ML) techniques in classifying attacks 

using unidirectional, bidirectional, and packet features. The proposed 

methods that implement decision tree (DT), random forest (RF), extreme 
gradient boosting classifier (XGBC), AdaBoost (AB) and linear discriminant 

analysis (LDA) work perfectly with all kinds of datasets and includes. It also 

works very well with data type-based feature selection (DTBFS) and 

correlation-based feature selection (CBFS). The experiment results show a 
significant improvement compared to previous studies and reveals that 

unidirectional and bidirectional features provide higher accuracy compared 

to packet features. Furthermore, ML models, particularly DT, and RF, have 

faster computing times compared to more complex deep learning models. 
This analysis also shows potential overfitting in some models, which 

requires further validation with different datasets. Based on these findings, 

we recommend the use of RF and DT for scenarios with unidirectional and 

bidirectional features, while AB and LDA for packet features. The study 
concludes that using the right ML techniques along with features that work 

in both directions can make an intrusion detection system for IoT networks 

becomes very accurate. 
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1. INTRODUCTION 

The growing use of internet of things (IoT) devices in many industries has created an urgent need 

for efficient security processes [1]. The IoT devices are internet-connected devices commonly employed in 

diverse settings, ranging from connected households to industrial systems [2], [3]. The limited computing 

resources and insecure communication protocols of these devices make them susceptible to cyber-attacks [4]. 

message queue telemetry transport (MQTT) is a commonly employed protocol in IoT networks, specifically 

https://creativecommons.org/licenses/by-sa/4.0/
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developed for low complexity communications [5]. The primary issue in this domain is the identification and 

categorization of attacks targeting IoT devices that utilizing the MQTT protocol [6]. 

Challenges in detecting cyber-attacks on IoT devices include constrained device processing 

capabilities, intricate and diverse attack types, and large amounts of data [7]. Given the typically constrained 

processing and storage capacity of IoT devices, it is often unfeasible to deploy intricate security measures [8]. 

Moreover, the attacks on IoT devices are diverse, ranging from denial of service (DoS) attacks to malware 

entry, necessitating adaptable, and efficient detection methods [9], [10]. 

Employing statistical techniques for extracting features from packet header flow, including 

unidirectional and bidirectional characteristics, as well as general packet features from protocols such as 

MQTT, transmission control protocol (TCP) (including IP packets and IP flows), and user datagram protocol 

(UDP) [11]–[15], is a viable approach to address this issue. This functionality allows for thorough 

examination of network traffic patterns linked to attacks without the need for excessive data processing [13]. 

By extracting packet features from the MQTT-IoT-IDS2020 dataset, a comprehensive database is obtained 

for training attack detection models. In order to develop more precise and comprehensive detection models, 

this dataset encompasses a broad spectrum of typical attack types against the MQTT protocol. 

Using unidirectional and bidirectional capabilities, the system can assess network traffic from either 

a one-way or two-way standpoint, so offering a more comprehensive understanding of network activity  

[14], [15]. A unidirectional feature is designed to analyze data that moves in a single direction, such from a 

device to a server, whereas a bidirectional feature is designed to analyze data that moves in both directions 

between a device and a server. Examining the traffic of the TCP and UDP protocols further expands upon 

this methodology. The TCP protocol's examination of IP packets and IP flows enables the detection of likely 

communication patterns and irregularities in ongoing connections, while the characteristics of the UDP 

protocol facilitate the detection of attack patterns that arise in connectionless communications [16], [17]. 

By reducing the computational burden on IoT devices, this method allows for early detection and 

improved categorization of attacks. The development of an effective and efficient security system to protect 

IoT devices from ever-evolving cyber threats relies on the use of statistical feature extraction techniques and 

the MQTT-IoT-IDS2020 dataset. This study enhances the advancement of an attack detection and 

classification system for IoT devices by employing efficient and effective methods for extracting meaningful 

features. The following are few significant contributions that this research has made: i) statistical methods 

utilization for extracting features that depend on the characteristics of packet header flow, particularly 

unidirectional and bidirectional features, in order to detect possible attacks; ii) packet feature extraction 

approach derived from the MQTT, TCP, and UDP protocols; iii) evaluation and comparison using the 

MQTT-IoT-IDS2020 dataset; and iv) accuracy enhancement and comprehensiveness of detection model, 

encompassing a range of typical attacks targeting the MQTT protocol. 

 

 

2. RELATED WORK 

Related researches about intrusion detection in IoT networks have adopted various techniques, 

including preprocessing, feature extraction, and classification. Alasmari and Alhogail [18] used a generalized 

linear model (GLM) with random over-sampling and automatic feature engineering to make an optimization 

model that was 100% accurate and had a 100% F1-score. Automatic feature engineering also improved 

performance by 38.9% and reduced detection time by 67.7%. However, this research is exclusive to the 

MQTT protocol for smart home environments, lacking testing on other protocols or broader IoT scenarios. 

Aliabdi [19] suggested a mixed algorithm that uses both a convolutional neural network (CNN) and long 

short-term memory (LSTM). On the network security lab-knowledge discovery and data mining (NSL-KDD) 

dataset, the proposed algorithm achieved 99% accuracy, and on the MQTT protocol, achieved over 97% 

accuracy. However, the complexity of this algorithm may not be suitable for IoT devices with limited 

resources. Liu et al. [20] created a multi-node, multi-class classification ensemble approach to find attacks in 

distributed cyber-physical systems. In situations where multiple nodes were censoring data, this approach 

worked better than the full-data approach. However, the complexity of this approach is high and limited to 

specific data-censoring scenarios. 

Chen et al. [21] used a hybrid feature selection and layered classification model, which 

outperformed six machine learning (ML)/decision tree (DT) algorithms in accuracy and resource 

consumption on four public datasets. However, the complexity of this method may not be suitable for low-

resource IoT devices. Gorzalczany and Rudzinski [22] improved a fuzzy algorithm-based classification 

system using a multi-objective evolutionary algorithm. The system worked better in terms of accuracy and 

simplicity, with ease of understanding being the main focus. In the meantime, Chaganti et al. [23] developed 

a bidirectional gated recurrent unit (Bi-GRU)-CNN model for IoT malware detection and classification, 
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which achieved 100% accuracy for IoT malware detection and 98% for IoT malware family classification. 

However, they restricted the evaluation to features like byte sequences. 

Attota et al [24] proposed a federated learning-based intrusion detection (MV-FLID) method using 

multi-view ensemble learning. This method was more accurate than centralized non-federated learning (FL) 

methods, however, it is still challenging to implement and needs a lot of resources. Also, Liu et al. [25] 

created a bidirectional gated recurrent unit attention (BGRUA) deep learning model for classifying hypertext 

transfer protocol secure (HTTPS) traffic. This model does a better job of classifying encrypted traffic than 

other methods in terms of accuracy, precision, recall, and F1-score, but it also only classifies HTTPS traffic. 

Samy et al. [26] also developed an attack detection framework using deep learning and implemented it on fog 

nodes. Researchers only tested it on fog nodes, achieving a detection rate of 99.97%, an accuracy of 99.96% 

in binary class classification, and an accuracy of 99.65% in multiclass classification. Huang et al. [27] also 

worked on a k-nearest neighbor (KNN)-based classification model that uses statistical features from header-

derived flow and achieves about 90% accuracy while trying to use as little computing power as possible. 

Table 1 summarizes the other important related works. 

 

 

Table 1. Summary of ML techniques for detecting IoT anomalies and attacks 
Ref Dataset Attack types Techniques Performance metrics Drawbacks/Gap 

[28] MQTT dataset MQTT-enabled 

IoT security 

Hybrid feature selection 

(XGBoost, MaxPoolingID) 

Accuracy, 

precision, recall, 

F1-score 

Limited to MQTT datasets; 

generalization to other 

untested protocols 

[29] MQTT-IoT-IDS-

2020, NSL-KDD 

Various network 

intrusions 

ML-based (normalization, 

oversampling, 

undersampling) 

Accuracy, time 

efficiency 

Complex pre-processing 

pipeline; performance on 

non-IoT data sets has not 

been fully explored 

[30] CIC DoS 2017 Low-rate denial 

of service (LR 

DoS) 

AI-based anomaly 

detection (FFCNN) 

Accuracy, 

precision, recall, 

F1-score, detection 

time, ROC 

Focuses only on LR DoS 

attacks; efficiency on other 

types of attacks was not 

demonstrated 

[31] TON-IoT IoT network 

intrusions 

Feature extraction vs. 

feature selection 

Accuracy, F1-score, 

runtime 

Feature selection provides 

faster results but potentially 

reduces accuracy; more 

room for increased accuracy 

[32] CICIDS2017 Various network 

intrusions 

General intrusion detection 

framework (autoencoder, 

classification) 

Accuracy (high for 

both binary and 

multiclass 

classification) 

Complex frameworks may 

be overkill for environments 

with fewer resources 

[32] NSL-KDD DDoS, PROBE, 

R2L, U2R 

Tree-based ML techniques 

(DT, RF, XGBoost) 

Accuracy Only uses five features; may 

not capture the full spectrum 

of network behavior 

[33] UNSW-NB15 Various IoT 

intrusions 

Feature clusters (flow, 

MQTT, TCP) 

Accuracy (binary: 

dan multi-class) 

Especially for UNSW-

NB15; other data sets may 

not provide similar results 

[34] CSE-CIC-

IDS2018 

DDoS attacks Feature-engineering and 

ML-based detection (RF, 

SVM, KNN, DT, 

XGBoost) 

Accuracy, 

precision, recall, 

F1-score 

Focus on DDoS; its 

applicability to other types 

of attacks has not been 

tested 

[35] NSL-KDD, 

UNSW-NB15, 

CCIDS2017 

Various IoT 

intrusions 

Extreme gradient ensemble 

boosting, feature selection 

Accuracy  High computational 

complexity; may not be 

suitable for low-resource 

IoT devices 

[36] BoT-IoT DDoS, DoS, 

Reconnaissance, 

Information Theft 

Supervised ML (KNN, LR, 

SVM, MLP, DT, RF) 

Accuracy, 

precision, recall, 

F1-score, ROC 

Limited to BoT-IoT dataset; 

effectiveness on other non-

validated data sets 

 

 

3. METHOD 

This section outlines the steps and decisions made during the process of proposing a new IDS to 

detect attacks in IoT networks. It presents the ML architecture designed for attack detection and explains the 

feature extraction techniques used. Furthermore, it describes the feature selection process, the classification 

algorithm applied, and the use of the confusion matrix for evaluation. 

 

3.1.  Proposed method 

This study introduces a novel integration of unidirectional, bidirectional, and packet-level features 

for detecting IoT attacks. Each feature type offers a unique view of the data such as unidirectional and 

bidirectional features provide statistical flow characteristics, while packet features reflect protocol-level 
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attributes. Their combination ensures the detection system captures traffic behaviors and protocol abuse 

patterns, thereby improving accuracy and robustness. 

Figure 1 illustrates the proposed method, which is divided into several processes. The first process is 

feature extraction with three feature extractions, namely unidirectional-based features, bidirectional-based 

features and packet-based features. This feature extraction process produces 3 new datasets for the 3 feature 

extraction processes. The second process is featuring selection by eliminating features using data type-based 

feature selection (DTBFS), eliminating features that have data object, data types and correlation-based 

feature selection (CBFS) with threshold=0.8. The third step is to perform classification task using the  

5 selected algorithms, i.e.: DT, random forest (RF), extreme gradient boosting classifier (XGBC), AdaBoost 

(AB), linear discriminant analysis (LDA), and finally compare the performance of the matrix for each 

classification, the performance compared is accuracy, precision, recall, F1-score, and performance time. 
 

 

 
 

Figure 1. ML architecture of the proposed method 
 

 

Five files (in .pcap format) consist of raw data: normal, scan_a, scan_su, sparta, and mqtt_bruteforce. 

We pre-process each file using unidirectional extraction, bidirectional extraction, and packet features, where 

each raw data will be 3 new files (*.csv). Figure 2 illustrates the process of converting 1 file into 3 files  

(in .csv format), such as normal raw data will become 3 files, namely uniflow_Normal.csv, biflow_Normal.csv, 

and packet_Normal.csv then data sets, such as uniflow: uniflow_Normal.csv, uniflow_scan_A.csv, 

uniflow_scan_sU.csv, uniflow_sparta.csv, and uniflow_mqtt_bruteforce.csv will be combined into 1 new .csv 

file with 5 classes. Finally, from 5 raw pcap data, 3 csv files will be obtained, namely Combined 

unidirection_multi_class.csv, biderectional_multi_class.csv, and packet_feature_multi_class.scv. 
 

 

 
 

Figure 2. MQTT-IoT-IDS2020 pre-processing 
 
 

3.2.  MQTT-IoT-IDS2020 dataset 

This study uses the MQTT-IoT-IDS2020 [37] dataset due to its focus on MQTT-based traffic, which 

is highly relevant in real-world smart home and lightweight IoT network deployments. This dataset includes 

modern intrusion attempts such as scanning, brute-force, and session hijacking, making it a suitable 
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benchmark for validating intrusion detection models. The next paragraph is a detailed explanation of each 

data component in the dataset. 

‒ Normal data: the normal data in this dataset reflects the daily activities of an IoT network without any 

attacks. This data includes regular communications between IoT devices and MQTT servers. This 

normal activity is important for training anomaly and attack detection models, as it provides a baseline of 

expected network behavior. 

‒ Scan_A data: scan_A data describes a network scanning attack carried out by an attacker to identify 

vulnerable devices. These attacks typically include port scanning and IP scanning to find weak points in the 

network that can be exploited further. Scan_sU data: scan_sU data covers more specific types of scanning 

attacks, often involving more in-depth and targeted scans to identify services running on a particular device. 

These attacks may include UDP scanning and scanning of specific services that use the MQTT protocol. 

‒ Spartan data: sparta's data refers to a specific type of attack that uses a tool called Sparta to perform 

security scans against IoT networks. Sparta is a powerful scanning tool and used to identify 

vulnerabilities in various network services. This data includes the results of an attack that used Spartan 

scanning techniques against IoT devices which communicate via MQTT. 

‒ MQTT-Bruteforce data: MQTT-Bruteforce data reflects brute force attacks against MQTT servers. In 

this attack, the attacker tries various username and password combinations with hope can illegally 

accessing the MQTT server. This data includes logs of failed as well as successful login attempts, 

providing insight into brute force attack patterns against MQTT servers. 
 

3.3.  Feature extraction 

The data extraction process was carried out using the Scapy and dpkt libraries to read PCAP files 

containing network traffic. After the data was successfully extracted, the Pandas library was used to manage 

and manipulate the data in the form of a dataframe, facilitating further analysis. All extraction results were 

then saved in CSV format for efficient use in the subsequent model processing and training stages. 
 

3.3.1. Unidirectional features 

These features represent one-way traffic statistics, such as from client to server. Extracted metrics 

include packet count, byte count, inter-arrival time statistics, and average packet size. These are critical for 

detecting one-way anomalies like flooding or scanning. 
 

3.3.2. Bidirectional features 

Bidirectional features capture the full session context between communicating hosts. They include 

forward and backward packet counts, data volume, response delays, and flag usage. These features allow the 

model to analyze request-response consistency and session symmetry. 
 

3.3.3. Packet-level features 

These features are derived directly from the MQTT, TCP, and UDP packet headers. They include 

flags (e.g., SYN, ACK, and MQTT QoS), status codes, and metadata such as IP/MAC addresses. These are 

essential for identifying protocol-level misuse and malformed packet behavior. 
 

3.4.  Feature selection 

Feature selection is a crucial process in data modeling that aims to select the most relevant attributes 

from raw data to improve model performance and reduce computational complexity. In this research, the 

feature selection process is conducted in two stages. The two stages are DTBFS and CBFS. 

In the first stage, DTBFS, we consider the data types present in the MQTT-IoT-IDS2020 dataset, 

which includes integer, float, and object types. We focus exclusively on integer and float features, as these 

numeric types can be directly utilized by ML algorithms for modeling and attack detection. Features with the 

object data type are removed except for those indicating the class or type of attack because they require 

additional processing such as encoding, which can introduce complexity and increase computational time. 

While this step may risk excluding certain categorical metadata, redundant protocol identifiers and 

categorical information are often represented numerically in other retained features, ensuring minimal 

information loss. By filtering the dataset in this way, we streamline the data to contain only numeric values, 

making it ready for efficient analysis and model training. 

In the second stage, CBFS is applied using the Pearson correlation method. This approach is used to 

measure the linear relationship between features and identify those with a significant influence on the target 

variable. A commonly used correlation threshold of 0.8, as cited in the feature selection literature [38], is 

employed to identify and eliminate multicollinearity among features. Features with high correlation to the 

target variable but low correlation with each other are retained to ensure uniqueness and relevance is shown 

in Algorithm 1. This step reduces data redundancy and simplifies the model, ultimately improving 
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interpretability while minimizing the risk of overfitting. Through this two-stage feature selection process, we 

enhance the overall performance, efficiency, and accuracy of the IoT network intrusion detection model. 
 

Algorithm 1. Feature selection algorithm (DTBFS+CBFS) 
1: Input: Dataset D with multiple features including numeric and object types. 

2: Initialize: 

3:  label_column=column that contains class/attack label 

4:  numeric_features=empty list 

5: Step 1: Drop object-type features (DTBFS) 

6:  For each feature f in dataset D: 

7:   If f is of object type and f≠label_column: 

8:   Drop f from dataset D 

9:   Else if f is numeric (integer or float): 

10:   Add f to numeric_features 

11: Step 2: Calculate pearson correlation (CBFS) 

12:  Compute correlation matrix C for all features in numeric_features 

13: Step 3: Remove highly correlated features 

14:  For each pair of features (f1, f2) in C: 

15:   If |C[f1][f2]| > 0.8: 

16:   Drop one of the features (e.g., f2) based on lower correlation with target or 

domain relevance 

17: Output: Reduced dataset D_reduced with selected features. 

 

3.5.  Classification 

In the process of detecting attacks on IoT networks, selecting the right classification algorithm is crucial 

for achieving optimal accuracy and efficiency. In this study, we utilize several popular and proven classification 

algorithms widely used in various ML applications. These include DT, RF, XGBC, AB, and LDA 

DT is an algorithm that builds a prediction model using a DT structure. Each node in the tree 

represents a feature; each branch represents a decision; and each leaf represents an outcome. The main 

advantage of DT is its high interpretability, which makes it easy to understand and visualize. RF is a 

development of DT that combines a number of DT to increase accuracy and reduce overfitting. Using bagging 

techniques, RF builds many DT from different subsets of data and combines the results. 

XGBC is a boosting algorithm that combines many weak decisions tree models to form a strong 

model. XGBC is renowned for its high speed and performance, as well as its ability to handle large and 

imbalanced datasets. This algorithm iteratively corrects previous model errors, focusing each new tree on the 

mistakes made by the previous tree. Meanwhile, AB is another boosting algorithm that combines a number of 

weak DT models to form a strong model. However, unlike XGBC, AB adjusts the weight of each data instance 

based on the error of the previous model, so that data that is difficult to classify gets more attention in the next 

iteration. This algorithm is effective in increasing model accuracy on data that is not too large and complex. 

One of the objectives of the statistical technique known as LDA is to identify linear feature 

combinations that can be used to differentiate between two or more classes in the data. This technique is 

frequently utilized in the processes of pattern recognition, classification, and dimensionality reduction. LDA 

is a technique that endeavors to project data into a space with fewer dimensions while successfully preserving 

the various classes. 

 

3.6.  Confusion matrix 

Confusion matrix is a very useful tool in evaluating the performance of classification models. This 

matrix provides a clear picture of how the classification model makes predictions on test data by comparing 

the model predictions with the actual labels. The confusion matrix consists of four main components: true 

positives (TP), true negatives (TN), false positives (FP), and false negatives (FN). TP: number of cases where 

the model correctly predicted the positive class. TN: number of cases where the model correctly predicted the 

negative class, FP: number of cases where the model incorrectly predicted the positive class when it should 

have been negative. FN: number of cases where the model incorrectly predicted a negative class when it 

should have been positive. 

Using the confusion matrix, we can calculate several other important evaluation metrics such as 

accuracy, precision, recall, and F1-score, all of which provide deeper insight about model performance as 

shown in accuracy (1): the proportion of correct predictions out of all predictions, is a general idea of how 

often the model makes correct predictions. Precision (2): the proportion of correct positive predictions. Recall 

(3): the proportion of total positives that were correctly detected. F1-score (4): F1-score provides a balance 

between precision and recall and is very useful when the class distribution is unbalanced. 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃+𝑇𝑁)

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (1) 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
  (2) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
  (3) 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
  (4) 

 

 

4. RESULTS AND DISCUSSION 

In this section, we discuss the results of applying unidirectional, bidirectional, and packet feature 

extraction methods combined with DTBFS and CBFS feature selection for detecting attacks on IoT networks. 

The classification results based on these extraction and selection methods will be analyzed, including the 

confusion matrix, accuracy, and processing time. Furthermore, we compare these results with other studies 

that have used the same dataset. The list of the features derived from different raw data extraction methods 

are as follows. For unidirectional_multi_class. CSV produces 19 features, while bidirectional_multi_class. 

csv produces 36 features, and packet_feature_multi_class.CSV produces 53 features. Each dataset (*.csv) 

consists of object, float64, and int64 data types. 

Table 2 presents the names of the features of each dataset. In unidirectional extraction describes 

one-way traffic between two points (e.g. from source to destination), such as ip_src feature, ip_dst feature as 

source and destination IP addresses, prt_src feature, prt_dst feature as source and destination ports used in 

communication, proto feature as protocol used in communication (such as TCP, UDP). Features like 

num_pkts feature, num_bytes feature is the number of packets and bytes sent in a one-way data stream; 

mean_iat feature, std_iat feature, min_iat feature, max_iat feature to measure the time between packet 

arrivals (inter arrival time), this can be used to detect abnormal traffic patterns; and std_pkt_len feature, 

min_pkt_len feature, max_pkt_len feature are statistics of packet length sent in one direction. 
 

 

Table 2. Unidirectional, bidirectional, and package feature extraction features in MQTT-IoT-IDS2020 
Unidirectional Bidirectional Package feature 

ip_src ip_src fwd_std_pkt_len Sta mqtt_flag_passwd tcp_flag_cwr 

ip_dst ip_dst bwd_std_pkt_len dport mqtt_flag_qos tcp_flag_ecn 

prt_src prt_src fwd_min_pkt_len dst_ip mqtt_flag_reserved tcp_flag_fin 

prt_dst prt_dst bwd_min_pkt_len dst_mac mqtt_flag_retain tcp_flag_ns 

proto proto fwd_max_pkt_len dst_port mqtt_flag_uname tcp_flag_push 

num_pkts fwd_num_pkts bwd_max_pkt_len f4b_a mqtt_flag_willflag tcp_flag_res 

mean_iat bwd_num_pkts fwd_num_bytes f4b_b mqtt_messagelength tcp_flag_reset 

std_iat fwd_mean_iat bwd_num_bytes flags mqtt_messagetype tcp_flag_syn 

min_iat bwd_mean_iat fwd_num_psh_flags id options tcp_flag_urg 

max_iat fwd_std_iat bwd_num_psh_flags ip_a port_a timestamp 

mean_offset bwd_std_iat fwd_num_rst_flags ip_b port_b tran_prot 

mean_pkt_len fwd_min_iat bwd_num_rst_flags ip_flag_df prot transport 

num_bytes bwd_min_iat fwd_num_urg_flags ip_flag_mf sfp_a ts_end 

num_psh_flags fwd_max_iat bwd_num_urg_flags ip_flag_rb sfp_b ts_start 

num_rst_flags bwd_max_iat sec_ip_src ip_len sport ttl 

num_urg_flags fwd_mean_offset num_src_flows length src_ip  

std_pkt_len bwd_mean_offset src_ip_dst_prt_delta mac_a src_mac  

min_pkt_len fwd_mean_pkt_len  mac_b src_port  

max_pkt_len bwd_mean_pkt_len  mqtt_flag_clean tcp_flag_ack  

 

 

Bidirectional extraction describes including two-way traffic data between source and destination, 

such as fwd_std_pkt_len feature, bwd_std_pkt_len feature is the average length of the packet in the forward 

and backward directions; fwd_min_pkt_len feature, bwd_min_pkt_len feature is the minimum length of the 

packet in the forward and backward directions; fwd_max_pkt_len feature, bwd_max_pkt_len feature is the 

maximum length of the packet sent in the forward and backward directions; fwd_num_pkts feature, 

bwd_num_pkts feature is the number of packets sent in forward and backward directions; 

fwd_num_psh_flags feature, bwd_num_psh_flags feature is the number of push flags in packets in each 

direction; and sec_ip_src feature is the second IP address source used in bidirectional communication. 

Feature packet extraction describes features with specific protocols and packet characteristics, such as Sta 

feature, flags feature, options feature about metadata about status and flags in packets; mqtt_flag_passwd 

feature, mqtt_flag_qos feature, mqtt_flag_uname feature refers to MQTT flag, which is important in IoT 

communication, because MQTT is a commonly used protocol in IoT networks; tcp_flag_cwr feature, 

tcp_flag_ecn feature, tcp_flag_syn feature, etc. are related to flags in TCP protocol. These flags indicate the 
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TCP session status (such as SYN for connection initiation or FIN for connection termination); feature ip_a, 

feature ip_b, feature mac_a, feature mac_b are the IP and MAC addresses used in the packet. 

Figures 3(a) to 3(t) illustrates the confusion matrix with the unidirectional extraction dataset 

showing the training and testing results of various ML algorithms (DT, RF, XGBoost, AB, and LDA) on two 

feature selection techniques, namely DTBFS and CBFS. Thus, providing a comprehensive picture of how 

feature selection affects the predictive ability of each algorithm, while Figures 4(a) to 4(t) illustrates the 

confusion matrix with the bidirectional extraction dataset, Figures 5(a) to 5(t) illustrates the confusion matrix 

with the packet feature extraction dataset. Figures 3 to 5 contain the values of TP, TN, FP and FN that can be 

used to measure the values of precision, recall, and F1-score. 

Table 3 shows the precision value of the applied classification models; Table 4 shows the recall 

value of the applied classification models while Table 5 shows the F1-score values, which are the harmonic 

mean between precision and recall. All classification models are applied to data with a dividing ratio of 75% 

for training and 25% for testing. Each table shows how the model responds to data with different 

characteristics (unidirectional, bidirectional, and packet features) and how the model performance can be 

improved with an appropriate feature selection method (DTBFS or CBFS). 

DT, RF, and XGBC have a value of 100 in precision, recall, and F1 score on both types of DTBS and 

CBFS feature selection for all types of unidirectional, bidirectional, and parcel features in feature extraction. 

Meanwhile, AB has a more balanced performance, although AB's precision, recall, and F1 score are lower than 

other models, its performance is quite consistent and more realistic, especially in the package feature scenario. 

While LDA performs well on package features, the use of the CBFS method generally improves the performance 

of LDA compared to DTBFS, making it more suitable for complex datasets, with data precision values ranging 

from 75.229 to 92.330, recall ranging from 64.207 to 90.584 while F1 score ranging from 63.166 to 85.401. 
 

 

Table 3. Precision value 
Classification Split data 

(75%:25%) 

Unidirectional Bidirectional Packet feature 

DTBFS CBFS DTBFS CBFS DTBFS CBFS 

DT Training data 100.000 100.000 100.000 100.000 100.000 100.000 

Testing data 100.000 100.000 100.000 100.000 100.000 100.000 

RF Training data 100.000 100.000 100.000 100.000 100.000 100.000 

Testing data 100.000 100.000 100.000 100.000 100.000 100.000 

XGBC Training data 100.000 100.000 100.000 100.000 100.000 100.000 

Testing data 100.000 100.000 100.000 100.000 100.000 100.000 

AB Training data 52.270 52.270 51.361 51.361 73.841 73.841 

Testing data 52.278 52.278 51.375 51.375 73.818 73.818 

LDA Training data 75.229 82.072 78.010 78.434 92.330 90.584 

Testing data 75.248 81.986 77.837 78.319 92.242 90.581 

 

 

Table 4. Recall value 
Classification Split data 

(75%:25%) 

Unidirectional Bidirectional Packet feature 

DTBFS CBFS DTBFS CBFS DTBFS CBFS 

DT Training data 100.000 100.000 100.000 100.000 100.000 100.000 

Testing data 100.000 100.000 100.000 100.000 100.000 100.000 

RF Training data 100.000 100.000 100.000 100.000 100.000 100.000 

Testing data 100.000 100.000 100.000 100.000 100.000 100.000 

XGBC Training data 100.000 100.000 100.000 100.000 100.000 100.000 

Testing data 100.000 100.000 100.000 100.000 100.000 100.000 

AB Training data 60.000 60.000 60.000 60.000 80.000 80.000 

Testing data 60.000 60.000 60.000 60.000 80.000 80.000 

LDA Training data 64.207 63.158 69.235 69.565 84.701 83.030 

Testing data 64.258 63.175 69.060 69.458 84.725 83.064 

 

 

Table 5. F1-score value 
Classification Split data 

(75%:25%) 

Unidirectional Bidirectional Packet feature 

DTBFS CBFS DTBFS CBFS DTBFS CBFS 

DT Training data 100.000 100.000 100.000 100.000 100.000 100.000 

Testing data 100.000 100.000 100.000 100.000 100.000 100.000 

RF Training data 100.000 100.000 100.000 100.000 100.000 100.000 

Testing data 100.000 100.000 100.000 100.000 100.000 100.000 

XGBC Training data 100.000 100.000 100.000 100.000 100.000 100.000 

Testing data 100.000 100.000 100.000 100.000 100.000 100.000 

AB Training data 55.210 55.210 54.490 54.490 76.360 76.360 

Testing data 55.215 55.215 54.502 54.502 76.344 76.344 

LDA Training data 67.196 63.166 72.606 72.988 85.401 83.032 

Testing data 67.231 63.143 72.396 72.847 85.427 83.088 
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Figure 3. Unidirectional matrix confusion: (a) DT-DTBFS training, DT-DTBFS testing, (c) DT-CBFS training, 

(d) DT-CBFS testing, (e) RF-DTBFS training, (f) RF-DTBFS testing, (g) training RF-CBFS, (h) testing RF-

CBFS, (i) training XGBC-DTBFS, (j) testing XGBC-DTBFS, (k) training XGBC-CBFS, (l) testing XGBC-

CBFS, (m) training AB-DTBFS, (n) testing AB-DTBFS, (o) training AB-CBFS, (p) testing AB-CBFS,  

(q) training LDA-DTBFS, (r) testing LDA-DTBFS, (s) training LDA-CBFS, and (t) testing LDA-CBFS 
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Figure 4. Bidirectional matrix confusion: (a) training DT-DTBFS, (b) testing DT-DTBFS, (c) training DT-

CBFS, (d) testing DT-CBFS, (e) training RF-DTBFS, (f) testing RF-DTBFS, (g) training RF-CBFS, (h) testing 

RF-CBFS, (i) training XGBC-DTBFS, (j) testing XGBC-DTBFS, (k) training XGBC-CBFS, (l) testing XGBC-

CBFS, (m) training AB-DTBFS, (n) testing AB-DTBFS, (o) training AB-CBFS, (p) testing AB-CBFS,  

(q) training LDA-DTBFS, (r) testing LDA-DTBFS, (s) training LDA-CBFS, and (t) testing LDA-CBFS 
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Figure 5. Packet Feature matrix confusion: (a) training DT-DTBFS, (b) testing DT-DTBFS, (c) training DT-

CBFS, (d) testing DT-CBFS, (e) training RF-DTBFS, (f) testing RF-DTBFS, (g) training RF-CBFS, (h) testing 

RF-CBFS, (i) training XGBC-DTBFS, (j) testing XGBC-DTBFS, (k) training XGBC-CBFS, (l) testing XGBC-

CBFS, (m) training AB-DTBFS, (n) testing AB-DTBFS, (o) training AB-CBFS, (p) testing AB-CBFS,  

(q) training LDA-DTBFS, (r) testing LDA-DTBFS, (s) training LDA-CBFS, and (t) testing LDA-CBFS 
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Figure 6 shows a comparison of the accuracy of various classification algorithms with three 

different types of features: unidirectional, bidirectional, and package features. Each algorithm was tested 

using two feature selection methods, namely DTBFS and CBFS. Figure 6 exhibits DT, RF and XGBC 

classifications have an accuracy value of 100% for each feature extraction and feature selection on the 

training and testing data, while AB and LDA have an accuracy of 57.599 to 65.536% for unidirectional and 

bidirectional feature extraction while the packet feature extraction feature is 97.174 to 97.449%. 

Table 6 shows the comparison of classification time (in seconds) for various classification 

algorithms, including DT, RF, XGBC, AB, and LDA. The classification time was measured on three data 

scenarios (unidirectional, bidirectional, and packet feature) with two feature selection methods, namely 

DTBFS and CBFS. The execution time of each algorithm in training and testing the model is very important 

in determining the efficiency and scalability of each approach, especially in the context of IoT data which 

often has high volume and complexity. The time difference between training and testing also provides insight 

into the computational requirements and efficiency of each algorithm in various data scenarios. 
 
 

 
 

Figure 6. Comparison graph of accuracy values 
 

 

Table 6. Comparison of classification times (seconds) 
Classification Split Data 

(75%:25%) 

Unidirectional Bidirectional Packet Feature 

DTBFS CBFS DTBFS CBFS DTBFS CBFS 

DT Training data 0.0791 0.605 .0,499 0.322 6.440 5,977 

Testing data 0.057 0.048 0.052 0.022 0.660 0.449 

RF Training data 22.054 16.204 12.044 6.303 118.455 115.464 

Testing data 3.205 3.196 1.577 1.126 18.642 17.332 

XGBC Training data 10.508 8.749 8.002 5.183 157.975 120.496 

Testing data 0.132 0.118 0.085 0.066 1.131 0.948 

AB Training data 28.080 25.619 17.829 13.543 254.920 229.451 

Testing data 3.075 2.659 1.776 1.516 27.850 24.490 

LDA Training data 1.395 1.068 1.539 0.650 43.043 12.182 

Testing data 0.141 0.103 0.084 0.045 1.848 0.492 

 

 

Based on Table 6, the processing time of the LDA shows a relatively fast processing time, while AB 

has a slower processing time, especially for packet features. RF and XGBC require longer training time, 

especially for packet features, however, CBFS helps reduce their training time. Overall, CBFS is more 

efficient than DTBFS in terms of training and testing time.  

Table 7 presents a comparison of the accuracy values produced by various classification methods on 

the MQTT-IoT-IDS2020 dataset. This table includes ML and DL-based methods, which are used to detect 

attacks in IoT networks. Classification is carried out based on three feature approaches, namely packet, 

unidirectional, and bidirectional. This table also lists the results of several previous referenced studies, and 

the methods proposed in this study. The highest accuracy for the ML approach was found in the RF and DT 

classifications, which reached 99.98% on the unidirectional and bidirectional features. On the other hand, DL 

approaches show varying but still in high accuracy, with DNN-Uniflow and CNN-RNN-LSTM reaching up 

to 99.54%. The proposed methods in this study using DT, RF, and XGBC algorithms with two feature 

selection methods, namely DTBFS and CBFS, shows excellent performance, with accuracy reaching 100% 

almost on all scenarios. 
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Table 7. Comparison of accuracy values with the MQTT-IoT-IDS2020 dataset 
Ref Method Classification Unidirectional 

(accuracy) (%) 
Bidirectional 

(accuracy) (%)  
Packet feature 

(accuracy) (%) 
[39] ML LR 98.23 99.44 78.87 
[39] ML k-NN 99.68 99.90 69.13 
[39] ML DT 99.96 99.95 88.55 
[39] ML RF 99.98 99.97 65.39 
[39] ML SVM (RBF kernel) 97.96 96.61 77 
[39] ML NB 78.00 97.55 81.15 
[39] ML SVM (Linear kernel) 82.60 98.50 66.69 
[24] DL FL - - 94.18 

[24] DL Non-FL - - 98.00 

[40] DL DNN 99.51 99.46 97.03 
[40] DL CNN-RNN-LSTM 99.51 99.40 98.01 
[40] DL LSTM 99.54 99.40 97.98 
[41] DL DNN (Binaryclass) 99.14 99.75 94.94 
[41] DL DNN (Multiclass) 97.08 98.13 90.80 
[42] ML k-NN - - 97.76 

[42] ML SVM - - 97.80 

[42] ML NB - - 97.58 

[42] ML RF - - 99.98 

[42] ML DT - - 99.98 

[42] ML SGD - - 97.58 

[43] ML k-NN - - 80.82 

[43] ML LDA - - 76.72 

[43] DL CNN  - - 80.28 

[43] DL CNN-LSTM  - - 98.94 

[43] DL CNN- k-Fold - - 77.68 

[43] DL CNN-LSTM- k-Fold - - 93.22 

Proposed ML DT-DTBFS 100.00 100.00 100.00 
Proposed ML DT-CBFS  100.00 100.00 100.00 
Proposed ML RF-DTBFS  100.00 100.00 100.00 
Proposed ML RF-CBFS  100.00 100.00 100.00 
Proposed ML XGBC-DTBFS  100.00 100.00 100.00 
Proposed ML XGBC-CBFS  100.00 100.00 100.00 
Proposed ML AB-DTBFS  78.20 74.83 96.80 
Proposed ML AB-CBFS  78.20 74.83 96.80 
Proposed ML LDA-DTBFS  60.71 64.83 97.44 
Proposed ML LDA-CBFS  57.67 65.48 97.18 

 

 

5. CONCLUSION 

In this research, we analyze the effectiveness of various ML techniques to classify attacks using 

unidirectional, bidirectional, and packet feature extraction. The DT, RF, and XGBC classifications with selection 

features DTBFS and CBFS, all of which achieved 100% accuracy in unidirectional, bidirectional, and packet 

feature extraction. In contrast, AB and LDA demonstrated high accuracy with packet features, each approaching 

96.80 and 97.44%. Compared with deep learning models, ML models, especially DT and RF, show faster 

training and testing times while maintaining high accuracy. On the other hand, DTBFS and CBFS feature 

selection are proved to be effective, showing no significant difference in model’s accuracy. Perfect accuracy by 

some models indicates a potential risk of overfitting. We need to validate this model further on different datasets 

to confirm its generalizability. ML models exhibit lower computational complexity and faster processing time 

compared to DL models, so that is suitable for real-time applications. We recommend RF and DT for 

unidirectional and bidirectional feature extraction due to their high accuracy and efficiency, and AB and LDA for 

packet feature extraction. For future research, the authors plan to further validate the model with various datasets 

to ensure the generalizability and endurance of the proposed method. It is important to validate the model with 

various IoT datasets. Furthermore, future work should consider optimizing model parameters and feature 

selection to enhance performance and minimize computational requirements in real-world implementations. 
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