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 In the digital age, the proliferation of data presents both challenges and 

opportunities, particularly in the realm of big data, which is characterized by 

its volume, velocity, and variety. Machine learning is a crucial technology for 
extracting insights from these vast datasets. Among machine learning 

methods, ensemble methods, and especially cascading ensembles, are highly 

effective for big data analysis. While it is true that the training procedures for 

cascade ensembles can be time-consuming and may have limitations in terms 
of accuracy, this paper proposes a solution to enhance their performance. Our 

method involves using stochastic gradient descent (SGD) classifiers, an 

improved training data separation algorithm, and integrating principal 

component analysis (PCA) at each ensemble level. We are confident that these 
enhancements lead to improved results and accuracy. The proposed approach 

is designed to enhance both the generalization properties and accuracy of the 

ensemble (3%), while also reducing its training time. Results from modelling 

on a real-world biomedical dataset demonstrate significant reductions in 
training duration, improvements in generalization properties, and enhanced 

accuracy when compared to other possible implementations of the ensemble. 
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1. INTRODUCTION  

In the digital era, the exponential growth of data has ushered in new challenges and opportunities. Big 

data is often characterized by among other things, its volume, velocity, and variety, which can pose a formidable 

challenge to conventional data processing techniques. However, machine learning has emerged as a pivotal 

technology in addressing these challenges, due to its ability to analyze and extract insights from massive datasets. 

The synergy between machine learning and big data processing has undergone significant development over 

time. However, conventional data processing techniques have encountered challenges in handling the vast 

amount and intricacy of big data [1], [2]. The deployment of machine learning models at scale has been 

significantly improved by machine learning algorithms, particularly those that utilize parallel computing and 

distributed systems. This has allowed organizations to extract value from their data assets more efficiently [3]. 

The advent of technologies such as apache hadoop and spark has made scalable and efficient big data processing 

frameworks accessible, thereby facilitating the deployment of machine learning models at scale [4]. 

Machine learning has several advantages for processing big data tasks [5]. Firstly, it enables predictive 

analytics by identifying patterns and trends within vast datasets, which can facilitate informed decision-making 

[6]. Secondly, machine learning algorithms can automate data processing workflows, reducing manual 
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intervention and streamlining operations [7]. Thirdly, it is important to note that the iterative nature of machine 

learning allows models to continuously improve and adapt to evolving datasets, resulting in enhanced accuracy 

and performance over time [8]. Despite its promising capabilities, machine learning for big data processing is 

not without challenges [9]. The main hurdle is that large data sets are complex to manage and effectively 

process [10]. Ensuring scalability, fault tolerance, and resource optimization in distributed environments 

remains an ongoing challenge. In addition, data quality [11] and preprocessing [12] are critical factors that can 

significantly impact the performance of machine learning models [13], [14]. Addressing issues such as missing 

values, outliers, and data imbalances requires careful consideration to prevent bias and inaccuracy in the 

analysis [15], [16]. Furthermore, the accuracy of individual machine learning models, which is critical for such 

tasks, is not always satisfactory. In particular, the method described [17] is highly effective for analyzing large 

datasets. However, the accuracy of their stochastic gradient descent (SGD) algorithm is not up to the mark. 

To address this issue, Izonin et al. [18] investigated the nonlinear expansion of inputs for SGD, 

implementing it using different powers of the Wiener polynomial. This paper approximates a tabular dataset 

using different powers of the same polynomial. The degree of the polynomial was determined using SGD due 

to its high speed. The results of the modelling suggest that increasing the degree of approximation would 

improve the accuracy of the model. However, the direct approximation approach by high powers of this 

polynomial may significantly increase the problem's dimensionality. It is important to note that polynomial 

approximation may not always be appropriate when the number of attributes exceeds the number of vectors in 

a dataset. Hence, a direct approximation with this polynomial, even with the use of high-speed SGD, may not 

be the most suitable approach. 

When discussing the composition of ensembles from these methods [19], it is important to note that 

they can partially alleviate the aforementioned issues. In particular, scaling, as the most accurate class of 

ensemble methods, can be optimized to work efficiently with large-scale datasets [20]. These methods partition 

the data or employ incremental training techniques, which can help manage and process data in distributed 

environments more efficiently. Cascade ensembles can be considered more fault-tolerant than individual 

models as they use multiple models [21]. This means that if one model fails or produces inaccurate results, the 

ensemble can still make reliable predictions by aggregating outputs from multiple models. Furthermore, 

cascade ensembles can optimize resources by distributing computation across multiple models or processing 

units [22], leading to optimized utilization of computational resources in distributed environments. Moreover, 

it is worth noting that ensemble methods, including cascade ensembles, have the potential to be resistant to 

noisy or imperfect data. By combining multiple models that are trained on different subsets or representations 

of the data, ensemble methods can mitigate the impact of missing values, outliers, and data imbalances [16]. 

Cascade ensemble methods may not completely solve all the challenges mentioned previosly, but they 

can certainly help address them by utilizing the diversity and collective intelligence of multiple models [23].  

It is crucial to carefully design and tune cascade ensembles to fit the specific characteristics and requirements 

of the problem domain [24]. While cascade ensembles are considered the most accurate class of ensemble 

methods, their hierarchical decision-making process requires a lengthy training procedure [25]. This task can 

become even more complex when analyzing high-dimensional datasets [26] using complex, nonlinear machine 

learning methods at each level of a deep learning cascade [27]. Moreover, the methodology entails segmenting 

the dataset into sections, which are then processed at designated levels within the cascade structure. This 

technique restricts the exposure of weaker predictors to the entire dataset, thereby reducing the accuracy of the 

cascade forecast or classification model as a whole [28]. These factors cumulatively affect the performance of 

the cascade ensemble. According to the literature, a comprehensive evaluation of the performance of cascade 

ensemble should take into account various indicators such as accuracy, speed, and generalization [29]. 

Accuracy (based on different performance indicators) measures how successfully the machine learning model 

predicts outcomes compared to the actual results. it's typically expressed as a percentage and is crucial for 

ensuring the reliability of insights derived from big data. Training time measures the duration required to train 

a machine learning model on a given dataset [30], while generalization measures its ability to perform well on 

unseen data. It is important to consider all these indicators in combination. 

Dudzik et al. [27] developed a cascade ensemble based on support vector machines (SVMs). The 

SVM ensemble was composed using an evolutionary algorithm proposed by the authors to optimize the 

hyperparameters of the machine learning method underlying the cascade ensemble. The proposed approach 

has demonstrated high accuracy. The training process for SVMs [31] is known to have high time and memory 

complexity, which is further increased by the optimization procedure for each SVM at each level of the cascade. 

As a result, the accuracy and duration of SVMs are limited, making their application challenging. However, 

with careful consideration and expertise, SVMs can still be a valuable tool in certain contexts. 

According to Izonin et al. [32], a distinct method was employed by the authors to construct a cascade 

ensemble using support vector regression (SVR). The dataset was partitioned into equal segments, with the 

number of segments determining the cascade's depth. The basic machine learning method used was linear SVR. 
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This approach improved the method's speed, although it may have decreased the potential accuracy of cascade 

ensembles. 

To address the aforementioned drawback, a modification of this scheme was proposed in [33]. At each 

level of the cascade, the authors utilized high-speed SGD as a fundamental machine learning algorithm. 

Additionally, a quadratic Wiener polynomial was employed for the nonlinear transformation of input data at 

each level of the cascade, which resulted in a significant improvement in the forecast accuracy. Moreover, it 

should be noted that the cascade structure of the method results in an implicit approximation through a  

high-degree polynomial. It is worth mentioning that each new level of the cascade doubles the order of the 

Wiener polynomial. However, this increase in order leads to a significant expansion of the input data space, 

which in turn prolongs the training procedure. To partially compensate for this drawback, SGD is employed. 

However, it is worth noting that the proposed approach may have an impact on the generalization properties 

of the method. Therefore, it may be necessary to conduct further research to reduce the training time of the 

method while simultaneously improving its generalization properties and accuracy [34]. 

The objective of this paper is to improve the performance of the cascade ensemble of SGD classifiers 

by implementing a combination of a new data partitioning algorithm and PCA at each level of the ensemble 

method. The effectiveness of this approach is evaluated by measuring enhancements in the generalization 

properties and accuracy of the cascade ensemble of SGD classifiers, as well as a substantial reduction in the 

duration of its training. The main contributions of this paper are the following: 

− We improved the SGD-based cascade ensemble by jointly utilizing a new data partitioning algorithm and 

additional application of PCA at each level of the hierarchical ensemble. The use of the first approach 

demonstrated a significant improvement in the accuracy of the ensemble method. The utilization of the second 

approach significantly reduced its training time. The combined use of both approaches provided a substantial 

enhancement in the performance of the cascade ensemble based on two critical indicators; 

− We improved the training and application procedures of the cascade ensemble through the combined 

implementation of both approaches as mentioned in the first scientific contribution of this paper, improving 

its performance in terms of accuracy and training time when solving classification tasks, particularly in the 

analysis of large datasets; 

− We have demonstrated a significant enhancement in the performance of the cascade ensemble (training time, 

generalization properties) compared to other possible implementations. 

The paper is structured as follows: in section 2, the enhancements made to the cascade ensemble 

method are explained, including the implementation of a novel training data partitioning algorithm and the 

integration of principal component analysis (PCA) at each level. The results obtained from the application of 

the improved cascade ensemble method are presented in section 3, and the implications of the findings are 

discussed. Finally, section 4 summarizes the key findings and contributions of the study. 

 

 

2. AN IMPROVED CASCADE ENSEMBLE METHOD 

The cascade ensemble improved in this paper is based on [33]. As previously mentioned, Izonin et al. [33] 

proposed a hierarchical classifier that uses a high-speed SGD quadratic Wiener polynomial for nonlinear 

transformation of the input data at each level of the cascade. The training dataset is divided into equal parts, and 

the number of parts determines the number of cascade levels. However, it should be noted that the existing method 

has two drawbacks. One is the formation of random subsamples of the same size (without repetitions) for each 

level of the cascade. This may result in weak regressors receiving only a small portion of the useful information 

for analysis, which could potentially reduce the accuracy of the cascade as a whole. Second, the use of a nonlinear 

expansion scheme for the problem inputs based on the quadratic Wiener polynomial represents another potential 

disadvantage. While this approach has been shown to improve the accuracy of linear classifiers, it also expands 

the space of task inputs, which can result in a significant increase in training time, especially when dealing with 

high-dimensional data of large volume. However, in this paper, we aim to address both of these drawbacks. A 

new data partitioning algorithm was used in conjunction with additional application of PCA at each level of the 

hierarchical ensemble. The first approach showed a significant improvement in the accuracy of the ensemble 

method, while the second approach significantly reduced its training time. The combined use of both approaches 

provided a substantial enhancement in the performance of the cascade ensemble based on two critical indicators. 

Let us take a closer look at these two methods. In this paper, we propose an additional use of PCA to 

reduce the dimensionality of the input data space for each weak classifier of the hierarchical method. The basic 

cascade ensemble [33] utilises a quadratic Wiener polynomial at each level, which can increase the 

dimensionality of the input data space. This approach allows for a more efficient and effective implementation 

of the method. To automate this procedure, we used the method of calculating cumulative variance explained 

values. It has been determined that the number of principal components can be automatically selected to meet 

the user's specified percentage of variance explained. Recent numerical modelling results have demonstrated 
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that selecting a value of 95% guarantees that each weak classifier considers the fundamental information 

necessary for the analysis. Our modification significantly reduces the input data space of the problem by 

discarding less significant or noisy principal components. This reduction is by more than 10 times and helps to 

shorten the training duration for both each weak machine learning-based classifier and the improved cascade 

ensemble as a whole. We call the use of this procedure in the baseline method [33] modification 1 [35]. 

Both the basic [33] and the improved cascade ensemble in this paper require dividing a large dataset 

into parts to form a cascade structure. A new data partitioning algorithm is proposed in the paper for forming 

subsets at each level of the cascade. This is achieved by randomly selecting a number of vectors from the 

training set that corresponds to the user-defined size. Thus, the subsets for the improved methods can be either 

larger or smaller in size compared to the subsets for the original method [33]. Additionally, the subsets may 

contain repeated vectors, which is not allowed in the existing method [33]. These modifications aim to enhance 

the accuracy of each weak classifier and the improved SGD-based cascade ensemble as a whole. The approach 

used in the original method [33] is referred to as modification 2 [36]. The performance of the existing cascade 

ensemble [33] can be enhanced by combining modification 1 and modification 2. However, it is necessary to 

modify the training algorithms and apply them to the improved SGD-based cascade ensemble. Please refer to 

Figure 1 for the flow chart of the improved SGD-based cascade ensemble training. 

Let us explore the key stages of the enhanced training process and the application of the improved 

method using modification 1 and modification 2 in greater detail. In order to do so, we will introduce the 

concept of data processing procedure, which is utilized at every level of the improved SGD-based cascade 

ensemble, and outline its key stages. The data processing procedure consists of the following steps: i) 

normalization of data by columns based on the maximum element; ii) quadratic expansion of the normalized 

inputs of a given data sample via the wiener polynomial; and iii) applying PCA and selecting the number of 

principal components that provide 95% of the explained variance. Before beginning the training procedure, the 

training dataset is divided into subsets using a new data partitioning algorithm. This creates N-subsets with 

repetitions, which determine the N levels of the improved SGD-based cascade ensemble. 

 

2.1.  Learning algorithm 

− Step 1. The data processing procedure is performed on the first subset to train the weak classifier 1 (SGD-

based classifier 1). 

− Step 2. The data processing procedure is performed on the second subset and applied to the pre-trained weak 

classifier 1. The output values obtained from SGD-based classifier 1 are added to subset 2 as an additional 

feature. After performing the data processing procedure, weak classifier 2 (SGD-based classifier 2) is trained. 

− Step 3. The data processing procedure is performed on the third subset and applies it to the previously 

trained weak classifier 1. The output values obtained from SGD-based classifier 1 are added to subset 3 as 

an additional feature. Then, perform the data processing procedure and apply it to the pre-trained weak 

classifier 2. The output values obtained from SGD-based classifier 2 are added to subset 3 as an additional feature. 

Finally, after performing the data processing procedure, weak classifier 3 (SGD-based classifier 3) is trained. 

− Step N. The data processing procedure is performed on the last, subset N and its application to the 

previously trained weak classifier 1. The output values obtained from SGD-based classifier 1 are added to 

subset N as an additional feature. Then, perform the data processing procedure and apply it to the  

pre-trained weak classifier 2. The output values obtained from SGD-based classifier 2 are added to subset 

N as an additional feature. Then, perform the data processing procedure and apply it to the pre-trained weak 

classifier 3. These steps are repeated at each subsequent level until the final level of the improved  

SGD-based cascade ensemble is reached, where the last weak classifier (SGD-based classifier N) is trained. 

 

2.2.  Application algorithm 

In the application algorithm for the improved SGD-based cascade ensemble, the input data vector is 

classified into one of the problem-defined classes using a pre-trained cascade scheme with N levels. The given 

vector undergoes a data processing procedure and is then applied to the pre-trained weak classifier 1. The 

output values obtained from SGD-based classifier 1 were added to the given vector as an additional feature. 

Then, the data processing procedure was performed and the vector was applied to the pre-trained weak 

classifier 2. Subsequently, the output values obtained from SGD-based classifier 2 were added to the given 

data vector as another additional feature. The data processing procedure was performed again and the vector 

was applied to the pre-trained weak classifier 3. 

All the steps outlined previosly are carried out at each subsequent level until the state level of the 

improved SGD-based cascade ensemble is reached. At this point, the final weak classifier (SGD-based 

classifier N) is applied to determine the desired membership class of the input data vector. The improved 

cascade ensemble offers the following advantages: 
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− Improves the generalization properties of the data classification method; 

− Increases the classification accuracy; 

− Reduces subsample dimensionality at each cascade ensemble level; 

− Reduces the complexity of computation of the selected weak classifier; 

− Shortens the training procedure duration. 

 

 

 
 

Figure 1. Flow-chart for the improved SGD-based cascade ensemble (training mode) 

 

 

3. RESULTS AND DISCUSSION 

To simulate the operation of the improved cascade ensemble, the authors created custom software 

using the Python programming language, based on principles from [37], [38]. Experimental studies were 

carried out on a computer with an Intel® Core™ i7-8750H processor (clock frequency 2.20 GHz), RAM 8 GB. 

 

3.1.  Dataset descriptions 

The 2021 United States Disease Risk Factor Surveillance System (BRFSS) provided extensive 

datasets, which were disseminated by the Centers for Disease Control and Prevention across the United States 

and its surveyed regions [37]. The 2021 cycle of the BRFSS investigated a range of health parameters, such as 

overall health assessment, duration of wellness, physical activity levels, hypertension and cholesterol 
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screening, prevalence of chronic illness and arthritic conditions, tobacco usage patterns, fruit and vegetable 

consumption habits, and accessibility to medical assistance (core section). The primary dataset initially 

contained a broad spectrum of information related to these health conditions. This comprehensive dataset 

provides a solid foundation for further analysis and research. The dataset was refined to focus solely on lifestyle 

factors relevant to human health. Our main objective was to predict occurrences of cardiovascular diseases 

through a binary classification task. The resulting dataset consists of 308,854 records, each with 29 attributes. 

The first phase of data preprocessing involved identifying and removing duplicate entries to ensure 

the uniqueness of each record. This step is crucial for maintaining the integrity of the dataset and preventing 

redundancy in the analysis. By eliminating duplicate entries, the researchers aimed to streamline the dataset 

and prepare it for further analysis. After ensuring the uniqueness of each record, the next step was to address 

and rectify any missing values within the dataset. Missing values can significantly impact the quality and 

reliability of the analysis. By addressing and rectifying these missing values, the researchers aimed to enhance 

the accuracy and robustness of the dataset for subsequent analytical processes. Following the preprocessing 

stage, the subsequent analytical step focused on mitigating the class imbalance observed in the dataset. Initially, 

the distribution ratio between classes stood at 92% to 8%. Maintaining balanced classes is crucial for the 

efficacy of machine learning models, as it can significantly impact the model's ability to make accurate 

predictions. 

To achieve balanced classes, two principal algorithms were employed concurrently: synthetic 

minority oversampling technique (SMOTE) and NearMiss. SMOTE was used to augment instances of the 

minority class, while NearMiss was employed to reduce instances of the majority class. This iterative process 

involved adjusting various parameter values to regulate the number of instances from both classes, aiming to 

achieve a more balanced distribution. After a thorough iterative process of adjusting parameter values, it has 

been determined that the optimal accuracy and superior generalization for the used classifier can be achieved 

by selecting exactly 75,000 instances from each class in the original dataset. As a result, the final dataset for 

implementing machine learning training procedures contains 150,000 observations. 

 

3.2.  Optimal parameters selection for the improved cascade ensemble 

The selection of parameters is of utmost importance for the improved SGD-based cascade ensemble. 

This ensemble jointly employs a new data partitioning algorithm and additional application of PCA at each 

level of the hierarchical ensemble. It is crucial to determine the following: 

− The optimal number of levels for the cascade ensemble; 

− The optimal size (% of the training sample) of each subset was randomly generated with repetitions of the 

improved cascade ensemble according to the enhanced training data separation algorithm; 

− The optimal number of principal components at each level of the ensemble after applying PCA; 

− Optimal parameters for each of the weak classifiers. 

The optimal parameters of SGD were selected using the grid search method as a weak predictor at 

each level of the improved cascade ensemble. The number of principal components used in the hierarchical 

method was determined based on the cumulative variance explained. This approach allows for the calculation 

of the total variation in the data explained by a chosen number of principal components. For the optimization 

of the improved SGD-based cascade ensemble, we selected the principal components at each level of the 

cascade that accounted for 95% of the explained variance. These components were then used as inputs for each 

weak classifier. This approach ensured that the required number of principal components for each weak 

predictor of the ensemble was automatically selected, resulting in optimized performance. The implementation 

of automation in this procedure significantly reduces the time required to conduct research on the effectiveness 

of the method and its practical application. 

In this paper, several experimental studies were conducted to determine the most efficient values for 

the first two parameters in order to optimize the effectiveness of the improved SGD-based cascade ensemble. 

This article presents the results of experiments on the accuracy, speed, and generalization properties of the 

proposed hierarchical method. The number of cascade levels varied from 2 to 6, and random subsamples with 

repetitions were formed at each level of the cascade ensemble of different sizes (ranging from 20% to 90% of 

the initial training sample with a step of 10%). The results are shown in Figure 2(a) shows the results in training 

mode, and Figure 2(b) shows the results in test mode. 

Figure 2 demonstrates that utilizing a small percentage (20%-30%) of the training sample to create 

random subsamples with repetitions yields high accuracy during the training mode of the cascade ensemble. 

However, this approach may negatively impact its generalization properties. Conversely, using random 

subsamples with a volume of more than 50% of the training sample enhances accuracy during the application 

mode but may result in overtraining of the method. All of these characteristics apply to cascade designs with 

2, 3, 4, 5, and 6 levels. It is important to note that using large subsamples at each level of the cascade ensemble 

may increase the training time of the entire method. 
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(a) 

 

 
(b) 

 

Figure 2. Change in the accuracy of the improved SGD-based cascade ensemble (F1-score) when changing 

the % of training sample usage with repetition and the number of ensemble levels: (a) for training mode and 

(b) for test mode 
 

 

Figure 2 also illustrates that increasing the number of levels in the cascade ensemble (beyond 5) for 

processing a given dataset is not recommended, as it may reduce the generalization properties of the proposed 

design. We suggest that the optimal parameters for solving the problem are to use a cascade of four levels and 

to form random subsamples at each level using 40% of the training sample. These results are summarized in 

Figure 3. Based on the results present in Figure 3, it can be stated that the SGD-based cascade ensemble, when 

trained on subsamples comprising 40% of the training sample size, exhibits the highest generalization 

properties and accuracy in both modes. It is worth noting that the use of subsamples of this size does not 

significantly increase the training time of the method compared to the use of larger subsamples. 
 

 

 
 

Figure 3. The best parameters for the improved SGD-based cascade ensemble 
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3.3.  Results 

Table 1 presents the results of the improved SGD-based cascade ensemble using four performance 

indicators. The results from Table 1 include the optimized parameters of the SGD-based cascade ensemble 

improved in this article. The results clearly demonstrate its superior performance compared to other methods. 
 
 

Table 1. Results for the improved cascade ensemble 
Performance indicator Training mode Test mode 

Precision 0.806 0.884 

Recall 0.803 0.75 

F1-score 0.802 0.801 

Training time (seconds) 0.31 - 

 

 

3.4.  Comparison and discussion 

The proposed solution, the improved cascade ensemble, was evaluated for its effectiveness by 

comparing it with several similar methods: i) method [17] (SGD algorithm); ii) method [18] (extended-input 

SGD); iii) method [33] (basic cascade ensemble); iv) modification 1 (basic cascade ensemble with PCA on 

each cascade level) [35]; and v) modification 2 (basic cascade ensemble with subsamples with repetitions on 

each cascade level) [36]. The authors thoroughly analyzed the data set studied in this article and confidently 

investigated the effectiveness of each method mentioned above. They expertly selected the optimal parameters 

of each method using the grid search method. The results are summarized in Table 2. 

 

 

Table 2. Optimal parameters for all investigated methods 
Method Optimal parameters 

Method [17] loss='log', penalty=’l2’, alpha=0.0001. 

Method [18] SGD classifier, quadratics Wiener polynomial. 

Method [33] Cascade ensemble of the SGD algorithms; 

quadratics Wiener polynomial; 

5 depth levels; 

training sample is divided into 5 equal parts. 

Modification 1 

[35] 

Cascade ensemble of the SGD algorithms; 

quadratics Wiener polynomial; 

6 depth levels; 

input data space is reduced in dimensionality at each level of the cascade using PCA, ensuring at least 95% of the 

variance. 

Modification 2 

[36] 

Cascade ensemble of the SGD algorithms; 

quadratics Wiener polynomial; 

3 depth levels; 

training sample was subsampled randomly at each level, with 70% of the sample being selected with repetitions. 

Proposed solution Cascade ensemble of the SGD algorithms; 

quadratics Wiener polynomial; 

4 depth levels; 

training sample was subsampled randomly at each level, with 40% of the sample being selected with repetitions; 

input data space is reduced in dimensionality at each level of the cascade using PCA, ensuring at least 95% of the 

variance. 

 

 

Two criteria were selected to compare the effectiveness of all the methods under study: i) F1-score in 

training and test modes; and ii) training time (in seconds); the first criterion provides an opportunity to compare 

the accuracy of all methods in application mode. Furthermore, the generalization properties of each method 

can be evaluated by the difference in F1 scores between training and test mode. The second criterion allows us 

to estimate the duration of the training procedure for the selected method, which is crucial when analyzing 

large datasets. 

Figures 4 and 5 show the comparison results for F1 score and training time, respectively, based on 

both criteria. After careful analysis of the comparison results presented in Figures 4 and 5, it is clear that the 

method [17], which is based on the high-speed SGD algorithm, has the fastest training time in Figure 5, but 

exhibits the lowest classification accuracy as shown in Figure 4. However, this method still demonstrates high 

generalization properties. The method [18] was able to increase the classification accuracy of the data by more 

than 5% according to the F1-score in Figure 4, through the combination of the high-speed SGD algorithm and 

the quadratic Wiener polynomial. However, the use of quadratic Wiener polynomial significantly increases the 

dimensionality of the problem, which in turn leads to a longer training procedure. The training time for this 

method has increased significantly compared to the previous method see Figure 5. Furthermore, the 
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generalization properties of this method have deteriorated. Specifically, the difference between the F1-score in 

both training modes is significantly higher than that of method [17]. 

The basic cascade ensemble (method [33]) has been shown to achieve a 10% higher accuracy  

(F1-score) compared to method [17] and almost 5% compared to method [18]. Furthermore, this method has 

the advantage of reducing the duration of the training procedure by almost half compared to method [18]. But 

the basic cascade ensemble has the worst generalization properties of all the methods investigated as shown in 

Figure 4. The basic cascade ensemble (method [33]) was optimized by implementing PCA at each level 

(modification 1), resulting in a reduction of training time by almost 7 times. Furthermore, modification 1 led 

to a 2% increase in accuracy in the application mode. These benefits are attributed to the substantial reduction 

in subsample dimensionality at each level of the cascade ensemble. The number of problematic inputs at each 

level of the cascade ensemble was effectively reduced by more than tenfold by using PCA, which accounts for 

95% of the variance. These least significant principal components either do not influence the classification 

results or are noise components negatively affecting the classification results. The accuracy of the basic cascade 

ensemble (method [33]) was improved by implementing a new subsampling scheme for each cascade level 

(modification 2). This resulted in a 2% increase in accuracy based on F1-score as shown in Figure 4. 

Additionally, this modification significantly enhanced the generalization properties compared to the  

method [33]. Nonetheless, the increased subsample size at each level of the cascade ensemble led to a training 

procedure that was nearly twice as long, as illustrated in Figure 5. 
 

 

 
 

Figure 4. F1-score for all investigated methods 
 

 

 
 

Figure 5. Training time (in seconds) for all investigated methods 
 

 

The combined use of the new subsampling scheme and the application of PCA at each level of the 

basic cascade ensemble (method [33]), which is proposed in this article (proposed solution), provided high 

accuracy, the highest generalization, and significantly lower training time compared to the basic cascade 
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ensemble as shown in Figures 4 and 5. These advantages make this method a very practical solution. Future 

research could be directed towards two main areas: 

‒ The accuracy of the improved cascade ensemble can be enhanced by using alternative linear methods as 
weak classifiers. It is important to consider this option only if these methods have been proven to provide 
higher accuracy than SGD when analyzing a specific dataset. 

‒ Implementing alternative principal component extraction methods, such as neural network analogues of 
PCA, could potentially reduce the duration of the training procedure for the entire cascade ensemble, 
provided that they have a faster performance than the classical PCA. 

However, both of the above approaches should be used taking into account the specifics of a particular task 

and the quality, quantity and dimensionality of the training data set available to solve it with machine learning. 
 

 

4. CONCLUSION 

The increase in digital data presents both challenges and opportunities. However, with the vast volume 

and complexity of big data, traditional processing methods can be strained. Machine learning is a key solution 

that enables analysis and insight extraction from large datasets. The integration of machine learning and big 

data has evolved significantly, with cascade ensembles, particularly ensemble methods, showing promise. 

When designing cascade ensembles, it is crucial to balance the factors of high accuracy and lengthy training, 

especially with complex datasets and nonlinear techniques. However, with careful consideration and expertise, 

cascade ensembles can still achieve impressive accuracy. Additionally, partitioning datasets into subsets can 

limit machine learning algorithms' access to the entire dataset, potentially affecting the overall performance of 

the cascade model. This paper presents significant improvements to the SGD-based cascade ensemble by 

integrating a new training data partitioning algorithm and PCA at each level. The combined use of these 

methods enhances the ensemble's accuracy and reduces training time. The paper demonstrates through 

modeling that the cascade ensemble's performance metrics, including accuracy, training time, and 

generalization properties, are significantly improved compared to the baseline method. Future research will 

explore alternative methodologies, such as non-iterative artificial neural networks (successive geometric 

transformations model (SGTM) neural-like structure) and neural network-based variations of PCA, to enhance 

accuracy, reduce training time, and maintain generalization properties with confidence. Furthermore, the 

examination of the cascade ensemble's presentation as a polynomial scheme (when utilizing SGTM neural-like 

structure as a weak classifier for the cascade) is intended to accelerate inference time during application stages. 

These inquiries have the potential to improve the capabilities of cascade ensembles and broaden their 

applicability in real-world big data scenarios. 
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