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 This study proposes an approach to semantic segmentation of sidewalk 

images in rice fields using hybrid object detection and distance estimation, to 

enhance agricultural monitoring and analysis. The experimental process 

involved preparing the development environment, extracting feature vectors 

and annotations from images, and training the model using YOLOv8. 

Evaluation reveals consistent and accurate sidewalk detection with a 

confidence score of 0.9-1.0 across various environmental conditions. 

Confusion matrix and precision-recall analysis confirmed the robustness and 

accuracy of the model. These findings validate the effectiveness of the 

approach in detecting and measuring sidewalks with high precision, 

potentially improving agricultural monitoring. The novelty of this study lies 

in the utilization of the rice field sidewalk detection (RIFIS-D) algorithm as 

an integral part of a hybrid approach with YOLOv8. This hybridization 

enriches the model with additional capability to detect the distance between 

the sidewalk and the tractor, addressing specific needs in agricultural 

applications. This contribution is significant in the advancement of 

automatic navigation and monitoring technology in agriculture, enabling the 

implementation of more sophisticated and efficient systems in field 

operations.  
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1. INTRODUCTION 

Obstacle detection is an important element in autonomous robot navigation, with the complex  

trade-off between safety and mobility at the heart of the problem. The former ensures that the robot does not 

harm itself or the environment, including humans and animals. The latter is equally crucial, as it enables the 

robot to fully plan and execute paths, thus determining its ability to successfully complete tasks [1]. 

Additionally, obstacle detection needs to be updated rapidly, allowing the robot to react promptly to  

safety-critical information. This need is especially pronounced when transitioning from controlled indoor 

environments to more challenging outdoor settings, where safe navigation becomes paramount [2]‒[4].  

In this study, we focus on outdoor environments where robots must navigate various terrains, including 

roads, paths, grasslands, meadows, and forest trails. This setup presents particular challenges, as the 

https://creativecommons.org/licenses/by-sa/4.0/
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definition of obstacles varies depending on terrain type. Such considerations are pertinent to a range of robot 

applications, including forestry and agriculture [5]. 

Several researchers have conducted studies on object detection across various environments.  

These include obstacle detection [6], crack detection in tiled sidewalks [7], identification of accessibility 

problems on sidewalks [8], detection of furrows in corn fields [9], and identification of pathways in rice 

fields for agricultural vehicles [10]. These studies underscore the importance of real-time detection and 

adaptability to diverse environmental conditions. Terrain-adaptive obstacle detection integrates 3D-light 

detection and ranging (LiDAR) data with geometric and semantic terrain features to ensure reliable 

navigation of autonomous systems across different terrain types [11]. Real-time crack detection in tiled 

sidewalks utilizes unmanned aerial vehicle (UAV) imagery and YOLO-based methods, demonstrating 

excellent accuracy and adaptability to environmental factors such as shadows and rain. The PreSight system 

accelerates object detection by leveraging prior data collection, significantly reducing latency for real-time 

identification of accessibility issues on sidewalks. Neural network-based algorithms for corn field furrow 

detection offer high accuracy and versatility, overcoming challenges posed by color and texture similarities. 

While using LiDAR sensors presents an easy solution, various obstacles, particularly related to cost rather 

than the sensor itself, may arise [12]‒[16]. Thus, this research focuses on developing a rice field sidewalk 

detection (RIFIS-D) algorithm. The novelty of this research lies in employing a low-cost tool, such as a 

camera, for detection, as opposed to sensors with environmental mapping capabilities like LiDAR as shown 

in Figure 1. Given the usage of a camera as a sensor, an accurate detection algorithm becomes imperative. 

The proposed algorithm incorporates a hybrid technique combining YOLOv8 and RIFIS-D. 

 

 

 
 

Figure 1. Comparing the novelty of this research with previous studies helps to underscore its unique 

contributions to the field 

 

 

The main algorithm used in RIFIS-D Sidewalk detection is based on YOLOv8. YOLOv8, short for 

YOLOv8, is a deep learning algorithm employed for object detection. It is notable for its speed and accuracy, 

making it well-suited for real-time applications [17]‒[20]. Compared to other object detection algorithms, 

YOLOv8 offers several advantages, including high accuracy at rapid inference speeds, simultaneous 

detection of multiple objects, and seamless integration into various systems. These features render it a 

preferred choice over other algorithms for object detection tasks. However, as this algorithm cannot function 

in isolation, an additional algorithm in the form of RIFIS-D is necessary to detect the distance between the 

Sidewalk and the Tractor. The RIFIS-D algorithm involves reading an image using OpenCV, dividing it into 

chunks with a defined function, and preprocessing it with bilateral filtering and edge detection.  

Edge array generation identifies edges and divides them for processing. Lines are drawn based on calculated 

coordinates, connecting points in the edge array and extending from the bottom center of the image. The 

processed image is then displayed. This process enables efficient RIFIS-D in agricultural images, supporting 

tasks such as plowing fields with hand tractors. An overview of the concept of this research is provided in 

Figure 2. 
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Figure 2. The basic concept of the research 

 

 

2. METHOD 

2.1.  The process of generating the YOLOv8 model 

The generation of the YOLOv8 model begins with comprehensive data preparation. This involves 

collecting relevant images and videos from various sources and meticulously annotating them with accurate 

bounding boxes and class labels to facilitate supervised learning [21]. To increase dataset variability and 

robustness, data augmentation techniques such as rotation, flipping, and scaling are applied [22]. The 

annotated data is then converted into a suitable format, typically involving java script object notation (JSON) 

or extensible markup language (XML) files, and divided into training, validation, and test subsets to ensure 

the model's performance is accurately assessed. Preprocessing steps like normalizing and resizing images, 

along with efficient data loading pipelines, prepare the data for the training phase. Quality control measures 

are implemented to ensure the dataset is free from errors and inconsistencies [23]. During model training, the 

process starts with initializing the YOLOv8 model architecture, and defining its layers and parameters. An 

appropriate loss function, such as mean squared error for regression tasks or cross-entropy loss for 

classification, is selected to measure the model's performance. The choice of optimizer, such as Adam or 

stochastic gradient descent (SGD), is crucial for adjusting the model weights during training [24]. The 

training loop involves iterating over the training data, performing forward and backward passes, and updating 

the model parameters. Regular checkpointing saves the model's state, allowing training to resume from 

specific points if necessary. Model testing involves running the trained YOLOv8 model on the test dataset to 

generate predictions. Post-processing steps, such as non-maximum suppression, refine these predictions. 

Evaluation metrics include constructing a plotting precision and recall curves to assess the trade-off between 

precision and recall [25]. Once the YOLOv8 model is trained and tested, it is deployed for RIFIS-D. 

 

2.2.  The process of RIFIS-D 

The RIFIS-D process leverages the trained YOLOv8 model as its core component. Initially, dataset 

validation images are processed using the YOLOv8 model to ensure data quality and the model's detection 

accuracy. The trained model is then used to detect objects within the images provided by the rice field 

sidewalk (RIFIS) system. The RIFIS-D algorithm begins by reading the input image and, if necessary, 

dividing it into manageable chunks to enhance processing efficiency. Pre-processing steps are performed on 

the image chunks, such as normalization and noise reduction, followed by segmenting the image into 

different areas for focused analysis and drawing a center line to assist in spatial orientation. The final stage 

involves robot movement based on the detection results. The robot is commanded to move forward, turn left, 

or turn right depending on the presence and location of obstacles or targets detected by the model.  

The robot is instructed to stop when necessary, such as upon reaching the target or detecting an obstruction. 

This structured methodology ensures that the YOLOv8 model is effectively integrated into the RIFIS-D 

system, enabling accurate object detection and responsive robot movement. Figure 3 illustrates the detailed 

step-by-step process of the research flow conducted in this study. 

 



                ISSN: 2252-8938 

Int J Artif Intell, Vol. 14, No. 2, April 2025: 1507-1517 

1510 

 
 

Figure 3. Research flow and proposed hybrid algorithm 

 

 

2.3.  Data preparation 

The data used in this research is sourced from an open dataset available at [26]. This dataset 

comprises videos capturing farmers plowing their fields using a tractor, with three cameras positioned on the 

right, left, and front sides of the tractor. From this dataset, 866 frames were selected for use as training and 

testing datasets, based on specific observations. Subsequently, an annotation process was conducted using 

Roboflow [27]. The dataset images were segmented into three parts: the rice field area, sidewalk, and area 

outside the rice field. This segmentation resulted in six ground truths, serving as references for labeling 

images/annotations. Of the 866 frames/images selected, augmentation was performed using the color jitter 

technique, involving random adjustments to brightness, contrast, saturation, and hue values. This process 

yielded a total of 1732 images. Figure 4 illustrates ground truth region of interest (RoI) annotations for the 

dataset, showcasing various point configurations utilized to accurately delineate objects for YOLOv8 model 

training. Each subfigure represents a different number of annotation points, tailored to the complexity and 

shape of the object: Figure 4(a) six points for detailed contours, Figure 4(b) seven points for irregular shapes, 

Figure 4(c) five points for a balance between detail and simplicity, Figure 4(d) four points for rectangular 

objects, Figure 4(e) three points for simpler or triangular objects, and Figure 4(f) eight points for highly 

complex shapes. The legend as shown in Figure 4(g) provides a key for interpreting the symbols and color 

codes used in this annotation. 

Next, the annotation format is determined in JSON form, which includes a comprehensive structure 

for organizing image and annotation data. Each entry in the image list contains details about an image,  

such as the file name, height, width, and a list of annotations. Each annotation specifies a class ID, class 

name, and bounding box coordinates (in [x, y, width, height] format), representing the top-left corner and 

dimensions of the bounding box. Additionally, the JSON includes a 'sidewalk' category, defining different 

classes of objects with their respective IDs and names. This structured format ensures that all the information 

required for YOLOv8 model training is clearly organized, facilitating efficient data handling and model 

training. The dataset of 1,732 images were divided into three subsets to ensure training, validation, and 

testing of the YOLOv8 model. Specifically, 70% of the dataset (1,212 images) is allocated for training to 

provide the model with enough data to learn patterns and features. Another 15%, or 260 images, are set aside 

for validation, used during training to tune hyperparameters and monitor performance, thus helping to 

prevent overfitting through techniques like early stopping. The remaining 15%, also 260 images, are intended 

for testing, enabling an unbiased evaluation of the model's performance on unseen data. This division ensures 

that the model generalizes well and provides a reliable measure of accuracy and robustness. 
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(a) 

 

(b) 

 

(c) 

 

   
(d) 

 

(e) 

 

(f) 

 

 
(g) 

 
Figure 4. Ground truth for dataset annotations (a) six points, (b) seven points, (c) five points, (d) four points, 

(e) three points, (f) eight points, (g) legend 

 
 

3. RESULTS AND DISCUSSION 

This research proposes an approach to perform semantic segmentation on images of sidewalks in 

rice fields using the YOLOv8 algorithm. First, the steps for preparing the development environment are 

explained, including the installation of libraries such as 'supervisely' and 'ultralytics', as well as the utilization 

of Google Colab and Google Drive to store the dataset. Next, the process of extracting information from the 

dataset in the form of images and annotations is carried out by reading JSON data and processing each image 

along with its annotations. Subsequently, segmentation information is written into a text file based on the 

annotations associated with each image. Following data preparation, the YOLOv8 model is trained for 

semantic segmentation, utilizing parameters such as a previously prepared model saved in 'yolov8s-seg.pt', 

data configuration stored in a .yaml file, ten epochs, and an image size of 640×640 pixels. 

At the evaluation stage, a review of the training results was conducted, including an analysis of the 

resulting segmentation images, confusion matrix, and precision-recall metrics. Figure 5 presents the 

outcomes of sidewalk detection in rice fields using the YOLOv8 algorithm, where each box represents a 

frame from the video or a set of processed images. Detected sidewalk areas are highlighted in pink and 

labeled as 'sidewalk' along with a detection confidence score. Sidewalk detection received a confidence score 

ranging from approximately 0.9 to 1.0, indicating a high level of confidence in the algorithm's performance. 

Despite variations in angles and lighting conditions across the images, the sidewalk detection remained 

consistent, demonstrating the robustness of the YOLOv8 algorithm. Detection consistency is excellent, with 

the majority of frames achieving a confidence score of 1.0. This underscores the YOLOv8 algorithm's 

capability to accurately and consistently detect sidewalks across various image conditions, offering potential 

applications in agricultural analysis and land monitoring. 

Figure 6 consists of graphs illustrating the results from training the YOLOv8 model, offering a 

comprehensive depiction of the development of loss and performance metrics throughout the training 

process. The 'train/box_loss' graph exhibits a consistent decrease in bounding box prediction loss during each 

training epoch, with a reduction from 6.5 to approximately 2.5. Similarly, 'train/seg_loss' and 'train/cls_loss' 

display a steady decline in segmentation and classification prediction loss, with 'train/seg_loss' decreasing 

from around 4.5 to 1.5, and 'train/cls_loss' dropping from 4.0 to 1.2. The graphs 'metrics/precision(B)' and 

'metrics/recall(B)' demonstrate a notable increase in precision and recall for class 'B', with precision rising 

from about 0.5 to 0.9, and recall increasing from 0.4 to 0.8. Moreover, 'metrics/mAP50(B)' exhibits a 

significant enhancement in mean average precision (mAP) for the class, escalating from approximately 0.3 to 

0.7. Similar improvements are observed in class 'M', with precision, recall, and mAP50 showing consistent 

increases as the model is trained. The validation graphs, 'val/box_loss', 'val/seg_loss', 'val/cls_loss', and 

'val/dfl_loss', also demonstrate a consistent reduction in loss, with each reaching lower values compared to 
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the training graphs. Additionally, 'metrics/mAP50(M)' and 'metrics/mAP50-95(M)' display substantial 

increases in mAP for class 'M' throughout the training process, indicating enhanced precision and recall at 

various intersection over union (IoU) thresholds. Overall, these graphs provide a clear depiction of the 

model's progression in reducing loss and improving performance metrics during training. 

 

 

 
 

Figure 5. Sidewalk detection results using YOLOv8 

 

 

 
 

Figure 6. Collection of graphs of model training results using YOLOv8 

 

 

Utilizing the YOLOv8 model generated and saved in 'best.pt' format, a mask extraction process is 

initiated from the detected sidewalks. Initially, the pre-trained YOLOv8 model is loaded, followed by the 

execution of inference on the specified image files, yielding a list of segmentation results. Subsequently,  

the process iterates through each segmentation result, extracting the mask tensor and converting it into a 

NumPy array. For each mask, a corresponding Python imaging library (PIL) image object is instantiated, 

converting the pixel values to 'uint8' format and scaling them within the range [0, 255]. Eventually, the 

resulting mask image is saved as a '.jpg' file. This methodology ensures the accurate preservation of 
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segmentation masks extracted from the YOLOv8n-seg model as '.jpg' images, thereby facilitating the 

subsequent distance measurement process using the RIFIS-D algorithm approach. 

RIFIS-D is an algorithm proposed in this research based on input from previous sidewalk detections. 

To provide further clarification of this algorithm, several mathematical formulas are presented. The first 

formula describes the image processing process to detect edges and calculate a certain distance. Firstly, the 

original image, denoted as I, undergoes application of a bilateral filter to smooth the image, resulting in 𝐼𝑏𝑙𝑢𝑟 

as shown in (1). Subsequently, edge detection using the Canny method is performed on the blurred image, 

generating an edge map 𝐼𝑒𝑑𝑔𝑒 as presented in (2). Following this, in the vertical edge detection step, a vertical 

scan is conducted on the edge map with a step size 𝑆 to identify the lowest edge coordinate in each column, 

which is stored in 𝐸𝑎𝑟𝑟𝑎𝑦  according to (3). This array is then partitioned into three parts, denoted as 𝑠𝑙𝑐 in (4). 

The average coordinates 𝑎𝑣𝑔𝑥 and 𝑎𝑣𝑔𝑦 are calculated for each part, as outlined in (5), and the line distance 

is measured from the bottom center point of the image to the average point using the Euclidean formula, 

yielding 𝑙𝑙𝑖𝑛𝑒 in (6). Finally, lines are drawn between the detected pairs of edge points, as well as lines from 

the bottom of the image to each edge point, and the results are displayed in the final image. Details of each 

symbol can be found in Table 1. 

 

𝐼𝑏𝑙𝑢𝑟 = 𝑏𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙𝐹𝑖𝑙𝑡𝑒𝑟(𝐼, 𝑑 = 9, 𝑆𝑐 = 40, 𝑆𝑠 = 40) (1) 

 

𝐼𝑒𝑑𝑔𝑒 = 𝐶𝑎𝑛𝑛𝑦(𝐼𝑏𝑙𝑢𝑟 , 𝑡1 = 50, 𝑡2 = 100 (2) 

 

𝐸𝑎𝑟𝑟𝑎𝑦 = {(𝑗, 𝑖)|𝑖 ∈ [𝐻 − 𝑆], 𝐼𝑒𝑑𝑔𝑒(𝑖, 𝑗)} (3) 

 

𝑠𝑙𝑐 = {𝐸𝑎𝑟𝑟𝑎𝑦[𝑘: 𝑘 + 𝑛]|𝑘 ∈ [0, 𝑙𝑒𝑛𝑔𝑡ℎ(𝐸𝑎𝑟𝑟𝑎𝑦), 𝑛 =  
𝑙𝑒𝑛𝑔𝑡ℎ(𝐸𝑎𝑟𝑟𝑎𝑦)

3
]} (4) 

 

𝑎𝑣𝑔𝑥 =
∑ 𝑥𝑣𝑎𝑙𝑠

𝑙𝑒𝑛𝑔𝑡ℎ (𝑥𝑣𝑎𝑙𝑠)
, 𝑎𝑣𝑔𝑦 =

∑ 𝑦𝑣𝑎𝑙𝑠

𝑙𝑒𝑛𝑔𝑡ℎ (𝑦𝑣𝑎𝑙𝑠)
 (5) 

 

𝑙𝑙𝑖𝑛𝑒 = √(𝑎𝑣𝑔𝑥 −
𝑊

2
)

2
+ (𝑎𝑣𝑔𝑦 − 𝐻)

2
 (6) 

 

 

Table 1. Nomenclature 
Symbols Description Symbols Description 

𝐼 : Original image with dimensions H×W (height and width) 𝑠𝑙𝑐 : Slice of 𝐸𝑎𝑟𝑟𝑎𝑦 with size length 
𝑙𝑒𝑛𝑔𝑡ℎ(𝐸𝑎𝑟𝑟𝑎𝑦)

3
 

𝐼𝑏𝑙𝑢𝑟 : Image after application of bilateral filters 𝑥𝑣𝑎𝑙𝑠 : List of x coordinates of each slice 

𝐼𝑒𝑑𝑔𝑒 : Edge map resulting from edge detection (Canny method) 𝑦𝑣𝑎𝑙𝑠 : List of y coordinates of each slice 

𝑆 : Step size (Step Size), here S=5 𝑎𝑣𝑔𝑥 : Average x coordinate in one slice 

𝐻 : Image height reduced by 1 (height(I)−1) 𝑎𝑣𝑔𝑦 : Average y coordinate in one slice 

𝑊 : Image width reduced by 1 (width(I)−1) 

𝑙𝑙𝑖𝑛𝑒 : 

Length of the line measured from the bottom 

center point of the image to the average point 

in the slice 
𝐸𝑎𝑟𝑟𝑎𝑦 : Array storing the coordinates of the detected edge points 

𝑆𝑐 : Sigma color 𝑆𝑠 : Sigma space 

 

 

Figure 7 demonstrates the creation and testing process of the proposed algorithm through three 

testing stages. Figure 7(a) depicts the fundamental concept using an ideal image, which undergoes a sequence 

of operations including smoothing (blurring), edge detection, and distance calculation. Figure 7(b) assesses 

the algorithm's performance using indoor laboratory images, following the same stages of processing: 

original image, smoothing, edge detection, and distance calculation. Figure 7(c) evaluates the algorithm using 

real outdoor images, incorporating object detection using YOLOv8, followed by edge detection and distance 

calculation. These three parts collectively showcase the algorithm's capability to accurately process images 

from diverse conditions, enabling precise edge detection and distance calculation. 

Figure 8 illustrates the final results of the RIFIS-D algorithm, displaying the distance measurement 

between the center point of the bottom of the image and the detected sidewalk. The edge of the sidewalk, 

marked in red, is detected in the image. The algorithm identifies three main points on the sidewalk, with each 

annotated with the distance from the bottom center point of the image. The blue line represents the distance 

measurement from the center point of the bottom of the image to the three edge points of the sidewalk.  

The numbers in the image, such as 353.36, 253.02, and 372.03, denote the Euclidean distance (in pixels) 

from the bottom center point of the image to each detected edge point. These results underscore the RIFIS-D 

algorithm's ability to visually and accurately identify objects in images and measure their distances. 



                ISSN: 2252-8938 

Int J Artif Intell, Vol. 14, No. 2, April 2025: 1507-1517 

1514 

Original images Blur (smoothing) Edge detection Distance calculation 

    
(a) 

 
Original images Blur (smoothing) Edge detection Distance calculation 

    
(b) 

 
Original images YOLOv8 Edge detection Distance calculation 

    
(c) 

 
Figure 7. Creation and testing of proposed algorithm; (a) basic concept of using ideal images, (b) algorithm 

testing using indoor laboratory images, and (c) algorithm testing using original images and detection results 

by YOLOv8 

 

 

 
 

Figure 8. The final result of the RIFIS-D algorithm displays the results of measuring the distance between the 

center point of the bottom of the image and the detected sidewalk 

 

 
Figure 9 shows the sidewalk detection process using YOLOv8 as well as the mask extraction and 

distance measurement steps. In Figure 9(a), the results of sidewalk detection are shown in two different 

images with YOLOv8, where the areas detected as sidewalks are colored red with confidence levels of  

0.92 and 0.95 respectively. The next step is mask extraction, as seen in Figure 9(b), where the detected 

sidewalk area is represented in binary form (black and white), with white indicating the sidewalk area.  

The next process is the distance measurement shown in Figure 9(c), where the vertical green lines and blue 

lines indicate the distance measurement points on the mask, with distance values listed at several points. This 

process illustrates how YOLOv8 can be used to detect objects accurately and how the detection results can be 

further analyzed for specific purposes such as measuring the distance between points in the detected area. 
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(a) (b) (c) 

 

Figure 9. Experimental results; (a) sidewalk detection results using Yolov8, (b) mask extraction, and  

(c) distance measurement algorithm 

 

 

4. CONCLUSION 

This research describes in detail a new approach for semantic segmentation of sidewalks in rice 

fields using the YOLOv8 algorithm enriched with the RIFIS-D algorithm. Through a series of experimental 

steps including development environment preparation, data extraction, model training, evaluation, and 

analysis, this research succeeded in producing significant findings. The evaluation results show that the 

proposed model is able to detect and measure sidewalks with high precision, even in a variety of different 

environmental conditions. It was found that this hybrid approach has consistent robustness and accuracy, and 

has great potential to improve the efficiency and effectiveness of agricultural monitoring. Thus, this research 

effectively fills the knowledge gap in the domain of automated navigation and monitoring in agriculture, 

making a significant contribution to scientific and technological progress in this field. For the future, 

experimental suggestions include further trials to evaluate the reliability and adaptability of this model in a 

wider range of environmental scenarios and agricultural applications, while continuing to develop the 

integration of this technology into more integrated and automated agricultural systems. Thus, this conclusion 

reflects the detailed findings of the report as well as providing insight into future research directions 

regarding direct implementation of this algorithm on tractors. 
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