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 Face recognition systems remain challenged by variable lighting conditions. 

While zero-reference deep curve estimation (Zero-DCE) effectively 

enhances low-light images, it frequently induces overexposure in normal- 

and high-brightness scenarios. This study introduces modified Zero-DCE 

combined with three established enhancement techniques: contrast stretching 

(CS), contrast limited adaptive histogram equalization (CLAHE), and 

brightness preserving dynamic histogram equalization (BPDHE). 

Evaluations employed the extended Yale face database B and face 

recognition technology (FERET) datasets, with 10 representative samples 

assessed using the blind/referenceless image spatial quality evaluator 

(BRISQUE) metric. Modified Zero-DCE with BPDHE produced optimal 

enhancement quality, achieving a mean BRISQUE score of 16.018. On the 

extended Yale face database B, visual geometry group 16 (VGG16) 

integrated with modified Zero-DCE and CLAHE attained 83.65% 

recognition accuracy, representing a 6.08-percentage-point improvement 

over conventional Zero-DCE. For the 200-subject FERET subset, residual 

network 50 (ResNet50) with modified Zero-DCE and CLAHE achieved 

67.41% accuracy. Notably, standard Zero-DCE with CLAHE demonstrated 

superior robustness in extremely low-light conditions, highlighting the 

illumination-dependent performance characteristics of these enhancement 

approaches. 
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1. INTRODUCTION 

Face recognition is crucial for identifying and verifying facial claims [1]. However, face recognition 

systems face challenges due to dynamic environments, particularly dynamic lighting and low-light scenarios. 

These affect the facial features, reducing accuracy and increasing misidentification [2], [3]. Addressing these 

challenges requires innovative approaches to enhance image quality before recognition, emphasizing the 

need for effective preprocessing methods. 

One promising approach, zero-reference deep curve estimation (Zero-DCE) [4], has proven 

effective in enhancing the contrast quality of low-light images. Zero-DCE is lightweight and computationally 

efficient, making it suitable for real-time applications [5]. However, its limitations such as overexposure in 

normal or high-brightness images highlight the need for modifications to improve adaptability across broader 
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lighting conditions [6]. Overexposure can lead to loss of facial features, decreasing face recognition accuracy 

or causing misidentification [7], [8]. Previous studies have proposed various enhancements to Zero-DCE, 

such as Zero-DCE++ [5] and Zero-DCE Tiny [9], but these modifications often fall short of significantly 

improving image quality. These limitations underscore the need for alternative approaches to balance 

efficiency and performance. 

This study proposes modified Zero-DCE, designed to overcome these shortcomings through 

architectural changes and integration with traditional contrast enhancement methods: contrast stretching (CS) 

[10], contrast limited adaptive histogram equalization (CLAHE) [11], and brightness preserving dynamic 

histogram equalization (BPDHE) [12]. These traditional methods have been widely used in domains like 

medical imaging and facial recognition due to their adaptability to varying brightness levels. By combining 

the strengths of both traditional and deep learning-based methods, we aim to address dynamic lighting 

challenges more effectively. 

To evaluate the proposed method, we employ two complementary metrics: the blind/referenceless 

image spatial quality evaluator (BRISQUE) [13] and classification accuracy. BRISQUE measures perceptual 

quality without requiring a reference image, making it ideal for assessing contrast enhancement effects. 

Classification accuracy directly evaluates the performance of face recognition models (visual geometry group 

16 (VGG16) [14] and residual network 50 (ResNet50) [15]) preprocessed with our methods. These metrics 

comprehensively understand the enhancements' impact on image quality and recognition accuracy. 

The datasets used in this study are the extended Yale face database B [16] and face recognition 

technology (FERET) [17], [18], chosen for their diverse lighting conditions and subject variability. The 

extended Yale face database B includes images captured under controlled lighting variations, while FERET 

offers a wide range of poses, expressions, and subject demographics. The inclusion of the low-light dataset 

(LOL) [19] or training modified Zero-DCE ensures the model is optimized for low-light conditions, aligning 

with the study's objective to address lighting challenges comprehensively. 

This study bridges Zero-DCE's adaptability gap in dynamic lighting by combining modified  

Zero-DCE with traditional enhancement methods, improving both contrast quality and recognition accuracy. 

The approach enhances reliability for real-world applications like surveillance and mobile authentication. 

Results demonstrate modified Zero-DCE's potential to advance face recognition adoption, underscoring 

contrast enhancement's critical role in optimizing deep learning models. 

 

 

2. LITERATURE REVIEW 

Research on facial recognition explores various methodologies. A common approach involves 

convolutional neural networks (CNN) with pretrained models like VGG16 and ResNet50 [20], [21]. When 

tested on the extended Yale face database B, VGG16 and ResNet50 achieved 46.64 and 46.73% accuracy, 

respectively [20]. Another study reported higher accuracies of 70.78 and 64.87% [21]. Despite 

improvements, these models struggle with brightness variations, requiring additional enhancements. 

Zero-DCE improves contrast in low-light images [4]. Zero-DCE is lightweight, fast, and superior in 

non-uniform lighting conditions and low-lighting cases [5]. Li et al. [22] used Zero-DCE for drowsiness 

detection, increasing accuracy from 73.56 to 86.75%. Zhou [23] applied it for blink detection, improving 

accuracy from 58.80 to 76.50% (right eye) and 70.60 to 94.10% (left eye). Guo et al. [4] found Zero-DCE 

nearly matched RetinexNet in precision-recall but outperformed other methods like low-light image 

enhancement (LIME) and EnlightenGAN. Wei et al. [6] modified Zero-DCE to operate in the hue, saturation, 

and value (HSV) color space, achieving the highest peak signal-to-noise ratio (PSNR) of 16.75 dB and lowest 

mean absolute error (MAE) of 98.78, outperforming EnlightenGAN and RetinexNet. However, variants like 

Zero-DCE++ [5] and Zero-DCE Tiny [9] showed minimal improvement. More advanced modifications, 

including zero-reference residual attention deep curve estimation (Zero-RADCE) [24], zero-reference low-

light image enhancement with intrinsic noise reduction (Zero-LEINR) [25], and Bézier curve estimation 

(BézierCE) [26], enhance contrast and reduce noise. 

Traditional contrast enhancement techniques, such as CLAHE, have also improved face recognition. 

Without enhancement, CNN achieved 97.2% accuracy, but with enhancements, accuracy rose to 99.8% [27]. 

Similar improvements were noted with CS and histogram equalization on facial emotion recognition (FER) 

datasets [28]. Other studies applied CS to magnetic resonance imaging (MRI) images [29], CLAHE to facial 

skin images [30], and BPDHE to X-ray images [31]. When applied to particular research objects, the CS, 

CLAHE, and BPDHE methods are the superior contrast quality enhancement methods. However, further 

research is needed to determine which method is suitable for overcoming the weaknesses of the Zero-DCE 

method on facial images with brightness problems. 

This study modifies Zero-DCE to create modified Zero-DCE and evaluates CS, CLAHE, and 

BPDHE combined with Zero-DCE for face recognition using VGG16 and ResNet50. Methods are compared 
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using BRISQUE [13] for contrast quality and classification accuracy. The best enhancement method has the 

lowest BRISQUE, and the best model achieves the highest accuracy. 

 

 

3. METHOD 

This section describes the dataset, methodology, and key modifications to Zero-DCE for LIME.  

It introduces the original Zero-DCE, the proposed modified Zero-DCE, and traditional contrast enhancement 

techniques. Finally, it discusses the face detection and deep learning models used for evaluation. 
 

3.1.  Datasets 

This study utilizes the extended Yale face database B [16] and FERET [17], [18] for face 

recognition and the LOL dataset [19] to train modified Zero-DCE. The extended Yale face database B, with 

2,414 images of 38 subjects, was chosen for its controlled lighting variations, while the FERET dataset, 

containing 14,051 images of 1,204 subjects, provides diverse poses and expressions. The LOL dataset was 

selected to maintain consistency with the original Zero-DCE training setup, ensuring a fair comparison. 

Some FERET classes contain only two images, making dataset splitting impractical. To address this, 

images were duplicated to create ten per class, increasing the dataset size to 14,291 images. This duplication 

differs from augmentation, as duplicated images remain unchanged but can still undergo augmentation during 

training. Face detection using multi-task cascaded convolutional networks (MTCNN) [32] was applied to 

FERET images before training the face recognition model. Samples of the extended Yale face database B and 

FERET datasets are shown in Figures 1 and 2.  
 

 

     
 

Figure 1. The extended Yale face database B samples [16] 
 

 

     
 

Figure 2. FERET samples [17], [18] 
 

 

The LOL dataset consists of 500 low-bright and 500 normal-bright images. Since Zero-DCE and 

modified Zero-DCE rely on deep curve estimation network (DCE-Net), an unsupervised learning method, 

training does not require standard brightness images. Modified Zero-DCE was trained using 485  

low-brightness images for training and validation. Figure 3 shows a sample of the low-brightness LOL dataset. 
 

 

   
 

Figure 3. LOL samples [19] 
 

 

3.2.  Method design 

This research method consists of three stages: modifying Zero-DCE, preprocessing, and face 

recognition modeling. In modifying Zero-DCE, we remove a loss function with minimal impact and adjust 

the DCE-Net architecture by modifying hyperparameters or layers, inspired by prior studies [33] showing 
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that certain loss functions contribute little to contrast enhancement. Figure 4 illustrates this process, which 

involves selecting an approach, removing a loss function, modifying the DCE-Net, and evaluating results to 

finalize the modified Zero-DCE. 

 

 

 
 

Figure 4. Modifying Zero-DCE stage 

 

 

The preprocessing stage involves applying Zero-DCE or modified Zero-DCE, converting images to 

grayscale, and optionally enhancing contrast using CS, CLAHE, or BPDHE, resulting in six dataset 

variations. BRISQUE scores are calculated on a subset of 10 images from the extended Yale face database B 

and FERET datasets to assess enhancement effectiveness, followed by evaluations on the full datasets for 

validation. Figure 5 outlines this preprocessing stage before moving to face recognition modeling. 

In the face recognition modeling stage, the datasets are split into 60% training, 20% validation, and 

20% test data, with augmentation techniques applied. VGG16 and ResNet50 models are trained for  

20 epochs using Adam optimization with a 0.001 learning rate and decay rates of 0.9 and 0.999. Figure 6 

details this stage, where models are tested for accuracy to determine the best approach for handling 

brightness variations in face recognition. 

 

 

 
 

Figure 5. Preprocessing stage 

 

 

 
 

Figure 6. Face recognition modeling stage 

 

 

To evaluate the impact of our modifications, we use BRISQUE for image quality assessment and 

classification accuracy for model performance. BRISQUE, a no-reference metric, is essential for datasets like 

the extended Yale face database B and FERET, which lack normal illumination references. By combining 

perceptual quality assessment with classification accuracy, we ensure that the proposed modifications 

enhance both image quality and face recognition performance. 
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3.3.  Zero-reference deep curve estimation 

Zero-DCE [4] enhances low-light image contrast by estimating high-order curves that adjust  

pixel-wise dynamic range, improving brightness while preserving contrast. Unlike CNN- or generative 

adversarial network (GAN)-based methods, it operates without paired or unpaired training data. The 

enhancement is driven by the light-enhancement curve (LE-curve), based on a quadratic function, within the 

DCE-Net, as shown in Figure 7. 

 

 

 
 

Figure 7. DCE-Net architecture [4] 
 

 

DCE-Net consists of seven convolution layers with symmetrical skip connections. The first six 

layers use 32 convolution kernels (3×3, stride 1) with ReLU activation, while the final layer has 24 kernels 

(3×3, stride 1) with Tanh activation, generating 24 curve parameter maps for eight iterations (three per RGB 

channel). As an unsupervised method, Zero-DCE relies on four loss functions: spatial consistency, exposure 

control, color constancy, and illumination smoothness. 

Spatial consistency loss is shown in (1). 
 

𝐿𝑠𝑝𝑎 =
1

𝐾
∑ ∑ (|𝑌𝑖 − 𝑌𝑗| − |𝐼𝑖 − 𝐼𝑗|)

2
𝑗∈𝛺(𝑖)

𝐾
𝑖=1  (1) 

 

Where K is the number of local regions, Ω(i) is the pixel adjacent to the center pixel, Y and I are the average 

intensity values of the local regions in the upscaled and original image, respectively. Exposure control loss is 

shown in (2). 
 

𝐿𝑒𝑥𝑝 =
1

𝑀
∑ |𝑌𝑘 − 𝐸|𝑀

𝑘=1  (2) 

 

Where 𝑀 is the number of local non-overlapping regions, and 𝐸 is the good exposure level (default value is 

0.6). Color constancy loss is shown in (3). 
 

𝐿𝑐𝑜𝑙 = ∑ (𝐽𝑝 − 𝐽𝑞)2, 𝜀 = {(𝑅, 𝐺), (𝑅, 𝐵), (𝐺, 𝐵)}∀(𝑝,𝑞)∈𝜀  (3) 
 

Where 𝐽𝑝 is the average intensity value of channel 𝑝 of the enhanced image, 𝐽𝑞 is the average intensity value 

of channel 𝑞, (𝑝, 𝑞) is the channel pair, 𝑅 is red channel, 𝐺 is green channel, and 𝐵 is blue channel. 

Illumination smoothness loss is shown in (4). 
 

𝐿𝑡𝑣𝐴
=

1

𝑁
∑ ∑ (|𝛻𝑥𝐴𝑛

𝑐 + 𝛻𝑦𝐴𝑛
𝑐 |)

2
, 𝜉 = {𝑅, 𝐺, 𝐵}𝑐∈𝜉

𝑁
𝑛=1  (4) 

 

Where 𝐴𝑛
𝑐  is the pixel-wise alpha map for one of 𝑅, 𝐺 or 𝐵 channel at the 𝑛-th iteration, 𝑁 is the number of 

iterations, ∇𝑥 and ∇𝑦  are the horizontal and vertical gradient operations. These gradients measure how the 

intensity in 𝐴𝑛
𝑐  changes across adjacent pixels. The total loss of the four loss functions is described in (5). 

 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑠𝑝𝑎 + 𝐿𝑒𝑥𝑝 + 𝑊𝑐𝑜𝑙𝐿𝑐𝑜𝑙 + 𝑊𝑡𝑣𝐴
𝐿𝑡𝑣𝐴  (5) 

 

Where 𝑊𝑐𝑜𝑙  and 𝑊𝑡𝑣𝐴
 are loss weights. 

 

3.4.  Modified Zero-reference deep curve estimation 

A modification experiment was conducted by removing one loss function from the four loss 

functions in Zero-DCE. The results of removing one loss function were tested on an image from the extended 
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Yale face database B. The results of the loss function removal experiments are shown in Figure 8. Figure 8 

illustrates the impact of removing each loss function. Figure 8(a) is the input image, while Figure 8(b) shows 

Zero-DCE with all losses. Removing spatial consistency loss (𝐿𝑠𝑝𝑎) (Figure 8(c)) leads to overexposure, 

while removing exposure control loss (𝐿𝑒𝑥𝑝) (Figure 8(d)), affects luminance control. Figure 8(e) shows color 

constancy loss (𝐿𝑐𝑜𝑙) removal, reducing color fidelity, and Figure 8(f) illustrates how removing illumination 

smoothness loss (𝐿𝑡𝑣𝐴
), introduces artifacts. While all losses are important, 𝐿𝑠𝑝𝑎 had minimal impact on 

brightness and facial details. Removing it in modified Zero-DCE improved efficiency without sacrificing 

contrast, useful for real-time face recognition. The formula for total loss used in modified Zero-DCE, initially 

shown in (5), now changes to (6). 

 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑒𝑥𝑝 + 𝑊𝑐𝑜𝑙𝐿𝑐𝑜𝑙 + 𝑊𝑡𝑣𝐴
𝐿𝑡𝑣𝐴

 (6) 

 

 

      
(a) (b) (c) (d) (e) (f) 

 

Figure 8. The results of the loss function removal experiments of (a) input image, (b) Zero-DCE,  

(c) without 𝐿𝑠𝑝𝑎, (d) without 𝐿exp, (e) without 𝐿col, and (f) without 𝐿tvA
 

 

 

The architecture of modified Zero-DCE (modified DCE-Net) is not too different from that of  

Zero-DCE (DCE-Net). The model uses fewer filters (8 instead of 32) in the convolution layer. It also 

includes an extra pooling layer (MaxPool2D) after each concatenation and dropout layer. This pooling layer 

is inspired by the spatial attention mechanism in Zero-RADCE [24]. Figure 9 illustrates the architecture of 

modified Zero-DCE, i.e., modified DCE-Net. 

 

 

 
 

Figure 9. Modified Zero-DCE architecture 

 

 

In Figure 9, the gray block is the convolution layer, the red block is the dropout layer, and the blue 

block is the pooling layer. Modified DCE-Net has 7,776 parameters, significantly fewer than DCE-Net’s 

79,416, due to reduced filters per layer. This makes it lighter and faster for image enhancement. Since 𝐿𝑠𝑝𝑎 

does not have a significant effect on the Zero-DCE based on Figure 10, an attempt was made to eliminate 

𝐿𝑠𝑝𝑎 in the modified Zero-DCE. The results of the Zero-DCE and modified Zero-DCE comparison stage with 

and without 𝐿𝑠𝑝𝑎  are shown in Figure 10. 

Figure 10 compares Zero-DCE and modified Zero-DCE with and without 𝐿𝑠𝑝𝑎. As a baseline, 

Figure 10(a) shows the input image used for enhancement. Figures 10(b) and 10(d) show minimal differences 

when 𝐿𝑠𝑝𝑎 is present. However, Figures 10(c) and 10(e) reveal that removing 𝐿𝑠𝑝𝑎 in modified Zero-DCE 

effectively reduces overexposure, contradicting 𝐿𝑠𝑝𝑎’s intended function in Zero-DCE. This highlights the 

need for further analysis of 𝐿𝑠𝑝𝑎 in modified Zero-DCE. Since modified Zero-DCE has been found, it can be 

used for face image preprocessing along with Zero-DCE, CS, CLAHE, and BPDHE, then combined and 

evaluated using BRISQUE and ended with a comparative study. 
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(a) (b) (c) (d) (e) 

 

Figure 10. Comparison of Zero-DCE and modified Zero-DCE with and without 𝐿𝑠𝑝𝑎  of (a) input image, (b) 

Zero-DCE, (c) Zero-DCE without 𝐿𝑠𝑝𝑎, (d) Modified Zero-DCE with 𝐿spa, and (e) Modified Zero-DCE 

without 𝐿spa 

 

 

3.5.  Traditional contrast quality enhancement methods 

This study used three traditional contrast enhancement methods: CS, CLAHE, and BPDHE. CS 

stretches image contrast by expanding intensity values between the minimum and maximum pixel limits [28], 

typically for 8-bit images (0-255). CLAHE reduces noise and artifacts by dividing the image into sub-blocks, 

computing histograms, and applying a transformation with a clip boundary parameter [34]. The modified 

histograms are interpolated to adjust pixel intensity. BPDHE, introduced by Ibrahim and Kong in 2007 [12], 

normalizes contrast while preserving average intensity. It follows five steps: histogram smoothing, detecting 

local maxima, mapping partitions, equalizing partitions, and normalizing contrast. BPDHE requires no 

parameter tuning, introduces minimal artifacts, and is suitable for real-time systems. 

 

3.6.  Face detection 

The FERET dataset contains non-face characteristics, requiring face detection before training a 

recognition model. MTCNN [32] was used for this task, as it accurately detects faces and five key landmarks. 

This step ensures high-quality face localization before applying VGG16 and ResNet50, improving 

recognition accuracy under varied lighting. However, some images were not detected, reducing the dataset 

from 14,291 to 13,783 images. Figure 11 shows the face detection result for the first subject. 

 

 

 
 

Figure 11. Face detection results on the first subject of the FERET dataset 

 

 

3.7.  Deep learning models 

The deep learning models used in this study are VGG16 and ResNet50. VGG16 [14] is a CNN with 

13 convolution layers, five pooling layers, and three fully connected layers, trained on ImageNet with 

224×224 RGB images. It uses five max-pooling layers and ends with a SoftMax activation function. 

ResNet50 [15] is a deeper CNN with 50 convolution layers, offering lower error rates and faster 

classification than VGG16. Both models are widely used in facial recognition, with VGG16 excelling in 

accuracy and ResNet50 benefiting from residual connections for efficiency. This provides a balanced 

comparison of contrast enhancement effects on different network depths. 

 

 

4. RESULTS AND DISCUSSION 

This section evaluates the modified Zero-DCE method, analyzing its behavior and characteristics.  

It discusses the results of applying modified Zero-DCE and other methods for image enhancement. Finally,  

it presents the face recognition modeling results to assess the method’s impact. 

 

4.1.  Modified Zero-reference deep curve estimation analysis 

Ten images were randomly selected, five from the extended Yale face database B and five from 

FERET. Zero-DCE and modified Zero-DCE were applied, with results shown in Figures 12 and 13, where 

modified Zero-DCE produced clearer images. The analysis examines 𝐿𝑠𝑝𝑎’s contradictory effects, 

considering pooling, dropout, reduced filters (8 vs. 32), and 𝐿𝑠𝑝𝑎 removal, with results summarized in  

Table 1, where "W/o" stands for "without."  
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Figure 12. Zero-DCE results 
 
 

  
 

Figure 13. Modified Zero-DCE results 

 

 

Table 1 shows that while both the pooling layer and 𝐿𝑠𝑝𝑎 utilize spatial characteristics, the number 

of convolution filters has the most significant impact on Zero-DCE results. In modified Zero-DCE, pooling is 

more effective than 𝐿𝑠𝑝𝑎 in reducing overexposure, allowing luminance adjustment without equalizing local 

regions. This modification improves image clarity and reduces computational load. 

 

 

Table 1. Observation results based on the number of filters 
Observation Pooling + w/o 𝐿𝑠𝑝𝑎 Pooling + w/o 𝐿𝑠𝑝𝑎 W/o pooling + 𝐿𝑠𝑝𝑎 W/o pooling + w/o 𝐿𝑠𝑝𝑎 

Using 8 filters 

    

Using 32 filters 

    

 

 

The second focus of analysis is the effect of the dropout layer in modified Zero-DCE, where the model 

uses 8 filters, pooling, and no 𝐿𝑠𝑝𝑎. The dropout layer helps reduce overfitting by randomly setting some 

element values to zero in feature mapping, affecting the loss function calculation. Table 2 shows that while 

dropout slows total loss convergence, it accelerates convergence in specific loss components, such as 𝐿𝑡𝑣𝐴
. The 

results of the modified Zero-DCE output image with and without the dropout layer can be seen in Figure 14. 

 

 

Table 2. Observation results based on the number of filters 
Dropou
t layers 

𝐿𝑡𝑜𝑡𝑎𝑙 𝐿𝑒𝑥𝑝 𝐿𝑐𝑜𝑙 𝐿𝑡𝑣𝐴
 

Exist 

    
Not 

Exist 
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Figure 14 compares the output of modified Zero-DCE with and without the dropout layer.  

Figure 14(a) shows the result with dropout, while Figure 14(b) shows the result without dropout. The dropout 

layer significantly impacts the model by setting some element values to zero in feature mapping, preventing 

over-brightening and enhancing image quality. The presence of dropout amplifies the absence of 𝐿𝑠𝑝𝑎, affects 

the behavior of convolution filters, and improves the effectiveness of pooling. These modifications 

collectively contribute to reducing overexposure and enhancing luminance adjustment. As a result, modified 

Zero-DCE achieves a more balanced image enhancement process. Processing speed tests were conducted on 

2,414 images from the extended Yale face database B using an Intel Core i5-8250U laptop without a GPU. 

Table 3 shows that modified Zero-DCE processes images four times faster than Zero-DCE. This result 

highlights the efficiency of the proposed method in real-world applications. The next step is to combine this 

approach with traditional contrast enhancement methods and perform a quantitative evaluation using 

BRISQUE. The green-colored cells indicate the best. 

 

 

  
(a) (b) 

 

Figure 14. Comparison of modified Zero-DCE of (a) with dropout layer and (b) without dropout layer 

 

 

Table 3. Time comparison results of Zero-DCE and modified Zero-DCE 
Methods Total time (s) Average time (s) 

Zero-DCE 767.3902 0.3179 
Modified Zero-DCE 206.8746 0.0857 

 

 

4.2.  Preprocessing stage results 

The combination process was first tested on ten selected images using Zero-DCE and modified 

Zero-DCE with CS, CLAHE, and BPDHE. Evaluation was conducted with and without traditional contrast 

enhancement methods, and the results for the first sample are shown in Table 4, with the best results 

highlighted in green. To confirm robustness, all images from the extended Yale face database B and FERET 

datasets were tested. 

 

 

Table 4. BRISQUE evaluation results of first sample 

Input 
Zero-
DCE 

Zero-DCE + 
CS 

Zero-DCE + 
CLAHE 

Zero-DCE + 
BPDHE 

Modified 
Zero-DCE 

Modified 

Zero-DCE + 

CS 

Modified 

Zero-DCE + 

CLAHE 

Modified 

Zero-DCE + 

BPDHE 

         
Score 57.8683 48.4495 43.6969 37.5207 37.5892 35.5319 32.8356 31.7629 

 

 

The average BRISQUE value was calculated for each image and contrast enhancement method, with 

and without combination. Table 5 presents the average BRISQUE scores for the ten sample images, helping 

to determine the most effective approach for minimizing scores while preserving facial details. From the 

results, modified Zero-DCE+BPDHE achieved the best performance with an average BRISQUE score of 

16.0177, while BPDHE outperformed CS and CLAHE when applied to Zero-DCE. 

 

 

Table 5. Average BRISQUE evaluation results of 10 samples 
Methods W/o combination CS CLAHE BPDHE 

Zero-DCE 43.6404 36.6863 27.9842 23.7520 

Modified Zero-DCE 29.3021 26.5361 19.7596 16.0177 
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Without traditional contrast enhancement, both Zero-DCE and modified Zero-DCE yielded lower 

scores, demonstrating the effectiveness of conventional methods. The combination of these methods 

consistently improved BRISQUE scores compared to using them alone. Additionally, modified Zero-DCE 

exhibited superior processing efficiency and better contrast quality than Zero-DCE. The next step is 

calculating the average BRISQUE score for each image contrast enhancement method and dataset. 

Furthermore, the average BRISQUE score for the extended Yale face database B dataset can be seen in  

Table 6. The green-colored cell indicates the best. 

For the extended Yale face database B dataset, Table 6 shows that Zero-DCE combined with 

CLAHE achieved the best BRISQUE score of 18.1781. The use of CLAHE and BPDHE significantly 

improved results, particularly for LOL datasets. Modified Zero-DCE also performed well, enhancing 

outcomes compared to Zero-DCE alone. These findings confirm that traditional contrast methods are 

essential for improving BRISQUE scores. Table 7 presents the average BRISQUE scores for the FERET 

dataset. The green-colored cell indicates the best. 

 

 

Table 6. Average BRISQUE evaluation results of the extended Yale face database B 
Methods W/o combination CS CLAHE BPDHE 

Zero-DCE 30.8752 29.8683 18.1781 22.2609 

Modified Zero-DCE 28.1670 27.9141 22.2711 21.7172 

 

 

Table 7. Average BRISQUE evaluation results of FERET 
Methods W/o combination CS CLAHE BPDHE 

Zero-DCE 43.2518 18.5525 12.1491 9.3183 
Modified Zero-DCE 22.0140 10.3947 10.5732 7.2470 

 

 

Table 7 presents the average BRISQUE scores for the FERET dataset, where modified  

Zero-DCE+BPDHE achieved the best result with an average BRISQUE score of 7.2470. The effectiveness of 

BPDHE in improving both Zero-DCE and modified Zero-DCE is evident, as it consistently produced scores 

under 10. Modified Zero-DCE performed well on the FERET dataset, which has normal or slightly dark 

brightness levels, whereas Zero-DCE often caused overexposure. As shown in Tables 5 and 6, combining 

traditional contrast enhancement methods yields better BRISQUE scores than without combination. 

From Tables 5 to 7, Zero-DCE consistently had the highest BRISQUE scores, indicating that 

modifications and contrast enhancement methods significantly improved image quality. Modified Zero-DCE, 

even without combination, outperformed Zero-DCE. Given the wide intensity range of dataset images, 

CLAHE and BPDHE yielded better improvements than CS. The next step is to divide the data into training, 

validation, and test sets for the face recognition model. 

 

4.3.  Face recognition modeling results 

The classifier and transfer learning architecture selection are illustrated in Figure 15, showcasing the 

best-performing models based on the experimental results. In this configuration, the final fully connected 

layer of VGG16/ResNet50 is removed. Feature extraction is performed from the last convolutional block, and 

the resulting features are then passed through a batch normalization layer. 

 

 

 
 

Figure 15. Transfer learning architecture 

 

 

The accuracy results of the face recognition model for the extended Yale face database B are shown 

in Table 8. The green-colored cell indicates the best-performing model based on accuracy metrics. This 

comparison highlights the impact of different contrast enhancement methods on recognition accuracy, 

demonstrating the effectiveness of modified Zero-DCE in improving facial feature clarity. 

Table 8 presents accuracy results. The best performance (83.65%) is achieved by VGG16+modified 

Zero-DCE+CLAHE, showing a 6.08% improvement over Zero-DCE alone. While Zero-DCE slightly 

outperforms modified Zero-DCE in extreme low-light cases, the latter combined with CLAHE significantly 

enhances accuracy. For ResNet50, Zero-DCE reduces accuracy, but modified Zero-DCE alone reaches 
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78.33%, highlighting its effectiveness in contrast enhancement. Compared to prior studies [20], [21], 

VGG16+modified Zero-DCE+CLAHE improves accuracy by up to 12.86%. Next, the FERET's face 

recognition model's accuracy results are shown in Table 9. The green-colored cell indicates the best. 

Table 9 shows ResNet50+modified Zero-DCE+CLAHE achieving 67.41%, surpassing 

ResNet50+CS by 0.34%. In VGG16, modified Zero-DCE alone outperforms other enhancement techniques, 

confirming its effectiveness in VGG16-based face recognition. However, it falls short of previous results 

[35], where support vector machines reached 72.70%. 

Among the face recognition models tested, BPDHE is ineffective as it causes pixelation and detail 

loss, particularly when combined with Zero-DCE. Its Gaussian filter smooths facial features but reduces 

clarity. In contrast, CS and CLAHE effectively preserve image details, leading to higher recognition 

accuracy. 

 

 

Table 8. Accuracy result of the extended Yale face database B face recognition model 
Methods W/o combination (%) CS (%) CLAHE (%) BPDHE (%) 

VGG16 68.06 77.95 74.71 78.14 

VGG16+Zero-DCE 73.00 76.01 77.57 74.71 

VGG16+modified Zero-DCE 72.43 73.38 83.65 76.62 

ResNet50 67.30 75.86 73.76 63.12 

ResNet50+Zero-DCE 64.64 71.40 59.51 58.17 
ResNet50+modified Zero-DCE 78.33 64.83 78.14 69.58 

 

 

Table 9. Accuracy result of FERET face recognition model 
Methods W/o combination (%) CS (%) CLAHE (%) BPDHE (%) 

VGG16 59.48 56.37 52.24 54.14 

VGG16+Zero-DCE 59.14 53.10 53.97 51.38 
VGG16+modified Zero-DCE 61.72 57.76 56.89 55.00 

ResNet50 65.69 67.07 60.34 55.52 

ResNet50+Zero-DCE 46.38 52.07 49.31 40.34 

ResNet50+modified Zero-DCE 61.55 64.31 67.41 51.38 

 

 

5. CONCLUSION 

This study demonstrates that integrating Zero-DCE and modified Zero-DCE with traditional contrast 

enhancement methods, such as CS, CLAHE, BPDHE, improves both BRISQUE scores and face recognition 

accuracy. Modified Zero-DCE, optimized via reduced filters, added pooling and dropout layers, and removal 

of 𝐿𝑠𝑝𝑎, mitigates overexposure while achieving faster processing and greater noise robustness. Of the ten 

sample images, modified Zero-DCE with BPDHE achieved the highest BRISQUE score of 16.02, indicating 

superior image quality. In the extended Yale B dataset, it significantly enhanced extremely dark images with 

BRISQUE scores under 10, while in FERET, it outperformed Zero-DCE in normal or slightly dark 

conditions. The best models were VGG16 with modified Zero-DCE and CLAHE, achieving 83.65% 

accuracy on extended Yale B, and ResNet50 with the same enhancements, reaching 67.41% on FERET. 

However, BPDHE’s tendency to blur facial features limited its recognition performance. These results 

highlight the task-dependent efficacy of contrast enhancement combinations. Further research is needed to 

address Modified Zero-DCE’s limitations in extreme low-light scenarios, potentially through adaptive hybrid 

approaches. 
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