
IAES International Journal of Artificial Intelligence (IJ-AI) 

Vol. 14, No. 4, August 2025, pp. 2979~2990 

ISSN: 2252-8938, DOI: 10.11591/ijai.v14.i4.pp2979-2990      2979  

 

Journal homepage: http://ijai.iaescore.com 

Optimization control design and simulation of furnace-fired 

boiler exit pressure: leveraging disruptive technology 
 

 

Ganiyat Abiodun Salawu, Glen Bright 
Department of Mechanical Engineering, Faculty of Engineering, University of KwaZu-Lu Natal, Durban, South Africa 

 

 

Article Info  ABSTRACT 

Article history: 

Received Jul 11, 2024 

Revised Jun 18, 2025 

Accepted Jul 10, 2025 

 

 The efficient operation of furnace-fired drum boilers is critically dependent 

on the precise control of downstream exit pressure, especially in the 

presence of stochastic heat fluctuations. This paper presents a stochastic 

control approach for regulating the downstream exit pressure in a furnace-

fired boiler subject to random heat fluctuations. A stochastic model of the 

boiler dynamics is developed, incorporating heat transfer and combustion 

uncertainties. By leveraging disruptive technology, such as the model 

predictive control (MPC), strategies were designed to optimize the 

downstream exit pressure in real-time, and minimizing deviations from the 

set point. Simulation studies demonstrated the effectiveness of the proposed 

approach in maintaining a stable exit pressure despite random heat 

fluctuations. Results show significant improvements in boiler performance 

and efficiency compared to traditional proportional integral derivative (PID) 

control. The proposed stochastic control strategy offers a promising solution 

for reliable and efficient operation of furnace-fired boilers under uncertain 

conditions. 
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1. INTRODUCTION 

The advent of advanced furnace-fired boiler technologies has introduced transformative capabilities 

within the thermal power generation domain, particularly across industrial manufacturing environments  

[1], [2]. Leveraging state-of-the-art design methodologies, high-performance materials, and sophisticated 

automation frameworks, modern boiler systems now exhibit enhanced operational reliability and thermal 

efficiency [3]. The integration of high-efficiency burners, equipped with closed-loop control systems, 

facilitates precise modulation of combustion parameters, thereby optimizing heat release profiles and 

improving overall energy conversion efficiency [4], [5]. These innovations are further complemented by 

embedded real-time monitoring architectures and AI-driven predictive maintenance algorithms, which 

collectively reduce unscheduled downtimes, enable condition-based servicing, and extend system 

lifecycle [6]–[8]. Furnace-fired boilers are extensively deployed across thermal power stations and process 

industries, where they serve as primary sources of saturated or superheated steam for electricity generation, 

process heating, and thermochemical operations [9], [10]. Nonetheless, these systems remain susceptible to 

stochastic thermal perturbations arising from fuel quality inconsistencies, combustion instabilities, and 

dynamic variations in convective and radiative heat transfer rates. Such thermal disturbances can manifest as 

pressure instabilities at the downstream exit, adversely affecting system performance, operational safety, and 

thermal regulation [11], [12]. The downstream exit pressure is a critical parameter in boiler operation, as it 

https://creativecommons.org/licenses/by-sa/4.0/
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directly affects steam quality, turbine performance, and overall plant efficiency [13], [14]. The integration of 

disruptive technologies, such as machine learning algorithms, advanced sensors, and real-time data analytics, 

provides solutions to these fluctuations. Advanced sensors can effectively monitor the boiler conditions with 

a higher precision rate, while the implementation of machine learning algorithms assists in analyzing this 

data and further predicting and adjusting to potential disturbances [14], [15].  

The integration of real-time data analytics facilitates rapid, data-driven decision-making, enabling 

dynamic optimization of boiler operations and consistent regulation of steam quality. These capabilities 

significantly improve the operational efficiency, responsiveness, and safety margins of furnace-fired boiler 

systems, supporting more resilient and sustainable power generation and industrial applications [16]. A critical 

performance parameter in these systems is the downstream exit pressure, which must be maintained within 

optimal limits to ensure stable thermodynamic operation and efficient energy conversion. Given the presence of 

random disturbances stemming from combustion variability, thermal instabilities, and fluctuating heat transfer 

characteristics, conventional control methods may fall short in managing this uncertainty. Stochastic control 

techniques provide a robust framework for tackling these challenges by explicitly modeling system dynamics and 

disturbances as stochastic processes. This approach enables real-time optimization of downstream pressure 

regulation, ensuring adaptive control performance under uncertain and time-varying conditions. This research 

aims to advance development of intelligent stochastic control strategies specifically designed for furnace-fired 

boilers, with objective of enhancing system reliability, operational efficiency, and resilience to process variability. 

Maintaining a stable downstream exit pressure is essential to ensure reliable and efficient boiler 

operation. Stochastic control methods offer a promising approach to manage uncertainty and optimize system 

performance under random disturbances. By modelling the boiler dynamics and heat fluctuations as 

stochastic processes, stochastic control strategies can be designed to optimize the downstream exit pressure 

in real-time. This research aims to contribute to the development of advanced control strategies for  

furnace-fired boilers, enabling improved performance and efficiency in the face of uncertainty. 

 

 

2. LITERATURE REVIEW 

The operation and control of furnace-fired boilers play a pivotal role in various industrial sectors, 

primarily due to their influence on energy efficiency, operational safety, and regulatory compliance  

[10], [14]. Over time, control methodologies for these systems have evolved considerably from rudimentary 

manual interventions to fully automated, intelligent systems driven by advances in control theory and 

computational technology [15], [16]. Traditionally, proportional integral derivative (PID) controllers have 

been the cornerstone of boiler control strategies, valued for their simplicity, ease of implementation, and 

effectiveness in maintaining setpoints under relatively stable conditions. However, the inherent  

non-linearities and stochastic disturbances present in furnace-fired boiler operations often challenge the 

robustness and adaptability of PID-based control frameworks [17]. Empirical studies such as those by  

[17], [18] reveal that while PID controllers are competent in managing steady-state operations, their 

responsiveness diminishes significantly in the presence of rapid dynamic variations and uncertainty.  

To overcome these limitations, contemporary research has shifted toward advanced control paradigms 

such as model predictive control (MPC). MPC is particularly advantageous due to its predictive capabilities, 

which allow for proactive decision-making based on future system behavior. Moreover, its inherent ability to 

handle multivariable control problems with input and output constraints makes it well-suited for complex thermal 

systems [19]–[21]. Nevertheless, deployment of MPC in furnace-fired boiler systems is not without challenges. 

Effective implementation necessitates the development of high-fidelity dynamic models and imposes 

considerable computational demands, as noted in [17]. Despite these hurdles, potential of MPC to significantly 

enhance control precision and adaptability justifies its continued exploration in boiler process automation. 

Robust control methods have been developed to maintain performance despite uncertainties and 

disturbances. Robust control techniques, such as H-infinity (H∞) control, have been applied to boiler systems 

to enhance their resilience. However, Purseth et al. [22] provided a comprehensive overview of robust 

control design, emphasizing its applicability in systems with significant parameter variations and external 

disturbances. Similarly, adaptive control techniques adjust the controller parameters in real-time based on 

observed system behavior. Also, Rutkowski and Szczygieł [23] illustrated the effectiveness of adaptive 

control in managing systems with varying dynamics, a common scenario in furnace-fired boilers. 

Given the stochastic nature of heat fluctuations in furnace-fired boilers, stochastic control methods 

have also been explored. These methods explicitly account for the randomness in system inputs and 

disturbances. Research by Duan et al. [17], on stochastic systems provided foundational concepts for applying 

stochastic control in industrial processes. More recent studies, such as those by [11], [24], [25], have 

developed specific stochastic control algorithms for boiler systems, demonstrating improved performance in 

handling random heat fluctuations. Hybrid control systems that combine multiple control strategies have been 
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proposed to leverage the strengths of different methods. For instance, a combination of MPC and robust 

control can offer both predictive capabilities and resilience to disturbances. Despite significant progress, 

several gaps remain in the existing literature. Many advanced control strategies require detailed system models 

and extensive computational resources, which may not be feasible for all applications.  

This research aims to address these gaps by developing an optimized control design that combines the 

robustness and adaptability of advanced control strategies with the predictive capabilities of stochastic models. 

This control design leverages modern computational techniques and simulation studies. The proposed approach 

seeks to enhance the performance and reliability of furnace-fired boilers under stochastic heat fluctuations. 

 

 

3. METHOD 

In this research, the performance and reliability of furnace-fired boilers under stochastic heat 

fluctuations was enhanced by developing an optimized control design. The approach leverages advanced control 

strategies integrated with stochastic models, by utilizing modern computational techniques, and simulation 

studies. The method involves creating a comprehensive mathematical model of the boiler system, capturing the 

key dynamics and uncertainties present in such systems. The following is a detailed description of the 

techniques used: 

‒ Energy balance equations: the energy flow through a boiler system involves heat input from fuel 

combustion, heat losses to the surroundings, and heat exchanges between different components, such as 

the furnace and water in the drum. The energy balance is expressed by differential equations that 

describe the system's total energy change over time, accounting for various energy sources and losses. 

‒ Mass balance equations: the mass balance equations in a boiler system ensure the conservation of mass 

by tracking the flow rates of water and steam. The water entering the boiler is converted into steam, and 

the principle of conservation ensures that the mass of water entering equals the mass of water and steam 

exiting, accounting for any accumulation. This balance is modeled using differential equations that 

describe the rate of mass change in different system components. 

‒ Pressure dynamics: efficient modeling of pressure behavior in a boiler drum is essential for safe and 

efficient operation, as pressure is closely linked to temperature and volume, fluctuating with changes in 

heat input and steam production. The dynamics of pressure are described using differential equations 

that connect pressure, temperature, and volume, often incorporating nonlinearities to simulate real-

world behavior accurately and predict pressure changes over time in response to heat input variations. 

‒ Stochastic heat input: to represent random variations in heat supply to the boiler, probabilistic methods 

are used to model uncertainties such as fuel quality, combustion efficiency, and environmental 

conditions. The heat input is treated as a stochastic process, where random variables with defined 

probability distributions represent these uncertainties. Techniques like Monte Carlo simulations are 

applied to assess the impact of these variations on boiler performance. 

‒ Advanced control strategies: to design control systems that adapt to uncertainties and nonlinearities in 

boiler operation, robust and adaptive control techniques are used. Robust control ensures system 

stability despite variations in factors like heat input, while adaptive control adjusts parameters in real-

time to optimize performance. These strategies employ algorithms that account for the system's 

stochastic and nonlinear dynamics, using methods such as MPC, H-infinity control, or adaptive 

filtering. 

‒ Simulation studies: the proposed control design and mathematical models were validated through 

simulations under various scenarios, including stochastic heat fluctuations. Numerical methods were 

used to solve the differential equations for boiler dynamics, and scenario analysis tested system 

performance under different operating conditions, including extreme heat variability. Simulations, 

conducted using tools like MATLAB and Simulink, allowed for visualization and analysis. This 

integrated approach, combining energy and mass balance equations, pressure dynamics, stochastic heat 

input modeling, and advanced control strategies, optimized furnace-fired boiler performance and 

developed a robust system capable of handling real-world uncertainties. 
 

3.1.  Mathematical modelling 

A comprehensive mathematical model of the boiler system is developed, incorporating the dynamics 

of heat transfer, fluid flow, and pressure changes. The model includes as follows: 

‒ Energy balance equations: these equations account for the heat input, heat loss, and heat exchange 

within the boiler components. 

‒ Mass balance equations: these equations describe the flow rates of water and steam, ensuring the 

conservation of mass. 

‒ Pressure dynamics: relationships between pressure, temperature, and volume in the drum are modeled to 

capture pressure fluctuations accurately. 
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‒ Stochastic heat input: the heat input is modelled as a stochastic process, using probabilistic methods to 

represent random variations in heat supply due to factors like fuel quality and combustion conditions. 
 

3.1.1. Furnace 

The furnace is where the fuel is combusted to generate heat. The energy balance for the furnace can 

be expressed as given in (1). 
 

𝑄𝑖𝑛 = 𝑄𝑜𝑢𝑡 + 𝑄𝑙𝑜𝑠𝑠 (1) 
 

Where 𝑄𝑖𝑛 is the heat input from the combustion of fuel; 𝑄𝑜𝑢𝑡 is the heat transferred to the water and steam 

in the boiler; and 𝑄𝑙𝑜𝑠𝑠 is the heat lost to the surroundings (e.g. through the boiler walls, flue gases). 
 

3.1.2. Drum 

The drum is where the phase change of water to steam occurs. The energy balance for the drum is 

given in (2). 
 

𝑚𝑤𝑐𝑤
𝑑𝑇𝑤

𝑑𝑡
=  𝑄𝑖𝑛,𝑑𝑟𝑢𝑚 − 𝑄𝑜𝑢𝑡,𝑑𝑟𝑢𝑚 (2) 

 

Where 𝑚𝑤 is the mass of water in the drum; 𝑐𝑤  is the specific heat capacity of water; 
𝑑𝑇𝑤

𝑑𝑡
 is the rate of 

change of water temperature; 𝑄𝑖𝑛,𝑑𝑟𝑢𝑚 is the heat input to the drum from the furnace; and 𝑄𝑜𝑢𝑡,𝑑𝑟𝑢𝑚 is the 

heat transfer from the drum to produce steam. 
 

3.1.3. Water/steam pathways 

The water and steam pathways involve heat transfer from the water to steam. The energy balance 

can be expressed as given in (3). Water to steam conversion: 
 

𝑚𝑤ℎ𝑤 = 𝑚𝑠ℎ𝑠 + 𝑄𝑙𝑜𝑠𝑠,𝑤𝑠 (3) 
 

Where 𝑚𝑤 is the mass flow rate of water; ℎ𝑤 is the specific enthalpy of water; 𝑚𝑠 is the mass flow rate of 

steam; ℎ𝑠 is the specific enthalpy of steam; and 𝑄𝑙𝑜𝑠𝑠,𝑤𝑠 is the heat loss in water-to-steam conversion process. 
 

3.1.4. Heat exchange within boiler 

The heat exchange within the boiler is as given in (4). 
 

𝑄𝑜𝑢𝑡,𝑓𝑢𝑟𝑛𝑎𝑐𝑒 = 𝑚𝑤𝐶𝑤(𝑇𝑜𝑢𝑡 − 𝑇𝑖𝑛) (4) 
 

Where 𝑚𝑤 is the mass flow rate of water; 𝑐𝑤  is the specific heat capacity of water; 𝑇𝑜𝑢𝑡 is the outlet 

temperature of water/steam; and 𝑇𝑖𝑛 is the inlet temperature of water. 
 

3.1.5. Overall energy balance 

Combining the above components, the overall energy balance equation for the boiler system can be 

written as given in (5). 
 

𝑄𝑖𝑛 − 𝑄𝑙𝑜𝑠𝑠 = 𝑚𝑤𝑐𝑤
𝑑𝑇𝑤

𝑑𝑡
+ 𝑚𝑠ℎ𝑠 (5) 

 

Where 𝑄𝑖𝑛 is the total heat input from fuel combustion; 𝑄𝑙𝑜𝑠𝑠 Includes all forms of heat loss (to surroundings, 

inefficiencies); 𝑚𝑤𝑐𝑤
𝑑𝑇𝑤

𝑑𝑡
 represents the change in internal energy of water in the drum; and 𝑚𝑠ℎ𝑠 is the heat 

required to convert water to steam. 

Stochastic heat input: to account for stochastic heat fluctuations, the heat input can be modelled as 

given in (6). 
 

𝑄𝑖𝑛 = 𝑄̅𝑖𝑛 + 𝜖(𝑡) (6) 
 

Where 𝑄̅𝑖𝑛 is the average heat input; and 𝜖(𝑡) is a stochastic term representing random fluctuations in heat 

input, which can be modelled using stochastic processes. 
 

3.2.  Mass balance equations for a furnace-fired drum boiler 

The mass balance equations for a furnace-fired drum boiler involve tracking the flow rates of water 

and steam to ensure conservation of mass throughout the system. The following are the detailed mass balance 

equations for the key components of the boiler. 
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3.2.1. Drum mass balance 

The drum is where water is converted into steam. The mass balance equation for the drum can be 

written as (7). 
 
𝑑

𝑑𝑡
(𝑚𝑤,𝑑𝑟𝑢𝑚 +  𝑚𝑠,𝑑𝑟𝑢𝑚) = 𝑚̇𝑤,𝑖𝑛 − 𝑚̇𝑠,𝑜𝑢𝑡 (7) 

 

Where 𝑚𝑤,𝑑𝑟𝑢𝑚 is the mass of water in the drum; 𝑚𝑠,𝑑𝑟𝑢𝑚 is the mass of steam in the drum; 𝑚̇𝑤,𝑖𝑛 is the 

mass flow rate of water entering the drum; and 𝑚̇𝑠,𝑜𝑢𝑡 is the mass flow rate of steam leaving the drum. 

Assuming steady-state conditions where the accumulation term. 
 
𝑑

𝑑𝑡
(𝑚𝑤,𝑑𝑟𝑢𝑚 + 𝑚𝑠,𝑑𝑟𝑢𝑚) = 0  

 

𝑚̇𝑤,𝑖𝑛 = 𝑚̇𝑠,𝑜𝑢𝑡 (8) 
 

3.2.2. Water/feedwater mass balance 

The feedwater system supplies water to the drum. The mass balance equation for the feedwater 

system as in (9). 
 

𝑚̇𝑓𝑤,𝑖𝑛 = 𝑚̇𝑓𝑤,𝑜𝑢𝑡 + 𝑚̇𝑏𝑙𝑜𝑤𝑑𝑜𝑤𝑛 (9) 
 

Where 𝑚̇𝑓𝑤,𝑖𝑛 is the mass flow rate of feed water entering the system; 𝑚̇𝑓𝑤,𝑜𝑢𝑡 is the mass flow rate of feed-

water entering the drum; and 𝑚̇𝑏𝑙𝑜𝑤𝑑𝑜𝑤𝑛 is the mass flow rate of blowdown, which is water removed to 

control the concentration of impurities. 
 

3.2.3. Steam mass balance 

The steam system involves the generation and utilization of steam. The mass balance equation for 

the steam system as in (10). 
 

𝑚̇𝑠,𝑑𝑟𝑢𝑚 = 𝑚̇𝑠,𝑜𝑢𝑡 + 𝑚̇𝑠,𝑙𝑒𝑎𝑘  (10) 
 

Where 𝑚̇𝑠,𝑑𝑟𝑢𝑚 is the mass flow rate of steam generated in the drum; 𝑚̇𝑠,𝑜𝑢𝑡 is the mass flow rate of steam 

exiting the system (to turbine); and 𝑚̇𝑠,𝑙𝑒𝑎𝑘 is the mass flow rate of steam lost through leaks. 
 

3.2.4. Overall mass balance 

Combining the mass balance equations for the drum, feedwater, and steam systems ensures the 

conservation of mass throughout the entire boiler system. The overall mass balance can be expressed as 

follows: 
 

𝑚̇𝑓𝑤,𝑖𝑛 = 𝑚̇𝑓𝑤,𝑜𝑢𝑡 + 𝑚̇𝑏𝑙𝑜𝑤𝑑𝑜𝑤𝑛  
 

𝑚̇𝑓𝑤,𝑖𝑛 = 𝑚̇𝑤,𝑖𝑛  
 

𝑚̇𝑤,𝑖𝑛 = 𝑚̇𝑠,𝑜𝑢𝑡  
 

𝑚̇𝑠,𝑑𝑟𝑢𝑚 = 𝑚̇𝑠,𝑜𝑢𝑡 + 𝑚̇𝑠,𝑙𝑒𝑎𝑘   
 

For a simplified, steady-state analysis without considering blowdown and leaks, give as in (11). 
 

𝑚̇𝑓𝑤,𝑖𝑛 = 𝑚̇𝑠,𝑜𝑢𝑡 (11) 
 

These equations ensure that the mass flow rates of water and steam are balanced throughout the 

system, maintaining conservation of mass. They form the basis for analyzing the boiler's performance and for 

designing control strategies to regulate flow rates and maintain system stability under varying operational 

conditions. The complete Simulink model of the furnace-fire boiler is as shown in Figure 1. The 

MATLAB/Simulink model of a furnace-fired boiler is divided into three key figures that represent different 

aspects of the system’s operation. Figure 1(a) focuses on the water flow subsystem, showing how water 

enters the boiler, undergoes heat exchange, and is regulated to maintain consistent input for steam generation. 

Figure 1(b) models the steam flow subsystem, detailing how steam is generated, controlled for pressure 

stability, and released from the system. Finally, Figure 1(c) presents the integrated boiler system, combining 

both water and steam subsystems to maintain mass and energy balances, while incorporating advanced 

control strategies like MPC to optimize performance. Together, these figures provide a comprehensive 
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simulation of the boiler’s dynamic behavior, allowing for analysis and control under varying operational 

conditions. 
 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

Figure 1. MATLAB Simulink model of a furnace fired boiler of (a) sub-submodel of internal steam volume 

temperature regulation, (b) submodel of steam volume and temperature regulation, and (c) model of the 

furnace fired boiler 
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3.3.  Parameter estimation 

System identification technique was employed to estimate the parameters of the mathematical 

model. This process involves two main steps. First, data collection is carried out by collecting operational 

data from the boiler, including temperature, pressure, flow rates, and heat input. Second, parameter fitting is 

performed using optimization algorithms to fit the model parameters with the collected data, ensuring the 

model accurately reflects the real system behavior. 

 
3.4.  Control strategy design 

3.4.1. Control objectives 

The primary objective is to maintain stable exit pressure within desired limits, minimize the impact 

of stochastic heat fluctuations, and optimize fuel efficiency. The foremost goal of the system is to ensure that 

the exit pressure remains consistently within the desired operational range. Maintaining stable exit pressure is 

critical to the overall performance and safety of thermal or fluid systems, as fluctuations can lead to 

mechanical stress, reduced system lifespan, or operational inefficiencies. Therefore, precise control 

mechanisms must be implemented to monitor and regulate the pressure output under varying load and 

demand conditions. 

Another important objective is to minimize the influence of random or unpredictable heat 

fluctuations, which can arise due to external environmental factors, variable input sources, or system 

dynamics. These stochastic heat variations can disrupt thermal stability, affect process consistency, and lead 

to uneven energy distribution. By reducing the impact of such disturbances, the system can operate more 

reliably and respond more effectively to real-time changes. 

Finally, the system aims to enhance overall fuel efficiency by optimizing the energy conversion 

process. Efficient fuel usage not only lowers operational costs but also reduces emissions and supports 

sustainable energy practices. Achieving this requires intelligent control strategies that balance thermal input 

with energy demand, ensuring minimal waste while maintaining performance and regulatory compliance. 

Together, these objectives support a high-performance, energy-conscious system capable of adapting to 

dynamic conditions. 

 
3.4.2. Model predictive control 

An MPC strategy is designed to handle stochastic disturbances and maintain desired pressure levels 

as given in the MATLAB code. 

‒ MPC formulation: the objective function, prediction horizon, and constraints for the MPC problem were 

defined. The objective function aims to minimize the deviation of the exit pressure from the set-point 

while considering control effort. 

‒ State-space representation: convert the boiler model into a state-space form suitable for MPC design. 

‒ Optimization algorithm: an optimization algorithm was implemented to solve the MPC problem in real-

time, adjusting control inputs based on predicted system behaviour. 

 
3.5.  Simulation study 

In this study, the performance of MPC strategy was investigated, for managing the exit pressure of a 

furnace-fired boiler under stochastic heat fluctuations. The system was modeled using comprehensive energy 

and mass balance equations, incorporating stochastic elements to simulate random heat input variations. 

MATLAB/Simulink was used to model the boiler system and implement control algorithms. The simulations 

were conducted using MATLAB/Simulink, and various operating scenarios were analyzed to evaluate the 

effectiveness of the control strategy. 

 

 
4. RESULTS AND DISCUSSION 

4.1.  Simulation results 

Simulation was carried out in MATLAB environment. The MPC strategy demonstrated excellent 

pressure stability, maintaining the exit pressure within ±1.5% of the set-point despite significant stochastic 

heat fluctuations. The predictive nature of MPC allowed it to anticipate disturbances and adjust control 

actions proactively as shown in Figure 2, which is the feed water actuation signal in kg/s and the heat 

actuation signal in Figure 3. 

Figure 4 shows the heat disturbance in kJ. The disturbance varies by as much as 50% of the nominal 

heat value. Figure 5 shows the corresponding drum pressure in kPa. The pressure varies by about 1% of the 

nominal value even though the disturbance is relatively large. 

 

 



                ISSN: 2252-8938 

Int J Artif Intell, Vol. 14, No. 4, August 2025: 2979-2990 

2986 

 
 

Figure 2. Feed water actuation signal 

 

 

 
 

Figure 3. Heat actuation signal in kJ 

 

 

The MPC exhibited a rapid response time, stabilizing pressure fluctuations within 5 seconds of 

disturbance onset. The optimization algorithm efficiently adjusted control actions based on future state 

predictions. MPC improved fuel efficiency by approximately 6% compared to traditional PID control. Its 

ability to optimize the combustion process and reduce unnecessary fuel usage was evident. MPC was robust 

to moderate stochastic disturbances but showed some performance degradation under extreme fluctuations. 

Its reliance on accurate predictions and model fidelity limits its robustness in highly unpredictable 

environments. The study underscores the importance of employing control strategy for managing exit 

pressure in furnace-fired boilers. MPC control strategy significantly improved system performance by 

enhancing pressure stability, response time, fuel efficiency, and robustness to disturbances. 
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Figure 4. Heat disturbance 

 

 

 
 

Figure 5. Drum pressure 

 

 

4.2.  Discussion of findings 

The research presented in this paper demonstrates the efficacy of a stochastic control strategy, 

specifically MPC, in managing the downstream exit pressure of furnace-fired drum boilers under conditions 

of stochastic heat fluctuations. This section delves into the implications of the findings, the advantages and 

limitations of the proposed approach, comparisons with traditional control methods, and the broader impact 

on industrial boiler operation. 

 

4.2.1. Significance of the results 

The simulation results show that the MPC strategy significantly improves the stability and 

performance of furnace-fired drum boilers compared to traditional PID methods. MPC enhances pressure 

stability by maintaining the exit pressure close to the set point, even with random heat input fluctuations, 
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ensuring efficient and safe boiler operation. It also optimizes real-time control actions, improving fuel 

efficiency and reducing operational costs. Additionally, MPC's incorporation of stochastic modeling makes 

the system robust to uncertainties in heat transfer and combustion, which is essential in unpredictable 

industrial environments. 

 

4.2.2. Advantages over traditional PID control 

The research demonstrates that MPC significantly outperforms traditional PID control in furnace-

fired drum boilers. MPC’s predictive capabilities allow it to anticipate and manage stochastic heat 

fluctuations, while its ability to optimize multiple variables, like pressure stability and fuel efficiency, ensure 

superior performance. Unlike PID, which requires complex tuning, MPC is adaptive, adjusting to varying 

operating conditions without frequent retuning. These benefits result in improved stability, fuel efficiency, 

and robustness, making MPC the ideal control strategy for industrial boiler systems. 

 

4.2.3. Limitations and challenges 

MPC requires the solution of optimization problems at each control step, which can be 

computationally intensive. In real-time applications, this could pose challenges, particularly in systems with 

limited computational resources. The adoption of MPC in industrial settings may involve significant upfront 

costs, including software, hardware, and training. While these costs may be offset by long-term savings in 

fuel and maintenance, they could be a barrier to adoption for some organizations. Also, the effectiveness of 

MPC is highly dependent on the accuracy of the underlying mathematical models. Inaccurate or overly 

simplified models could lead to suboptimal control actions, undermining the potential benefits of the 

approach. 

 

4.2.4. Comparison with traditional control methods 

While traditional PID control has been the industry standard for decades due to its simplicity and 

ease of implementation, it has limitations in dealing with the complex, nonlinear dynamics of furnace-fired 

boilers, particularly under stochastic conditions. The comparison between PID and MPC control strategies 

reveals that the PID controllers react to disturbances based on error correction, which can lead to oscillations 

and instability in systems with high levels of uncertainty. MPC, on the other hand, proactively adjusts control 

actions based on predicted future states, reducing the likelihood of oscillations. The system efficiency is also 

high with MPC's ability to optimize control actions for fuel efficiency and pressure stability leads to more 

efficient system operation compared to PID, which may not be able to balance these objectives as effectively. 

 

4.2.5. Broader impact on industrial boiler operation 

The adoption of MPC as a control strategy in industrial boilers has the potential to bring about 

significant operational improvements across a wide range of applications: 

‒ Scalability: the control strategy developed in this research can be scaled to larger and more complex 

boiler systems. This scalability opens up opportunities for its application in various industries, including 

power generation, chemical processing, and manufacturing, where boiler systems play a critical role. 

‒ Enhanced reliability: by maintaining stable operation under varying conditions, MPC can reduce the 

likelihood of unplanned shutdowns and equipment failures. This enhanced reliability is a key factor in 

reducing maintenance costs and downtime in industrial operations. 

‒ Environmental impact: improved fuel efficiency not only reduces operational costs but also contributes 

to environmental sustainability by lowering greenhouse gas emissions. This is particularly relevant in 

industries where boilers are a major source of emissions. 

 

4.3.  Future research directions 

The promising results of this study suggest several avenues for future research: 

‒ Integration with internet of things (IoT) and predictive maintenance: future research could explore the 

integration of MPC with IoT-based monitoring and predictive maintenance systems. This integration 

would enable real-time performance monitoring and early detection of potential issues, further 

enhancing the reliability and efficiency of boiler systems. 

‒ Exploration of alternative control strategies: while MPC has shown significant advantages, future 

research could investigate other advanced control strategies, such as adaptive or fuzzy logic control, to 

determine if they offer additional benefits or are better suited to specific applications. 

‒ Long-term field trials: while simulation studies provide valuable insights, long-term field trials in real 

industrial settings would be necessary to fully validate the effectiveness and robustness of the proposed 

control strategy under actual operating conditions. 
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5. CONCLUSION 

The study demonstrates that MPC offers substantial advantages over traditional PID control in 

managing the exit pressure of furnace-fired boilers. Key findings include enhanced pressure stability, faster 

response times, improved fuel efficiency, and increased system robustness, all contributing to better 

operational performance and reliability. The adoption of MPC control in industrial boilers can lead to 

significant benefits such as reduced fuel costs and greater system stability. This control strategy is adaptable 

and scalable to more complex boiler systems, offering potential advantages across a wide range of industrial 

applications. The research underscores the critical role of advanced control strategies in maintaining stable 

operations under stochastic conditions. Additionally, the study suggests that future work could integrate MPC 

with IoT-based monitoring and predictive maintenance systems, further enhancing real-time performance and 

reliability in industrial processes. 
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