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 This paper explores the application of a semi-automatic technique using 

spiking neural network (SNN) approach for forensic voice comparison 

(FVC), addressing the limitations of traditional methods that are  

time-consuming and subjective. By integrating machine learning with 

human expertise, the SNN, which mimics the brain’s processing of temporal 

information, is applied to analyze Australian English voice data in .flac 

format. The model leverages synaptic connection strengths modified by 

spike timing, allowing for flexible voice feature representation. Performance 

metrics, including confusion matrices and receiver operating characteristic 

(ROC) analysis, indicate the model’s accuracy of 94.21%, highlighting the 

effectiveness of the SNN-based approach for FVC.  
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1. INTRODUCTION  

Digital forensics is a crucial branch of forensic science that focuses on the recovery, investigation, 

examination and analysis of evidence found in digital devices. This field plays a crucial part in solving 

crimes by uncovering evidence from various digital sources, such as computers, smartphones and networks. 

It involves a meticulous process to assure the authenticity and reliability of the data collected, which can be 

used in legal proceedings. In the field of digital forensics, forensic voice comparison (FVC) is a specialized 

branch focused on examining the different voice recordings. The primary objective of FVC is to identify a 

suspect by comparing a trace voice sample with known samples, providing an evidence-based assessment of 

whether the recordings come from the same speaker for legal or investigative purposes [1]–[4]. Traditionally, 

FVC has relied heavily on manual analysis, in which trained experts listen to and compare voice samples. 

Although this method can be effective, it is often time-consuming and prone to human error and bias.  

To address these limitations, there has been a shift towards semi-automatic approaches that integrate human 

expertise with machine learning and deep learning techniques. These approaches aim to enhance both the 

efficiency and accuracy of voice comparisons, reducing reliance on subjective judgment while improving 

reliability in forensic investigations [5]–[7]. 

The most challenging task in FVC is analyzing audio samples from both trace and known sources to 

determine the similarity or dissimilarity in the suspect's voice, which is crucial for identifying any past 

criminal activity. While earlier studies have explored the impact of semi automatic approach artificial neural 
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network (ANN) a computational model trained to identify and classify speakers based on patterns in audio 

features extracted from speech samples. An ANN is made up of networked nodes or neurons, that process 

information similar to biological neural networks, they have not explicitly address well. Likewise, its 

influence on the proposed study utilizes spiking neural network (SNN), it offers an innovative method for 

voice pattern recognition. There is lot of ongoing research in artificial intelligence, machine learning, and 

neuroscience related to SNN. In order to comprehend brain function and create innovative computational 

models, a large number of academic institutions and research labs investigate SNN. The field of FVC has 

limited use of SNN in the existing works. This research aims to address this gap by proposing a SNN model 

that assist investigative agencies in the effective identification of the suspects. The SNN inspired by the 

neural architecture of the biological brain, processes information through discrete spikes, mimicking the way 

neurons communicate. The time-varying processing makes SNN particularly well-suited with adjustable 

threshold for analyzing complex voice recordings for FVC. The motivation of adopting the SNN for FVC is 

designed for tasks involving similarity or dissimilarity estimation [8]–[12]. The key contributions of this 

research are outlined as follows: 

− To pre-process input data: remove background noise for a clear speech recording. 

− To extract and compare features: use an adjustable threshold SNN to compare voice samples and analyze 

similarities or differences. 

− To conduct performance analysis: evaluate the system using a confusion matrix and its extended metrics 

for comprehensive assessment. 

− To perform comparative analysis: compare the results of the proposed research work with existing studies 

to highlight improvements and contributions. 

The objective of this work is to identify suspects in FVC using SNN. Input voice samples are 

collected and analyzed to detect similarities and dissimilarities between voices. These samples undergo  

pre-processing with a stationary noise reduction algorithm to enhance clarity. The pre-processed voices are 

then converted into discrete spikes, mimicking neuronal communication. This time-dependent processing 

makes SNNs particularly well-suited for analyzing complex voice recordings in FVC, with an adjustable 

threshold to improve accuracy. The accuracy of the system is evaluated using a confusion matrix and 

extended performance metrics. Finally, the proposed approach is compared with existing studies to 

demonstrate its effectiveness.  

The structure of the paper is organized as follows: the review of literature is given in section 2. 

Section 3 details data collection and experimental setup. Section 4 discusses FVC using a SNN. Additionally, 

section 5 describes the result analysis and discussion obtained from SNN. Furthermore, the section 6 presents 

a comparison with existing work. The paper is concluded in section 7. 

 

 

2. LITERATURE REVIEW 

Research in FVC has evolved over the decades, introducing various methodologies for 

authenticating and verifying speech. With the rise of digital technology, voice comparison plays a crucial role 

in forensics. This review examines key FVC methods, focusing on a semi-automatic approach using SNNs 

known for analyzing complex speech patterns. It highlights the need for enhanced voice pattern recognition, 

driving the proposed SNN-based research to improve suspect identification through voice similarity 

comparisons [13]–[18]. 

Several studies [19]–[25] have demonstrated the effectiveness of SNNs for spatiotemporal pattern 

classification. Morales et al. [25] developed a multilayer SNN on the SpiNNaker platform, using leaky 

integrate-and-fire neurons and firing rate-based algorithms to train inter-layer connections. The network 

achieved over 85% hit rate per class with a signal-to-noise ratio (SNR) above 3 dB, demonstrating its effective 

configuration and training method. Similarly, Wu et al. [19] proposed the self-organizing map (SOM)-SNN, a 

biologically inspired artificial spiking circuit (ASC) framework combining an unsupervised SOM with an 

event-based SNN to classify spatiotemporal patterns. On the real world computing partnership (RWCP) and 

TIDIGITS datasets, SOM-SNN showed robustness to noise and early decision-making, achieving 97.40% and 

99.60% accuracy, respectively. 

Wu et al. [20] investigated SNNs for acoustic modeling in large-vocabulary automatic speech 

recognition (ASR), achieving competitive accuracies with only 10-time steps and 0.68 times the synaptic 

operations per audio frame. This combination of energy-efficient neuromorphic hardware and deep SNNs 

shows potential for ASR on mobile and embedded devices, with reported accuracies of 18.7% and 36.9%. 

Auge et al. [21] explored SNNs for energy-efficient edge devices, emphasizing small-scale 

neuromorphic implementations. By integrating resonating neurons as the SNN input layer for end-to-end 

online audio classification, they enabled low-power continuous audio stream analysis. The approach, evaluated 

using a keyword spotting benchmark, demonstrated strong accuracy using mel-frequency spectral features. 



Int J Artif Intell  ISSN: 2252-8938  

 

Semi-automatic voice comparison approach using spiking neural … (Kruthika Siddanakatte Gopalaiah) 

2691 

Further, Mukhopadhyay et al. [22] studied human footstep sound classification in natural environments using 

a wireless sensor network (WSN) for security surveillance. By employing an SNN with simple time-domain 

features, they aimed to create energy-efficient, cost-effective sensor nodes. Simulations showed significant 

power savings with analog SNNs, despite minor accuracy loss mitigated by redundancy and majority voting. 

Future research may focus on low-power feature extraction for surveillance systems [23]. 

Earlier, Yamazaki et al. [23] highlighted the limitations of deep neural networks, such as high 

computational costs and energy consumption in drones and self-driving vehicles. They proposed SNNs as 

efficient alternatives, mimicking biological neurons through sparsity and temporal coding. The paper reviews 

biological neuron theories, spike-based neuron models, SNN training methods, and applications in computer 

vision and robotics, offering future research insights. 

Kholkin et al. [24] discussed the rising interest in SNNs despite challenges with von Neumann 

architectures, noting that hardware advancements now enable practical SNN applications. Their comparison 

of SNN and ANN reservoir computing architectures using the RCNet library showed SNNs had longer run 

times but superior classification, particularly for complex datasets like industrial sensor faults. In ball bearing 

diagnosis, SNNs outperformed ANNs, which achieved only 61% accuracy. Table 1 shows reviews of SNN 

techniques for speech analysis, highlighting their limited application in voice analysis and absence in FVC. 

This gap motivates our research to integrate SNNs for enhanced voice analysis, with the goal of transforming 

FVC in legal investigations. 
 
 

Table 1. Literature review of SNN methods 
Citation Dataset Method Overview Results in (%) 

Morales et al. [25] Pure tone samples SNN, SpiNNaker Robustness, efficiency 
in the neuromorphic 

field 

85 

Wu et al. [19] RWCP & TIDIGITS 
Disagree 

SOM-SNN SOM for frequency 
representation 

SNN for spatiotemporal 
pattern & 97.40, 99.60 

Wu et al. [20] TIMIT, Librispeech, 

FAME 
SNN, MFCC, 

FBANK, FMLLR 
Large vocabulary 

recognition 
36.9, 18.7 

Mukhopadhyay et al. [22] Human footstep sounds SNN, WSN energy efficiency Time domain for 

acoustic classification 
Kholkin et al. [24] Accelerometer data RCNet, ANN, 

SNN 
Ball bearing diagnosis SNN =100, ANN =61 

Yamazaki et al. [23] Robotics domains SNN, ANN SNN vs deep networks 

& energy efficient 
applications 

Audio classification 

 

 

3. DATA COLLECTION AND EXPERIMENTAL SETUP 

For the FVC study, known speech samples and trace data were collected from the University of 

New South Wales Faculty of Electrical Engineering and Telecommunications in Sydney, Australia. The 

benchmark dataset used for evaluation consists of Australian English recordings from over 3899 speakers, 

featuring various styles such as casual telephone conversations, information exchange tasks, and pseudo-police 

interviews. This dataset was divided into training and testing data, with access granted upon obtaining 

permission from the relevant authorities. The datasets used in this FVC experiment were sourced from the 

FVC data repository [26]. The focus on Australian English allows for precise analysis of speech patterns 

unique to Australian speakers, capturing variations in accent, pronunciation, and other linguistic features 

essential for reliable voice comparisons in forensic contexts. The data is provided in free lossless audio codec 

(.flac) file format, and a summary of the experimental data collection is presented in Table 2. 
 
 

Table 2. Summary of experimental data collection 
Dataset name Number of samples Training Testing Gender Audio format 

Australian English 3899 2729 170 Female & Male .flac 

 
 

4. THE METHOD - FORENSIC VOICE COMPARISON USING SPIKING NEURAL NETWORK 

Figure 1 illustrates the proposed architecture for FVC using SNN. The proposed method in this 

study tended to have an inordinately higher proportion of the experimental approach employs an SNN model, 

where the input layer receives raw speech samples in the form of audio files (.flac). These samples are pre-

processed to remove noise and other interferences. After pre-processing, feature extraction and classification 

are performed using an SNN. Once the pre-processed data is fed into the SNN model, features such as time 

and frequency differences of spikes are extracted and encoded into a format suitable for the SNN. The 

encoded data is then passed through the SNN, which consists of multiple layers of interconnected neurons, 
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allowing for detailed analysis and comparison of voice patterns. Each neuron in the SNN integrates incoming 

spikes from other neurons and emits its own spike when its membrane potential reaches a specified threshold. 

The timing of these spikes encodes information about the input speech. Finally, the output layer of the SNN 

generates a set of spikes representing the recognized speech, which is then decoded back into a conventional 

format, such as a similarity score between the input speech and a reference sample.  

The performance is evaluated through adjustable threshold spike timing and assessed using a confusion 

matrix, which includes metrics such as accuracy, precision, recall, F1 score, and F2 score. This section 

outlines the proposed research methodology for FVC using SNNs. A detailed description of each subsection, 

including pre-processing and the SNNs model, is provided in the subsequent sections. 
 

 

 
 

Figure 1. Proposed architecture for FVC using SNN 
 

 

4.1.  Preprocessing 

The stationary noise reduction method is employed to eliminate background noise from the forensic 

voice samples, particularly within the Australian English dataset, which is stored in the .flac file format. 

These are provided to the model along with a noise sample, encompassing the typical background noise for 

the sample. This noise sample is combined with a signal clip containing both the noise and the signal that 

needs to be removed, as illustrated in Figure 2(a) noisy speech input data Figure 2(b) noise reduced speech 

output data. The following provides an explanation of the stationary noise reduction Algorithm 1 
 

Algorithm 1: Stationery noise reduction algorithm 
Input: Australian English dataset audio recording samples of voice are used. 

Output: Noise Reduced Speech Data. 

Step 1: Spectrogram is calculated for the noisy audio clip. 

Step 2: In frequency statistics are measured using the noise spectrogram. 

Step 3: On the basis of noise statistics a threshold is created. 

Step 4: Through the signals spectrogram is calculated. 

Step 5: By the signal spectrogram threshold is determined and compared. 

Step 6: To smooth the mask over time and frequency the linear filter is used. 

Step 7: The mask is applied to the signals spectrogram and inverts the noise signal to 

produce positive results. 

 

 

  
(a) (b) 

 

Figure 2. Preprocessing results (a) noisy speech input data (b) noise reduced speech output data 
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4.2.  Spiking neural network 

The proposed model utilizes SNN inspired by the structure and functionality of biological neural 

networks found in the human brain. In contrast to conventional neural networks, which depend on signals 

with continuous values, SNN employ discrete spikes or pulses to communicate information between neurons, 

resembling the transmission of signals through action potentials in biological systems. Adopting  

a semi-automatic approach based SNN are considered for FVC in the proposed research model. The process 

begins with loading and preprocessing the audio data, extracting relevant features and converting continuous 

audio signals into spike trains using encoding techniques like rate coding or time-to-first-spike coding. 

Subsequently, synaptic weights of the SNN are initialized either randomly or using pre-trained weights from 

a neural network. A threshold is applied to determine the similarity or dissimilarity of spike trains. Within the 

SNN model, neurons communicate through discrete spikes via the membrane potential. Neurons accumulate 

input over time and emit a spike once the threshold is reached. 

Voice patterns are encoded in the timing of spikes, and synaptic weights are updated based on spike 

timing, commonly through spike-timing-dependent plasticity (STDP) or variants, to identify voice patterns. 

To decode and predict known and trace voice samples an adjustable threshold is applied to determine the 

similarity or dissimilarity of spike trains. Several parameters significantly influence SNN behavior and 

learning, including input spike, membrane potential, spike generation, STDP, and output spike. Input spikes 

receive information from processed audio samples which then pass through the membrane function. 

Membrane potential generates spike times and once the spike time surpasses a threshold SNN network 

identifies voice patterns for classification based on similarity or dissimilarity using STDP. Output spikes 

generated by neurons aid in evaluating or identifying similar or dissimilar voice samples. The subsections 

4.2.1 through 4.2.5 elaborate on these key parameters. 
 

4.2.1. Input spikes and membrane potential 

The input spikes are derived from pre-processed audio samples, capturing information related to 

both time and frequency. Consequently, input spikes play a pivotal role in encoding to achieve the desired 

output through membrane potential. Once the input spike time is generated, the membrane potential indicates 

the electric potential throughout the voice patterns. It governs the neuron's generation of an action potential 

spike, with critical factors including its update over time and response to incoming spikes. These factors 

determine how spikes are generated over time. 

Update over time: the membrane potential is dynamic and changes over time in response to 

incoming signals or spikes. The dynamics of this change are typically described by a set of equations that 

model how the neuron integrates incoming information. The response to incoming spikes: the membrane 

potential is influenced by the synaptic inputs received from connected neurons, with each incoming spike 

contributing to the change in the membrane potential. In (1) represents the membrane potential over time. 
 

V(t) = Σiwi ∗ si(t − ti) (1) 
 

Where: 

− The membrane potential function at time t is denoted by V (t). 

− ∑i denotes the summation over the index i. 

− wi represents the weight associated with each function. 

− si(t-ti) is the spike train from the presynaptic neuron i at time t-ti 
 

4.2.2. Spike generation 

After a spike is generated by the membrane potential, it reaches a threshold that allows the neuron to 

identify both dissimilarity and similarity in voice patterns. The parameters of spike generation are influenced 

by threshold crossing, action potential, and neuronal response. Threshold crossing refers to the process where 

neurons possess a specific threshold level of membrane potential. When the membrane potential surpasses 

this threshold, the neuron generates a spike, also known as an action potential. The action potential is a brief 

electrical pulse that travels along the neuron's axon, signaling the neuron's activation to other neurons or 

target cells. This spike represents an all-or-nothing response: if the membrane potential exceeds the 

threshold, a spike is generated; otherwise, no spike occurs. Mathematically, the neuron generates spikes when 

its membrane potential crosses a threshold, represented by θ in (2). 
 

If V(t)  ≥  θ, then the neuron emits a spike (2) 
 

4.2.3. Spike time dependent plasticity 

As the spike reaches the threshold, STDP is utilized to adjust the synaptic weights, assessing the 

strength and weakness of connections in the SNN network to discern similarity and dissimilarity in 
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recognizing voice patterns. The strength of a connection (synapse) in an SNN network should alter based on 

the relative timing of spikes between the presynaptic and postsynaptic neurons. If a presynaptic neuron 

consistently fires before a postsynaptic neuron, the connection between them strengthens. Conversely, if the 

postsynaptic neuron fires first, the connection weakens. This process enables the network to adapt to patterns 

in the input data. The synaptic weights undergo plasticity adjustments based on the timing of pre and 

postsynaptic spikes as represented in (3). 

 

Δwi =  η ⋅  si (t − ti)  ⋅  PostSynapticSpike (t) (3) 

 

Where: 

− Δwi represents the change in the synaptic weight wi. 

− η is the learning rate, controlling the magnitude of weight adjustments. 

− si(t−ti) is the function associated with the timing of the presynaptic spike at time ti. 

− PostSynapticSpike(t) is a function that indicates if a spike occurred in the postsynaptic neuron at time t. 

 

4.2.4. Output spike 

The output spike aids in decoding voice similarity or dissimilarity, with performance evaluated 

using accuracy, precision, recall, F1 score, and F2 score. Membrane potential updates integrate signals, while 

spike generation indicates neuron activation. Synaptic plasticity enables adaptive learning, mimicking 

biological neural systems. These steps are outlined in Algorithm 2. 

 

Algorithm 2: To identify the similarity or dissimilarity of voices through the preprocessed data 
Input: Preprocessed forensic voice samples.  

Output: Prediction for FVC based on the evaluation on Confusion matrix. 

Step 1: Initialization 

− Synaptic Weights, Membrane Potentials, and Thresholds: Set the initial values for 

synaptic weights, membrane potentials, and thresholds for all neurons. In this case, 

they are initialized to 0.5. 

− Learning Rate (η): Choose a learning rate parameter (η) to control the magnitude of 

weight adjustments during the learning process. Here, it is set to 0.001. 

Step 2: Training 

− Adjusting Synaptic Weights: Utilize a learning rule based on spike time to update 

synaptic weights. The spike timing difference based on the adjustable threshold. 

 

spike_times =  (y >  0.5). nonzero ()[0]  ∗  0.001 # if spike amplitude >  0.5 (4) 

 

In the provided code for voice comparison, the exact time of a spike is determined based 

on the threshold condition. 

Where, 

• y is the audio signal. 

• (y > 0.5) creates a binary mask where the amplitude values greater than 0.5 are 

marked as True and others as `False`. 

• .nonzero () returns the indices where the condition is True. 

• *0.001 scales the indices to represent time in seconds (assuming the audio is 

sampled at 1,000 Hz). 

• The resulting spike_times variable contains the times (in seconds) when the 

amplitude of the audio signal exceeds the threshold of 0.5. These times 

correspond to the occurrences of spikes in the audio signal, as determined by the 

chosen threshold. The specific value of 0.5 can be adjusted according to the 

characteristics of voice samples and the desired sensitivity of spike detection.  

− Presenting Training Samples: Introduce training samples to the network. These samples 

represent patterns or data points that the network will learn to recognize or 

classify. By using the library functions such as tensor flow and pytorch the SNN 

network is built. Where the optimization function used is Adam and binary cross 

entropy is the loss function.  

Step 3: Testing 

The following pseudocode is utilized to identify and evaluate voice samples between the 

known and trace. In this context, 0 represents false, and 1 represents true, indicating 

whether the suspect is identified through the voice samples. This evaluation is performed 

using accuracy to assess the similarity and dissimilarity in the voice. 

defevaluate_voice_samples (known_sample, trace_sample): 

If known_sample == trace_sample:  

return 1 # True, suspect identified 

else: 

return 0 # False, suspect not identified 

# Example usage 

known_sample = "voice_sample_1" 
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trace_sample = "voice_sample_2" 

result =evaluate_voice_samples (known_sample, trace_sample) 

print ("Result:", result) 

Step 4: Inference of proposed research model 

The proposed research model identifies the suspect based on similarity or dissimilarity.  

 

 

5. RESULT AND DISCUSSION 

The performance evaluation of the proposed framework is conducted using various metrics, with a 

detailed analysis presented in the form of a confusion matrix and receiver operating characteristic-area under 

the curve (ROC-AUC) analysis. These performance assessments are systematically discussed in sections 5.1 

and 5.2, where the confusion matrix provides insights into classification accuracy by displaying true 

positives, false positives, true negatives, and false negatives. Meanwhile, the ROC-AUC analysis evaluates 

the model's discriminative ability, illustrating its effectiveness in distinguishing between different classes. 

 

5.1.  Confusion matrix and performance analysis 

The Figure 3(a) displays the confusion matrix performance evaluation of the SNN-based approach 

in classifying the Australian English dataset for FVC. Performance metrics such as accuracy, precision, 

recall, F1 score, and F2 score are used to evaluate the classifier's effectiveness. The confusion matrix displays 

the number of correctly identified matching voices as true positives (TP) entries in the bottom right quadrant 

of matrix indicate accurate match predictions. The true negative (TN) refers to the entries in the upper-left 

quadrant of the matrix that accurately predict non-matches. Comparably, false positives represented by the 

entries in the upper-right quadrant of the matrix, which indicate inaccurate match predictions, while false 

negatives represented by the entries in the bottom-left quadrant of the matrix, which indicate inaccurate 

predictions of non-matches. In the context of FVC using SNN the Figure 3(a) represented the actual 

confusion matrix for considering 2,729 samples for training and 1,170 samples for testing in the context of 

identification of matching or non-matching of the voice. A value of 0 signifies dissimilarity in voice 

recognition, while a value of 114 signifies similarity, indicating the identification of a suspect using  

1,170 testing samples as represented in confusion matrix depicted in the Figure 3(a). In confusion matrix the 

values in each cell indicate the number of instances. The heatmap visualization with `sns.heatmap` provides a 

color-coded representation, where darker shades indicate higher counts, helping to quickly identify the 

performance of the model. The Figure 3(a) is visual represents of values tabulated in Table 3(a).  

Compared the current state of art to the existing works [1]-[3], identified the deep learning 

techniques for our proposed method which demonstrates a potential enhancement in classification accuracy, 

achieving an impressive 94.21% on the Australian English dataset. Additionally, the model's effectiveness is 

further supported by its strong performance across multiple evaluation metrics, with a precision of 85.21%, 

recall of 82.16%, F1 score of 81.11%, and F2 score of 80.10% across varied samples. These results indicate 

the robustness and reliability of our approach in FVC. The findings are effectively presented and visually 

depicted in Figure 3(b), accompanied by detailed numerical data in Table 3(b). 

 

 

  
(a) (b) 

 

Figure 3. Graphical representation of (a) confusion matrix and (b) performance measures 
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The SNN are ANN inspired by biological neurons, utilizing spikes for communication rather than 

weighted sums of inputs in traditional ANN. The SNN performance is assessed using the confusion matrix; 

encompassing accuracy, precision, recall, F1 score, and F2 score. Moreover, the graph portrays consistent 

performance across all metrics, indicating robustness and generalization of the SNN model to unseen data. 

This suggests that the SNN effectively avoids over fitting and maintains good performance on varied 

datasets. In summary, Figure 3(b) underscores the SNNs potential as promising neural network architecture 

for proficiently identifying voice patterns in FVC tasks. 

 

 

Table 3. Tabulation of results: (a) confusion matrix and (b) performance measure 

(a) 
 Predicted non match Predicted match 

Actual non match True negatives False positives 

Actual match False negatives rue positives 

 

(b) 
Dataset name Performance measures Results (%) 

Australian English Accuracy 94.21 

Precision 85.21 

Recall 82.16 
F1 score 81.11 

F2 score 80.10 

 

 

5.2.  Receiver operating characteristic and area under the curve analysis 

Furthermore, the ROC curve serves as a tool for assessing the performance of the classification 

model, specifically the SNN. The degree of separability is indicated by the AUC of the ROC curve.  

The ROC-AUC curve provides a graphical representation illustrating the classification performance metrics 

at various thresholds. The ROC curve is a graphical plot that depicts the performance of binary classifier 

system as its threshold varies. It is extensively utilized in machine learning to evaluate the diagnostic 

capability of tests, especially in scenarios with imbalanced outcomes. In this context, the binary classifier is 

represented by the SNN, which aims to differentiate between two classes: true positives and false positives, 

as represented in Figure 4(a). 

The true positive rate (TPR), displayed on the y-axis, signifies the proportion of correctly classified 

positive cases. Conversely, the false positive rate (FPR), depicted on the x-axis, represents the proportion of 

incorrectly classified negative cases. The area under the ROC curve (AUC) serves as a measure of the overall 

performance of the classifier. A perfect discrimination is represented by an AUC of 1, while an AUC of 0.94 

indicates the degree of dissimilarity and similarity in the voice patterns. The red dot on the curve denotes the 

point where the TPR equals the FPR. This point is commonly referred to as the "operating point" of the 

classifier, where the classifier strikes a balance between true positives and false positives, making it the 

optimal threshold for classification. 

The blue line in the graph represents the ROC for a random classifier. A random classifier typically 

produces an AUC of 0.5, resulting in a diagonal line on the ROC curve. However, in this case, due to a 

specific scenario, the random classifier's AUC is mentioned as 0.94. The observation that the SNN ROC 

curve lies above the ROC curve of the random classifier implies that the SNN exhibits superior performance 

compared to random chance. Nevertheless, the margin of improvement is relatively modest. Overall, the 

graph indicates that the SNN performs satisfactorily in voice comparison tasks, with an AUC close to 

94.21%. The AUC represents the entire two-dimensional area beneath the ROC curve, signifying the 

classifier's overall performance. Mathematically, the AUC is determined by calculating the definite integral 

of the function f(x) with respect to the vertical boundaries, as described by (5). 

 

AUC = ∫ abf(x)dx = F(b) − F(a) (5) 

 

Where: 

− ∫ab f(x)dx denotes the definite integral of the function f(x) over the interval from a and b 

− F(x) represents the antiderivative of f(x) often referred to as the cumulative distribution function (CDF). 

− F(b)-F(a) 

− It computes the difference between the antiderivative values at the upper (b) and lower (a) bounds, 

representing the accumulated area under the curve within the given interval. 
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A larger ROC-Area signifies improved accuracy of the classifier in identifying individuals.  

Figure 4(a) displays several subsequent ROC and AUC graphs generated during the analysis. The graphical 

histogram representations of the voice comparison in SNN are shown in Figure 4(b). The voice calculated 

distribution in relation to amplitude and time. Peaks in the histogram indicate the range and distribution of 

amplitudes in a voice pattern or audio signal. In Figure 4(b), audio A and audio B represent the voice sample. 

Where the amplitude represents the strength or intensity of the sound wave with higher amplitudes 

corresponding to louder voice. The voice pattern is encoded in SNN when the frequency of the pattern 

reaches a certain threshold. Here the frequency of the threshold is 0.5 seconds is taken for the 

experimentation. During this spike time the voice patterns are identified to know the similarity of the known 

and trace. 

 

 

 
(a) 

 

 
(b) 

 

Figure 4. Graphical representation of SNN results (a) ROC-AUC graph and (b) audio signal histogram plot 

 

 

6. COMPARISON WITH EXISTING WORK 

The Table 4 presents a comprehensive comparative analysis of existing research studies alongside 

the proposed SNN approach for the Australian English datasets. The main advantage of SNN for FVC is their 

ability to process speech data in a way that closely resembles how the human brain processes sound. SNNs 

are highly efficient at capturing the timing details in speech, such as pauses, pitch, and intonation, which are 

essential for distinguishing between speakers accurately. They also use less energy than traditional neural 

networks, making them ideal for real-time applications. Moreover, SNNs are robust in noisy environments, 

which is beneficial when analyzing low-quality audio recordings often encountered in forensic cases. In our 
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comparative study, the proposed framework achieved a similarity accuracy of 94.21%, outperforming 

existing methods. These features make SNNs particularly well-suited for the complex challenges of forensic 

voice analysis. Overall, a SNN model may suffice, particularly for capturing temporal patterns in spike times 

for voice pattern recognition. The comparison underscores the versatility of SNN models across different 

applications, exhibiting varying levels of accuracy, efficiency, and robustness contingent upon the specific 

dataset and application context.  

Existing research studies utilize diverse datasets, ranging from environmental sound datasets  

like RWCP and spoken digits datasets such as TIDIGITS to more specialized datasets like those from 

industrial sensor data analysis. For instance, methodologies like the SOM-SNN model achieve impressive 

accuracies of 97.40% and 99.60% on the TIDIGITS spoken digits and RWCP environmental sound datasets, 

respectively. Conversely, SNNs employed for acoustic modeling demonstrate lower accuracy rates of 36.9% 

and 18.7% on the TIMIT Corpus and Librispeech datasets. In a study focused on ball bearing diagnosis, an 

ANN achieves 61% accuracy. Furthermore, a multilayer SNN designed for audio sample classification using 

SpiNNaker exhibits robustness and efficiency in neuromorphic engineering, achieving an accuracy of 85%. 

However, these methodologies often integrate advanced SNN technology with other models. In contrast, the 

proposed research exclusively employs SNN, which is advantageous considering factors like resource 

constraints and the unavailability of advanced systems like GPU. The SNN with adjustable threshold 

effectively determines the similarity or dissimilarity of spike trains in voice samples. Performance evaluation 

utilizing a confusion matrix with its extended metric values like accuracy 94.21%, precision 85.21%, recall 

82.16%, F1 score 81.11%, and F2 score 80.10% are achieved. There are challenges in a proposed framework 

of SNNs for FVC such as complex and time-consuming training due to spike-based learning mechanisms like 

STDP. They also require specialized neuromorphic hardware, limiting accessibility.  

 

 

Table 4. Comparison of the proposed approach with existing work 
Citation Dataset Method Results in (%) 

Morales et al. [25] Pure tone samples SNN, SpiNNaker 85 
Wu et al. [19] RWCP, TIDIGITS Disagree SOM-SNN  SNN for spatiotemporal pattern 

& 97.40, 99.60 
Wu et al. [20] TIMIT, Librispeech, FAME SNN, MFCC, FBANK, FMLLR 36.9, 18.7 
Auge et al. [21] keyword spotting SNN, MFCC 80 
Kholkin et al. [24] Accelerometer Data RCNet, ANN, SNN SNN=100%, ANN=61 
Proposed approach model Australian English SNN 94.21 

 

 

7. CONCLUSION 

The work proposed explores the potential of FVC to enhance suspect identification using forensic 

speech recordings. It applies an SNN model to analyze an Australian English dataset of 3,899 .flac file 

recordings, utilizing stationary noise reduction for pre-processing. The SNN model uses a threshold to assess 

spike train similarities, where neurons communicate via discrete spikes through membrane potentials. 

Synaptic weights, updated using STDP or its variants, help recognize and decode voice patterns. Our findings 

provide conclusive evidence that this phenomenon is associated with a SNN model achieves 94.21% 

accuracy. For future studies may investigate on refining the SNN architecture to enhance real-world forensic 

applications. 
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