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 Automatic segmentation of the left ventricle is a challenging task due to the 

presence of artifacts and speckle noise in echocardiography. This paper 

studies the ability of a fully supervised network based on pyramid scene 

parsing network (PSPNet) to implement echocardiographic left ventricular 

segmentation. First, the lightweight MobileNetv2 was selected to replace 

ResNet to adjust the coding structure of the neural network, reduce the 

computational complexity, and integrate the pyramid scene analysis module 
to construct the PSPNet; secondly, introduce dilated convolution and feature 

fusion to propose an improved PSPNet model, and study the impact of pre-

training and transfer learning on model segmentation performance; finally, 

the public data set challenge on endocardial three-dimensional ultrasound 
segmentation (CETUS) was used to train and test different backbone and 

initialized PSPNet models. The results demonstrate that the improved 

PSPNet model has strong segmentation advantages in terms of accuracy and 

running speed. Compared with the two classic algorithms VGG and Unet, 
the dice similarity coefficient (DSC) index is increased by an average of 

7.6%, Hausdorff distance (HD) is reduced by 2.9%, and the mean 

intersection over union (mIoU) is improved by 8.8%. Additionally, the 

running time is greatly shortened, indicating good clinical application 
potential. 
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1. INTRODUCTION 

Due to the portability and low cost of ultrasound images, accurate segmentation of the left ventricle 

of echocardiography can help doctors quickly and effectively analyze cardiac function, which is of great 

significance for clinical real-time monitoring and diagnosis [1]. However, echocardiography itself has the 

characteristics of low image edge contrast and high speckle noise [2]. In addition, individual physiological 

differences bring about structural differences. Irregular changes make it a well-known challenge to achieve 

fully automated real-time segmentation of the left ventricle in echocardiography. 

With the development of deep learning network models, advanced technologies based on deep 

learning are good at discovering complex features in an end-to-end manner by learning continuously directly 

from the data, injecting new vitality into the automatic segmentation of the left ventricle in 

echocardiography. The deep learning architectures of two dimensional (2D) single-frame echocardiogram 

segmentation, including full convolutional neural networks (FCN) [3]–[5] and Unet architectures [6]–[8], 

have received extensive attention and have proven their effectiveness. In order to improve performance, some 
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studies have enhanced the segmentation capabilities of the FCN network structure by expanding the training 

dataset [9], refining the loss function [10], [11], and utilizing pre-training to initialize the model [12], 

achieving good segmentation results. On the other hand, Unet, tuning Unet architecture, wide Unet, and 

Unet++ show obvious advantages in accuracy and real-time performance for echocardiography segmentation 

[13], [14]. To further improve the performance, the researchers improved the Unet network by extracting 

global and local features of the image and proposed a powerful end-to-end solution, such as the the batch 

normalized Unet (BNU-Net) model, which employs exponential linear unit (ELU) as activation functions at 

successive layers in the coding path and batch normalization after the convolutional filters [15]. Combining 

the advantages of ResNet and Unet, the Res_U model expands the original data from the previous layer to 

each block of the current layer, thereby propagating and enhancing features throughout the model [16]. 

Residual dilated Unet (ResDNUnet) model that utilizes Unet, cascade dilated convolution, and residual 

blocks rich in squeeze-and-excitation operations to extract global and multi-scale features [17]. The pyramid 

network and Unet were combined to construct multi-feature pyramid Unet (MFP-Unet) [18]. An attention 

mechanism was introduced into the Unet model to avoid extracting many similar features during parameter 

calculation [19]. The residual residual of residual-Unet (ROR-Unet) was proposed to solve the vanishing 

gradient problem and improve segmentation performance [20]. Dense-Unet through data augmentation 

strategy [21]. The results show that these models outperform Unet in data denoising and provide reliable and 

stable segmentation results. 

In addition to FCN and Unet deep learning network structures, some studies combine traditional 

segmentation techniques with morphological methods [22], snake models [23], active shape models (ASM) 

[24], [25] and convolutional neural network (CNN) model are combined to improve the performance of left 

ventricular segmentation in echocardiography. Some studies have significantly contributed to the expansion 

of deep learning network architectures by mixing model structures. For instance, SegNet is built using  

17 stacked convolutional layers [26], cascaded segmentation and regression network (CSRNet) combines 

segmentation CNN models with quantized regression networks [27], and the VGGNet model, based on 

transfer learning [28], demonstrates obvious advantages in segmentation efficiency when using a combined 

network of an encoder and long short-term memory (LSTM) [29], [30]. Based on an improved and variant 

model of the Unet structure, feature fusion is performed through skip connections to maximize the utilization 

of deep semantic information and shallow detail information. This approach shows significant advantages in 

terms of computational accuracy, sensitivity, and efficiency. However, it also faces some limitations.  

For example, all semantic advantages of features at different scales during segmentation are ignored, which 

hinders the learning capabilities of deep learning networks. Consequently, these networks rely on large 

amounts of annotated data and powerful storage and computing units. Additionally, the large number of 

model parameters results in extended prediction times. 

In view of the inability of FCN and Unet to handle targets of different sizes and multi-scale 

information well, researchers built a pyramid scene parsing network (PSPNet) network to use different areas 

to aggregate global context information and learn global image-level features and local multi-scale features at 

the same time. More and more researchers are applying this kind of network to the field of medical image 

segmentation, showing certain advantages in pixel-level segmentation and achieving excellent segmentation 

performance on various data sets [31]–[33]. When applying the PSPNet deep learning network to the 

prediction of tumor markers, a dice similarity coefficient (Dice) index of 91.3% was achieved, along with a 

faster processing speed [34], Similarly, when applying the PSPNet model to prostate magnetic resonance 

imaging (MRI) segmentation, a leading segmentation accuracy of 98.65% was achieved [35]. The PSPNet 

network based on DenseNet was used for breast cancer image segmentation, achieving a segmentation 

accuracy of 94.68% higher than the existing method [36]. The semantic segmentation of natural images was 

achieved based on PSPNet, and the segmentation performance was well verified on public data sets [37]. 

Some studies have used PSPNet for network fusion and achieved good results for medical image 

segmentation tasks [38]–[40]. However, feasibility studies of left ventricular segmentation in 

echocardiography are still scarce. 

At this stage, deep learning-based methods are faced with the dual challenges of improving 

processing accuracy and accelerating processing speed when applied to 2D echocardiographic left ventricle 

segmentation. This study aims to overcome the limitations of current segmentation models such as FCN and 

Unet in dealing with segmentation tasks. It also seeks to explore an algorithm that balances network learning 

depth and performance, and it provides a new solution for real-time segmentation of the left ventricle in 2D 

echocardiography. This model can effectively extract multi-scale global features from images, fully utilize 

the position and shape priors of the image, fuse global and local information, and improve segmentation 

accuracy and speed.  

This paper mainly focuses on the following three aspects of research: i) to explore the use of 

PSPNet network to achieve real-time segmentation of the left ventricle, adjust the backbone feature 

extraction structure to improve MobileNetv2 instead of ResNet for better performance, and comprehensively 
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evaluate the segmentation accuracy and efficiency; ii) the effects of two different model initialization methods, 

pre-training and transfer learning, on segmentation performance, such as algorithmic accuracy and learning 

efficiency, of the network model in the left ventricular segmentation task were studied; and iii) an exhaustive 

comparison of segmentation performance was conducted between the improved PSPNet and the optimal 

models of classical segmentation networks, including VGG [41], Unet [42], and Res_U [16]. Experimental 

results show that the improved PSPNet significantly outperforms the Res_U network (based on Unet)  

in feature extraction. Specifically, it enhances the Dice index by 2.3%, reduces model parameters, shortens 

processing time by 33.4%, and thus boosts real-time performance and accuracy. 

 

 

2. METHOD 

Based on the existing research on echocardiography segmentation methods, this paper proposes a 

PSPNet network model for segmenting the left ventricle in 2D echocardiography. The overall framework of 

the algorithm is illustrated in Figure 1: i) in processing the public three-dimensional (3D) challenge on 

endocardial 3D ultrasound segmentation (CETUS) dataset, 2D slices are obtained by sampling along the 

short axis, and the images undergo preprocessing to enhance details and reduce noise, without altering the 

shape of the heart [43]. ii) the processed 2D image is passed to the PSPNet segmentation model, which is a 

pyramid and deep convolutional network, for automatic feature extraction and to predict the left ventricular 

segmentation results. iii) evaluate the segmentation results. 
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Figure 1. Overall algorithm framework 
 

 

2.1.  Input and image preprocessing 

The dataset for this experiment utilizes the public CETUS dataset, which comprises 45 3D 

echocardiography sequences. These sequences form an echocardiography dataset that is evenly distributed 

among three different subgroups: healthy subjects, patients with previous muscle damage, and patients with 

dilated cardiomyopathy. This dataset has been extensively validated in numerous classic and state-of-the-art 

algorithms [44]. In this experiment, the 45 3D volume data were sliced into 2D images along the short axis. 

Slices that did not contain any cardiac information were filtered out and deleted. Due to the axial symmetry 

of the 2D slices, only half of them were selected. Ultimately, 3616 valid 2D slice images were obtained. 
 

2.2.  Segmentation models 

2.2.1. PSPNet model 

The echocardiography input, main structure, and segmentation process of the PSPNet network 

model are illustrated in Figure 2, which comprises four main parts: feature extraction, pyramid pooling, 

feature fusion, and deep supervision. First, the feature extraction module of the CNN is used to obtain the 

feature map of the input image. Then, this feature map is input into the pyramid pooling module (PPM) to 

obtain a 4-layer pooled feature map. Finally, the pooled feature map is concatenated with the backbone 

feature map and entered into the FCN module to obtain the predicted segmentation results. The PPM is the 

core of the PSPNet network. This module aggregates four feature layers of different dimensions, uses 1×1 

convolution to reduce the dimensionality, and then performs an upsampling operation to superimpose the 

restored features with the initial features, thereby forming richer global information and characteristic 

representations of sub-region information. 

In Figure 2, the obtained feature layer is divided into four sub-regions of different dimensions of 

1×1, 2×2, 3×3, and 6×6, and then average pooling within the sub-regions is performed. Compared with direct 

global pooling, which will cause the loss of part of the location information, pyramid pooling is used to take 

into account the global information and the relationship between each sub-region and realize the aggregation 

of context information in different regions. The PPM module enables the PSPNet network to fully obtain 

semantic information at all levels and scales in echocardiography and has strong application potential. 
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Figure 2. PSPNet segmentation model algorithm structure diagram 

 

 

2.2.2. Improved PSPNet model 

The improved PSPNet network is mainly focused on the feature extraction part, as shown in Figure 2. 

The lightweight MobileNet is used to replace the ResNet. Atrous convolution and feature fusion are further 

introduced to achieve the goal of effectively extracting features and shortening the model running time. 

 

2.2.3. Feature extraction network 

The traditional PSPNet uses a ResNet-based CNN for backbone feature extraction, which features 

many layers and a large receptive field, but it has limitations in capturing global information [45]. In contrast, 

MobileNet employs depthwise separable convolutions, reducing computational complexity and ensuring it is 

lightweight, swift, and precise [46]. In this paper, ResNet50 and MobileNetv2 are utilized as backbone 

feature extraction networks for addressing segmentation details and facilitating performance comparisons.  

a) ResNet50 as encoder 

ResNet, as an encoder, helps improve the accuracy of segmentation networks by retaining spatial 

information through increased parameters. It features various layers with differing convolutional and batch 

normalization counts, ResNet34 and ResNet50 being two widely used typical architectures that achieve 

feature map dimensionality reduction through spatial convolution, as shown in Figure 3 [47]. ResNet50 

demonstrates significant advantages in segmentation accuracy and mitigates the issue of vanishing gradients 

in deep networks. In this paper, ResNet50 is selected as the backbone network for comparative experiments. 
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Figure 3. ResNet34 and ResNet50 network structure diagram 
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b) Improved MobileNetv2 as encoder 

The backbone for feature extraction employs the lightweight neural network MobileNet, which 

minimizes the requirement for network parameters and enhances the network's real-time performance. 

MobileNet primarily exists in three versions: V1, V2, and V3. To balance algorithm accuracy and speed, this 

paper adopts MobileNetV2 as the backbone feature extraction network for the encoder. To this end, atrous 

convolutions are introduced into the Conv6 feature layer, while features from different layers of Conv5 and 

Conv6 are blended and superimposed. This approach strengthens inter-layer feature fusion without increasing 

the computational load, expands the receptive field, and reduces the loss of ambiguous information at edges. 

Figure 4 illustrates the structure of the improved encoder. 
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Figure 4. Improved MobileNetv2 encoder structure 

 

 

To prevent the gradient from vanishing, the MobileNetv2 network is designed with an inverted 

residual structure. Figure 5 shows the schematic diagram of the inverted residual convolution structure when 

the stride is 1. The process begins with 1×1 convolution to increase the dimension of the input features, 

followed by 3×3 spatial convolution to obtain more feature information, and finally concludes with a 1×1 

point-wise convolution to reduce the dimension and perform feature compression. This method effectively 

reduces the number of parameters by first increasing and then decreasing the dimension. In addition, at the 

end of the inverted residual structure, a linear activation function is used instead of the traditional rectified 

linear unit 6 (ReLU6) activation layer, which avoids the loss of information caused by the activation function 

in lower dimensions and improves the performance of the network. Furthermore, the combination of this 

inverted residual structure with depthwise separable convolutions further enhances computational efficiency 

and reduces model size, making MobileNetv2 highly suitable for echocardiographic segmentation tasks. 

This paper focuses on the short-axis 2D slice of the left ventricle in echocardiograms, which has 

natural spatial order and rich low-dimensional features. To boost MobileNetv2's feature extraction, atrous 

convolutions are introduced. These expand the convolution kernels' coverage without increasing complexity, 

capturing more detailed global information. Considering the size of the input feature map and the design 

principles of hybrid dilated convolution (HDC), the paper utilizes a series of three atrous convolutions [48]. 

The structure is shown in Figure 6. The dilation rate (r) represents the spacing between each pixel when the 

convolution kernel performs convolution calculations, and is set to 2, 3, and 5, respectively. This setup 

avoids the gridding effect while enhancing information utilization. In addition, combining MobileNetv2 with 

atrous convolutions facilitates the capture of subtle changes in left ventricular shape and function. 
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Figure 5. Inverted residual convolution structure 

 

Figure 6. Atrous convolution structure 
 

 

2.3.  Performance evaluation 

To measure the accuracy of echocardiographic left ventricular segmentation, we used three different 

metrics: Dice, Hausdorff distance (HD), and intersection over union (mIoU), as reported in [49]–[51]. These 

metrics were used to evaluate the segmentation accuracy. Let U={u1,u2,...,um} be the prediction area. Let 

R={r1,r2,...,rm} be the reference area.  

Dice is a measure of the similarity between two sets. It evaluates the similarity between the network 

prediction structure and the human annotation result. The segmentation task classifies the pixels in the image. 

Set similarity evaluates the similarity between two contours, generally requires the index to be greater than 

0.7, and the segmentation effect is relatively good. 
 

Dice=
2|𝑈∩𝑅|

|𝑈|+|𝑅|
 (1) 

 

HD is the maximum distance from one set to the nearest point in another set. Notably, this distance 

is directional; specifically, h (U, R) is not equal to h (R, U). H takes the larger of the two distances. For 

parameters that are sensitive to differences in location information, the smaller the value, the higher the 

degree of repetition. The calculation formula is as follows: HD=max[h (U, R),h (R, U)], set U={u1,u2,..., um}, 

R={r1,r2,..., rm}, where h used to calculate the one-way Hough distance between two surfaces. 
 

ℎ(R,U) = 𝑚𝑎𝑥
𝑢∈𝑈

{𝑚𝑖𝑛
𝑟∈𝑅

‖u-r‖} (2) 

 

ℎ(U,R) = 𝑚𝑎𝑥
𝑟∈𝑅

{𝑚𝑖𝑛
𝑢∈𝑈

‖r-u‖} (3) 

 

mIoU is the average of the intersection and union ratios across two categories: heart area and 

background area. Intersection over union (IoU) is used to measure the overlapping area of each category, 

IoU=intersection area of a certain category/union area of a certain category. mIoU is then computed as the 

sum of the IoUs of all categories divided by the number of categories. 
 

mIoU=
1

2
× (

𝑛ff

𝑡𝑓+𝑛bf
+

𝑛bb

𝑡𝑏+𝑛fb
) (4) 

 

Among them, nff represents the number of correctly classified foreground pixels, tf represents the number of 

pixels belonging to the foreground, nbf represents the number of incorrectly classified background pixels, nbb 

represents the number of correctly classified background pixels, tb represents the number of pixels belonging 

to the background, and the number of nfb represents the number of misclassified foreground pixels. 
 

 

3. RESULTS AND DISCUSSION 

This study replaced different backbone feature networks based on the traditional PSPNet algorithm 

and selected the convolution-based ResNet50 backbone network and the improved lightweight neural 

network MobileNetv2 to train the segmentation model. Two methods were used to initialize the weights of 
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the model: left ventricular echocardiography pre-training and natural image transfer. The impact of the two 

initialization methods of pre-training and transfer learning on model performance indicators was 

comparatively analyzed through experiments. 

The experiment is conducted on Kaggle using the PyTorch deep learning framework. The initial 

learning rate is 0.01, and the minimum learning rate is 0.0001. The optimizer employs stochastic gradient 

descent (SGD) with a momentum parameter of 0.9. The batch size is set to 8, and a cosine learning rate 

strategy is selected. The weight decay is configured as 0.0001. All these parameter settings are chosen based 

on tracking the model training process to enhance segmentation performance. Model segmentation 

performance evaluation is done through analysis of the Epoch_loss curve and Epoch_Miou for both the 

training set and validation set. 

During the model training process, the pre-trained model was first utilized to initialize the weights of 

the backbone feature extraction network of the segmentation model. The images in the data set are stored in 

VOC format and all images are resized uniformly to 473×473. The data set is divided into a training set and a 

validation set according to the ratio of 9:1. When ResNet50 is selected as the backbone network, the epoch=30 

and epoch=50 model training results (Epoch_loss and Epoch_Miou) are shown in Figures 7(a) and 7(b). When 

the backbone network uses the improved MobileNetv2, the epoch=30 and epoch=50 model training results 

(Epoch_loss and Epoch_Miou) are shown in Figures 8(a) and 8(b). The resultant diagram shows that when 

MobileNetV2, which incorporates dilated convolution and feature fusion, is used as the backbone feature 

extraction network, the segmentation model achieves convergence within 30 epochs. This is equivalent to the 

training effect of 50 epochs when ResNet50 is used as the backbone network. Additionally, a higher mean 

Miou value is achieved within 5 epochs. These results demonstrate significant performance advantages and 

faster convergence capabilities. 
 

 

  
(a) 

 

  
(b) 

 

Figure 7. ResNet50 backbone network for (a) Epoch=30 and (b) Epoch=50 
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(a) 

 

  
(b) 

 

Figure 8. MobileNetv2 backbone network for (a) Epoch=30 and (b) Epoch=50 

 

 

To further explore the specific impact of two different weight initialization schemes on the 

performance of the segmentation model, the initialization method of transfer learning was then used. 

Specifically, the model weights obtained by pre-training on a wide range of natural image datasets were used 

to conduct fine-weight initialization of the backbone feature extraction network in the segmentation model. 

The above model training experiments were continued to be repeated using both ResNet50 and the improved 

MobileNetv2 backbone networks, and when the backbone network selects ResNet50 with epochs set to 30, 

the random initialization and transfer initialization model training results (Epoch_loss and Epoch_Miou) are 

shown in Figures 9(a) and 9(b). When the backbone network uses the improved MobileNetv2 with epochs set 

to 30, the random initialization and transfer initialization model training results (Epoch_loss and 

Epoch_Miou) are shown in Figures 10(a) and 10(b). 

It can be observed from the training results of segmentation models initialized with different weights 

that the PSPNet segmentation model built using ResNet50 as the backbone network has significantly 

improved model performance, including convergence speed and segmentation accuracy, supported by two 

initialization schemes: pre-training and transfer learning. However, when the improved MobileNetv2 is used 

as the backbone network, the initialization method has little effect on the performance and convergence speed 

of the segmentation model. Even with random initialization, it outperforms the ResNet50-based PSPNet, 

achieving similar performance with 30 epochs compared to 50 for ResNet50. Due to its lightweight design, 

the improved MobileNetv2-based PSPNet reduces overall running time by 40% compared to the ResNet50-

based model. 

To verify the segmentation model's superiority, Table 1 summarizes the performance of VGG [41], 

Unet [42], Res_U [16], and improved PSPNet in left ventricular echocardiography segmentation, focusing on 

segmentation accuracy (assessed by Dice, HD, mIoU), processing time (a real-time performance measure), 

and segmentation effect (displayed visually). Notations 'T' and 'Q' denote pre-training and transfer learning 
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initializations, respectively. PSPNet_R, PSPNet_M, and PSPNet_MK use ResNet, MobileNetv2, and 

improved MobileNetv2 as backbones. 
 

 

  
(a) 

 

  

(b) 

 

Figure 9. ResNet50 backbone network for (a) random initialization and (b) transfer initialization 
 

 

The Res_U algorithm combines ResNet and Unet to optimize the network structure of the feature 

extraction part and capture more effective features that are beneficial to segmentation. Compared with the 

classic algorithms Unet and VGG, the segmentation effect is better, with Dice reaching 83% and mIoU 

reaching 84%. The paper studies the PSPNet_MK algorithm, which optimizes the encoding part of PSPNet's 

MobileNetv2 by incorporating a lightweight network model. Additionally, it introduces atrous convolution to 

integrate contextual information, thereby acquiring richer global information and achieving the highest Dice 

and mIoU values. Res_U offers a slight accuracy edge but the fastest prediction, balancing segmentation 

accuracy and efficiency. Notably, Pre-training and transfer learning enhance PSPNet_R's performance, with 

Dice increasing by 3.7%, HD decreasing by 0.6%, and mIoU increasing by 3.6%. When initialized with the 

same weights, MobileNetv2 runs significantly faster but achieves lower Dice (-2.5%) and mIoU (-1.2%) 

compared to ResNet50. By enhancing MobileNetv2 with atrous convolution, feature fusion, and an improved 

backbone, segmentation performance improved over ResNet with Dice +3.7%, mIoU +3.6%, and HD -0.6%. 

This achieved optimal segmentation without performance loss and reduced processing time by 33.4%. 

Real-time echocardiographic left ventricular segmentation is extremely challenging due to artifacts 

and speckle noise in images. Figure 11 provides a qualitative visual comparison of different image qualities, 

their corresponding segmentation masks, and prediction results. The Res_U model and the improved PSPNet 

model with MobileNetV2 as the backbone network achieve satisfactory segmentation results in the left 

ventricular region of echocardiography. It closely matches the segmentation mask in boundary accuracy and 

area overlap, especially outperforming classic VGG and Unet models in images with artifacts, noise, and 
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blurred anatomical boundaries. Improved PSPNet, studied in this paper, runs fastest, while VGG is slowest. 

Compared to Res_U, PSPNet shortens calculation time by 33.4% for the same results, balancing 

segmentation performance and speed, with good clinical potential. 

 

 

 
 

(a) 

 

 
 

(b) 

 

Figure 10. MobileNetv2 backbone network for (a) random initialization and (b) transfer initialization 

 

 

Table 1. Comparison of segmentation results under different configurations of PSPNet segmentation network 
Segmentation architecture Dice HD mIoU Processing time(s) 

VGG 

VGG 0.77 4.65 0.76 34.6 

VGG_T 0.79 4.61 0.79 33.2 

VGG_Q 0.79 4.63 0.78 33.7 

Unet 

Unet 0.78 4.69 0.76 27.4 

Unet_T 0.80 4.65 0.80 26.5 

Unet_Q 0.79 4.67 0.78 26.8 

Res_U 

Res_U 0.81 4.62 0.82 30.2 

Res_U_T 0.83 4.59 0.84 28.6 

Res_U_Q 0.82 4.60 0.83 29.4 

PSPNet 

PSPNet_R 0.79 4.61 0.82 27.8 

PSPNet_R_T 0.82 4.59 0.85 28.5 

PSPNet_R_Q 0.81 4.58 0.84 29.1 

PSPNet_M 0.77 4.55 0.81 19.6 

PSPNet_M_T 0.80 4.60 0.82 19.8 

PSPNet_M_Q 0.81 4.59 0.82 21.3 

PSPNet_MK 0.82 4.52 0.85 18.5 

PSPNet_MK_T 0.84 4.51 0.86 19.4 

PSPNet_MK_Q 0.83 4.50 0.85 20.2 
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Image1 label VGG Unet Res_U PSPNet_R PSPNet_MK 

       
Image2 label VGG Unet Res_U PSPNet_R PSPNet_MK 

       
Image3 label VGG Unet Res_U PSPNet_R PSPNet_MK 

       
Image4 label VGG Unet Res_U PSPNet_R PSPNet_MK 

 

Figure 11. Echocardiographic left ventricular segmentation results 

 

 

4. CONCLUSION 

This study is dedicated to solving the computational efficiency bottleneck problem caused by the 

pursuit of high accuracy in echocardiographic left ventricular segmentation algorithms. MobileNetv2 and 

atrous convolution are used to improve the PSPNet model, enhance global and local information acquisition, 

and optimize network performance and size for left ventricular segmentation in echocardiography. Compared 

with the classic segmentation algorithms FCN and Unet for echocardiography, the PSPNet_MK 

segmentation algorithm shows significant improvements in Dice coefficient and mIoU on the test set, is more 

accurate for speckle noise images, performs well in blurred boundaries and low-contrast scenes, and 

increases processing speed by 40%. Future research will expand the PSPNet network to the field of 3D 

echocardiography segmentation and optimize segmentation accuracy and efficiency, At the same time, image 

correlation is used to implement pre-training and transfer learning, and the impact of initialization methods 

on model segmentation capabilities is deeply explored. Despite the limitations faced when processing low-

quality images, the initialization strategy still needs to be optimized to enhance the robustness and 

generalization ability of the PSPNet algorithm and adapt to echocardiograms of different qualities and 

scenarios. Despite its limitations in processing low-quality images, optimization of the initialization strategy 

is still necessary to improve the robustness and generalization ability of the PSPNet algorithm and ensure that 

it can adapt to echocardiographic data of different qualities and scenarios. 
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