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The task of time series forecasting is important for many scientific, technical,
and applied fields, such as finance, economics, meteorology, medicine,
transportation, and telecommunications. EXxisting methods, such as
autoregressive models and moving average models, have their limitations,
especially when working with non-stationary and seasonal data. In this work,
the basic architecture of transformers was modified to solve time series
forecasting problems. Additionally, state-of-the-art optimizers were
investigated and experimentally compared, including AdamW, stochastic
gradient descent (SGD), and new methods such as schedule-free SGD and
schedule-free AdamW, to improve forecasting accuracy and the efficiency of
the training procedure for the transformer architecture. Modeling was
conducted on meteorological data that included seasonal time series. The
accuracy evaluation of the optimization methods studied in this work was
performed using a range of different performance indicators. The results
showed that the new optimization methods significantly improve forecasting
accuracy compared to the use of traditional optimizers.
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1. INTRODUCTION

Time series forecasting is a relevant and extremely important task in various scientific, technical, and
applied fields [1]. This task arises in the context of disciplines such as finance, economics, meteorology,
medicine, transportation, telecommunications, and many others, where predicting future values of specific
variables based on their historical data is necessary [2], [3]. The accuracy of solving the time series forecasting
problem plays an important role and has a direct impact on the efficiency and economic benefit of decisions
made. Particularly in the field of meteorology, the accuracy of weather forecasts is critically important for
predicting natural disasters and planning activities in various sectors of the economy [4]. This task is an integral
part of effective resource management and strategic planning.

Time series forecasting is a complex task due to the large number of factors affecting data variability
and their interrelationships [5]. In particular, seasonal fluctuations, trends, random deviations, and other
components can significantly complicate the forecasting process [6]-[8]. One of the important tasks is to
adequately account for all these factors when building a time series forecasting model [9], [10]. Imperfection
of data, the presence of noise, and gaps in the data can also reduce the accuracy of forecasts [11], [12].
In addition, the speed of changes in the environment or market may require constant updating of models and
their adaptation to new conditions [13], [14].
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As of today, there are many methods for time series forecasting [15]. Among them, traditional
statistical methods should be highlighted, such as autoregressive models [16], moving average models [17],
and their combinations, in particular autoregressive integrated moving average (ARIMA) [18], and other
artificial neural networks (ANNSs) [19]-[22]. Specifically, the latter method assumes a linear relationship
between past and future values. However, weather patterns often exhibit non-linear behaviors due to the
complex interactions between various atmospheric variables, which ARIMA models cannot capture effectively
[23]. In addition, ARIMA models can become overly complex and computationally intensive when dealing
with multiple seasonal patterns, which are common in weather data. In general, these methods work well for
forecasting stationary processes, but weather data often exhibit seasonality and trends, requiring extensive
pre-processing to achieve stationarity, which can be challenging and sometimes inadequate [24]. That's why
these methods impose a number of limitations when forecasting complex, non-stationary time series.

The rapid development of machine learning technologies has led to the emergence of new, more
powerful time series forecasting methods, such as neural networks [13], gradient boosting [25], and ensemble
methods [26], [27]. In particular, recurrent neural networks (RNN) and long short-term memory (LSTM) have
become popular for time series forecasting due to their ability to account for dependencies over large time
intervals. However, they have a number of drawbacks. Specifically, RNNs often face problems of vanishing
or exploding gradients during training, which complicates the training of models on long time series [28]. This
leads to the model potentially losing information about previous states or becoming unstable. The effectiveness
of LSTM strongly depends on the choice of hyperparameters (e.g., number of layers, memory cell size, and
learning rates). Incorrect choice of hyperparameters can lead to poor model performance [29]. That's why,
recently, transformers have become widely used-models that were initially developed for natural language
processing [30]. They allow accounting for relationships between data at different time scales and provide high
forecast accuracy.

The emergence of ANN for deep learning based on the transformer architecture opens up many new
possibilities for solving various applied problems. Although the basic architecture of such ANNs is designed
for natural language processing [31], there are many other tasks where this architecture can demonstrate
significant advantages when applied, one of which is time series prediction. This gives rise to the first task of
this study-modifying the basic architecture of transformers [31] to be able to solve time series forecasting
problems. This is especially useful when we have a huge amount of cyclical data, such as in meteorology.
Taking into account the volume of transformer-based forecasting models, it is important not only to have the
correct model architecture but also to use the best optimizer during the training of such a model [32], [33].
The model architecture plays a significant role as it determines how information is processed and represented.
However, even the best architecture may not achieve the expected results without proper tuning and
optimization. An optimizer is an algorithm used to adjust the weights of a neural network to minimize the loss
function [32]. The choice of optimizer can have a big impact on convergence speed, training stability, and final
model accuracy.

There are many different optimizers, each with its own advantages and disadvantages. For example,
stochastic gradient descent (SGD) is one of the simplest and most frequently used optimizers [34]. It is effective
for large datasets but can suffer from slow convergence and get stuck in local minima. Adaptive methods,
such as Adam, root mean square propagation (RMSprop), and adaptive gradient algorithm (AdaGrad), use
different approaches to adjust the learning rate of each parameter, which can lead to faster and more stable
convergence. In particular, RMSprop maintains an adaptive learning rate that changes for each parameter based
on the average square of previous gradients [35]. This helps avoid the problem of large or small learning rates,
which can be useful for models with high variability in parameter scale. RMSprop has several drawbacks that
can affect optimization efficiency. One of the main problems is the bias in moment estimates due to the use of
exponential smoothing to calculate the average square of gradients. This bias is particularly noticeable in the
early stages of training and can negatively affect the initial phase of optimization. Additionally, RMSprop can
be sensitive to initial conditions, meaning incorrect weight initialization can lead to convergence problems and
getting stuck in local minima. Another important issue is the dependence on batch size. An inappropriate batch
size can affect the calculation of the average square of gradients and overall optimization efficiency.
AdaGrad modifies the learning rate based on the frequency of parameter updates, allowing rarely updated
parameters to have a higher learning rate [36]. However, over time, the learning rate can decrease to very small
values, which can slow down learning. Adaptive moment estimation (Adam) is one of the most popular
optimizers that combines the advantages of both AdaGrad and RMSprop. It uses both the first moment (mean
of gradients) and the second moment (mean of squared gradients) to dynamically adjust the learning rate [37].
This allows faster reaching of the loss function minimum, especially in the early stages of training. The Adam
optimizer also has its drawbacks that should be considered. Similar to RMSprop, Adam uses exponential
smoothing to calculate the first and second moments of gradients, which can lead to biased estimates in the
early stages of training and affect optimization stability. Although Adam works well on many tasks, it may
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show poor generalization on test data. This is because adaptive methods can overfit to training data, especially

if it contains noise. Adam'’s excessive adaptivity can lead to unstable convergence and getting stuck in local

minima, which is especially problematic for complex or very noisy tasks. Additionally, Adam requires more
computational resources compared to simpler methods like SGD, which can be a problem for large models or
large datasets.

In general, the choice of optimizer depends on the specific task, model architecture, and dataset [30],
[38]. An incorrect choice can lead to prolonged training, instability, or unsatisfactory results. As a result,
success in time series forecasting depends not only on the model architecture but also on the effective choice
of optimizer, which underscores the importance of its use when creating highly effective forecasting models
based on artificial neural networks. Therefore, the second task of this study arises, which involves the correct
selection of an optimizer for the modified transformer model that would provide the best model performance
characteristics according to user-selected criteria.

That is why this work aims to modify the basic architecture of transformers to solve time series
forecasting problems and to select, study, and experimentally analyze the latest optimization methods to
improve the efficiency of the modified time series forecasting model in meteorology. The main contributions
of this paper are the following:

— We modified the architecture of the transformer model by removing the tokenizer and embedding layer, as
well as replacing positional encoding with sinusoidal positional encoding and batch normalization with
layer normalization, which enabled effective solving of time series forecasting tasks in the case of analyzing
a large amount of data with pronounced seasonality.

— We selected, studied, and conducted an experimental comparison of a number of state-of-the-art optimizers,
especially their schedule-free versions, to improve forecasting accuracy and reduce the size of the modified
transformer model and, accordingly, its training time when solving seasonal time series forecasting
problems in the field of meteorology.

The paper is structured as follows: section 2 presents the madification of the transformer model for
solving the time series forecasting problem, its architecture is presented, all changes made and their advantages
are explained. This section also describes the principles of operation, advantages, and disadvantages of a
number of state-of-the-art optimizers that were used in practical research to improve the efficiency of using the
modified transformer model. Section 3 provides a description of the dataset used for modeling, indicators of
the effectiveness of using the transformer model. Also, here, modeling of the work of a number of studied
optimizers is carried out and the results of their work are summarized based on several criteria. A comparison
of their work is performed and the choice of the best of them for practical implementation and use of the
modified transformer model for forecasting seasonal time series in the field of meteorology is justified.
Section 4 presents conclusions on the obtained results and describes prospects for further research.

2. METHODS

This section presents a modification of the transformer model for solving the time series forecasting
problem, as well as the principles of operation, advantages, and disadvantages of a number of state-of-the-art
optimizers for this model.

2.1. Modified architecture of the transformers for solving time series forecasting tasks

The transformer architecture has become one of the most popular methods in machine learning,
especially in natural language processing [31]. Transformers are used in tasks such as text translation, question
answering, and sentiment analysis, due to their ability to efficiently process long sequences of data and capture
dependencies between distant elements. The main components of a transformer are the encoder and decoder,
which allow the model to understand the context and structure of input data [31].

Transformers can also be effectively applied to time series forecasting. This is especially useful when
analyzing many time series related to a single topic, such as weather conditions. In the case of weather
forecasting, we have various variables such as temperature, humidity, atmospheric pressure, and precipitation,
which interact with each other and have complex time dependencies. Transformers allow the model to capture
these dependencies and use them for accurate prediction of future values.

The structure and main components of the modified transformer architecture for the time series
forecasting task, including the encoder and decoder, are presented in Figure 1. It's worth noting a number of
differences from the classic transformer architecture [31]:

— Removal of the tokenizer. In the classic transformer architecture, the tokenizer is used to convert input data
into tokens. In the adapted architecture, this component was removed, simplifying the model and reducing
its computational complexity.

Schedule-free optimization of the transformers-based time series forecasting model (Kyrylo Yemets)
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— Removal of the embedding layer. In the classic architecture, the embedding layer is used to convert tokens
into fixed-dimension vectors. In the adapted architecture, this layer was also removed, further simplifying
the model.

— Sinusoidal positional encoding. Instead of traditional positional encoding, sinusoidal positional encoding
was used. This encoding has no learnable parameters and is specifically designed to better reflect the
characteristics of time sequences. It naturally gives more weight to recent elements and allows the model
to preserve the order of data in the time sequence, which is critically important when analyzing time series.

— Layer normalization. In the classic architecture, batch normalization is often used, which normalizes the
outputs of previous layers using statistics from the entire batch of data. However, for models working with
time series, this approach may not be the best choice. Using layer normalization in the adapted architecture
ensures training stability, as the normalization of outputs is carried out exclusively based on the distribution
moments of a single layer and does not depend on the batch size. This mitigates problems associated with
accounting for possible seasonal or cyclical components of time series.

Encoder Decoder

fully connected multi-head
network attention

multi-head
attention

multi-head

attention

historical values forecasted values

Figure 1. The modified architecture of the transformer model for time series forecasting

Removing the tokenizer and embedding layer, which are typically used for natural language
processing, allows simplifying the model and reducing its computational complexity. Using sinusoidal
positional encoding in the adapted architecture for time series forecasting provides better representation of the
data sequence and preservation of their order. Layer normalization, in turn, provides greater training stability,
regardless of the batch size, which is especially important when working with time series. All these changes
make the adapted transformer architecture more adaptive and robust for analyzing various dynamic properties
of data, improving overall accuracy and computational efficiency. This allows obtaining more accurate
forecasts and reducing computational costs, which is important when solving time series forecasting problems.

2.2. Classical and state-of-the-arts optimizers for artificial neural networks

An important component of a highly effective time series forecasting model based on transformers is
the optimizer it uses. In this paper, the effectiveness of several classical and completely new [31] optimization
methods developed in 2024 was investigated. One of the classical optimizers used during the training of
artificial neural networks is the SGD method. This method involves updating the model parameters based on
the gradients of the loss function concerning the model parameters [34]. In the SGD method, parameter updates
are carried out for each individual sample (or small batch of samples) from the training dataset. The update
formula in this case looks like this [34]:

O¢p1 = 0; —1n X grad(L;(0,)) ()

The SGD method has several important advantages [34]. Firstly, it is characterized by high speed, as
parameter updates are carried out after each sample or small batch of samples. This makes it significantly faster
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than classical gradient descent, especially for large datasets. Secondly, the method is memory efficient, as it
requires less memory, processing small portions of data at a time. However, the method also has certain
disadvantages [34]. For example, parameter updates can be very noisy, which can lead to significant
fluctuations in the loss function. Additionally, choosing the correct learning rate is critically important. Too
high or too low learning rate can lead to convergence problems, complicating the model training process.

A new version of this method called schedule-free SGD [39], which was developed in 2024, aims to
remove these drawbacks. One of the main advantages of schedule-free SGD is that it eliminates the need to
adjust the learning rate. In classical SGD, this parameter requires careful tuning and may require the use of
additional methods, such as learning rate schedulers, to dynamically change the learning rate during the
optimization process. In schedule-free SGD, this necessity disappears, simplifying the model tuning process
and reducing preparation time. In particular, its implementation can be described as follows [39]:

Ve =A-B)z + Bx, )
Zip1 = 2 — ¥ X grad(f (Ve Se)) 3)
Xepr = (L= Cey1) Xt + Crp1Ze41 4)

One of the widely used optimization methods is adaptive moment estimation with weight decay
(AdamWw), which is an improved version of the popular Adam optimizer, developed to solve problems related
to weight regularization in neural networks [38]. The main idea of AdamW is to separate the process of weight
updating and regularization, which allows avoiding some of the drawbacks of the original Adam algorithm
[40]. Like Adam, AdamW combines ideas from AdaGrad and RMSprop methods for adaptive learning rate
adjustment for each parameter. However, unlike Adam, AdamW applies weight regularization separately from
gradient updates, providing better convergence and efficiency.

At each iteration, the AdamW optimizer calculates the gradient to minimize the function. The
pseudocode for AdamW is shown in Figure 2. Then we update the weights taking into account weight
regularization [39]:

Op < 0ty —yAO:_4 ©)

After that updating momentum of first and second order [39]:

my < fime—y + (1= B1)ge (6)

Ve < Boveoy + (1= Br)gf O
After this, bias-corrected momentums:

m, < m./(1— pr) ®)

U — v /(1= B3) 9)

And we update the weights again considering the momentums:

0, « 0, —ym,/(\JT, + €) (10)

AdamW has several important advantages. Firstly, thanks to the separation of weight updates and
regularization, more stable and fast learning is ensured, contributing to better convergence. Secondly, effective
weight regularization occurs separately, which allows avoiding problems associated with excessive weight
regularization. Thirdly, like Adam, AdamW automatically adjusts the learning rate for each parameter, making
it effective for different types of tasks. However, AdamW also has disadvantages. For example, proper tuning
of hyperparameters can be difficult, as with other adaptive optimizers. Additionally, AdamW requires more
computational resources compared to simpler methods such as SGD.

This problem of AdamW, such as hyperparameter tuning, is solved by its schedule-free modification,
and this is how the modified schedule-free version of AdamW looks. In this version of the optimizer, the
calculation of the second-order moment is replaced by a combination of interpolations and averages. The added
version looks like this [39]:

Ye =y Xmin(l, t/Twarmup) 11)
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Zty1 = Zt — ytgt/(\/vrt +€) = Ve Ay: (12)

__ vt 13
Cerr =37 7 13)
Xepr = (L= Ceqn) Xt + Crp1Zi41 (14)

These optimizers described above were used in this work to conduct experimental studies to determine the best
of them when solving the time series forecasting problem based on the modified transformer model.

3. RESULTS AND DISCUSSION

The transformer model for time series forecasting with different optimizers was trained on a weather
dataset [41]. This dataset contains 3010 daily time series representing changes in four weather variables: rain,
minimum temperature, maximum temperature, and solar radiation, measured at meteorological stations in
Australia. This dataset, provided by the Australian Bureau of Meteorology (BoM), includes current weather
data for specific stations, daily forecasts for all Australian forecast locations, agricultural bulletins with
summarized weather observations for each state or territory, and satellite images in GeoTIFF format. The
dataset is available in XML and JSON formats and can be accessed through an anonymous FTP server. The
dataset is well-structured and offers features for automatic retrieval and parsing of data into ordered dataframes.
The data has applications in agriculture, mapping renewable energy potential, and planning for municipalities
regarding extreme weather events and infrastructure needs.

Experimental studies on the effectiveness of different optimizers were performed by running the model
and the corresponding optimizer with different context lengths. It was a multiple of the seasonality of the data
in the dataset, which essentially represents one month. Thus, the transformer model was trained on lengths of
30, 60, and 90 days. The evaluation of the model's performance was based on the following indicators [27], [34]:
Mean absolute error (MAE):

MAE = % ™. lactual; — forecast;| (15)
— Mean square error (MSE):
MSE =% ™, (forecast; — actual;)? (16)

— Root mean square error (RMSE):

RMSE = J%Z?ﬂ (forecast; — actual;)? 17)

— Symmetric mean absolute percentage error (SMAPE):

_1 n |forecast;—actual;|
SMAPE = n“=1 (|forecast;|+|actual;|)/2 (18)
— Mean absolute scaled error (MASE):
MASE = 1 ?:1 |forecastl-—acl?uali| (19)
n |actual;—previous;|

We also used the number of trainable model parameters, expressed in thousands, which can show how
many resources we will need for its training and what the delay will be when executed in a production
environment. The results of the experiments based on all the above performance indicators are presented in
Table 1. The obtained results show that the SGD optimizer gives the worst results. For example, for a context
length of 60 days, the MASE value is 4.34, which is significantly worse compared to other optimizers. Using
the schedule-free SGD optimizer improves these indicators, reducing MASE to 1.116 for the same context
length, which is an improvement of approximately 74%. The AdamW optimizer shows better results compared
to schedule-free SGD, with a MASE value of 0.954 for a 60-day context length, which is an improvement of
14%. However, the best results are demonstrated by the schedule-free AdamW optimizer, where for a 60-day
context length, MASE is 0.987, which is slightly worse than AdamW, but overall shows stable results for all
context lengths. Thus, from the point of view of stability and overall efficiency, schedule-free AdamW is the
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best choice among all tested optimizers. However, if we consider the results in terms of SMAPE, the schedule-
free SGD optimizer demonstrates the best performance. For example, for a 30-day context length, SMAPE is
0.651, which is better than all other optimizers. For 60-day and 90-day context lengths, SMAPE also remains
lower than other optimizers, making schedule-free SGD the best choice for the SMAPE metric.

Table 1. Efficiency estimates of the transformer model in solving the time series forecasting problem using

different optimizers studied in the work
Context length  MASE SMAPE  MAE MSE RMSE  Model size
Schedule-free AdamW optimizer

30 0.94 0.691  2.041 17.606 2.832 80359
60 0.987 0.691  2.154 18.781 2.963 82279
90 0.931 0.686  2.046 17.83 2.836 84199
AdamW optimizer
30 1.206 0.666  2.295 19.248 3.056 80359
60 0.954 0.703  2.071 17.955 2.87 82279
90 1.063 0.7 2.307 20.074 3.148 84199
Schedule-free SGD optimizer
30 1.122 0.651 2.556 20.486 3.203 80359
60 1.116 0.658 2574 20.222 3.238 82279
90 1.184 0.652 2,621 20.669 3.296 84199
SGD optimizer
30 1.236 0.724 2.655 21.834 3.489 80359
60 4.34 1.378 7.704 107.351 8.632 82279
90 1.573 0.703 2792 2333 3.593 84199

Figure 2 shows a comparative graph of optimizers with different context sizes, relative to two key
metrics: MASE and SMAPE. The size of each point corresponds to the number of model parameters. The
closer the point is to the origin of the coordinate system, the better it is suited for model training. As can be
seen from the graph, the schedule-free versions of SGD and AdamW performed the best. Depending on which
metric is prioritized, there will be different results. For MASE, it's schedule-free AdamW, and for SMAPE, it's
schedule-free SGD. In the future, we can investigate how schedule-free optimizers affect the confidence
interval of time series model predictions.

Optimizer Comparison with Different Context Windows

SGD - 30d

0.72 4

0.711

AdamW - 60d SGD - 90d
0.70 4 AdamW - 90d

Ad mWSChwmhiﬂd\eﬁee - 60d

AdamWscheduleFree - 90d

0.67 4

AdamW'- 30d

0.66
SGDschedulefree - 60d

sGDschedulefros 3odcdUleFree - 90d

0.65 1

0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6
MASE

Figure 2. Graph with comparison of optimizers by SMAPE and MASE metrics
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Future research will address several key areas to enhance the accuracy and applicability of forecasting
models. Firstly, while current studies have utilized a single dataset, future work will expand this research to
include multiple datasets, allowing for more robust and generalizable findings. Additionally, the impact of
confidence interval magnitude on forecasting accuracy has not yet been explored as a distinct parameter;
investigating this aspect could provide valuable insights. Research will also focus on identifying the most
effective optimizers for improving forecast performance. Another promising avenue for future research is the
development of transformer-based ensemble models, which could significantly enhance forecast accuracy
across various application areas [42].

4. CONCLUSION

Time series forecasting is extremely important in various scientific, technical, and applied fields such
as finance, economics, meteorology, medicine, transportation, and telecommunications. This task helps predict
future values of variables based on their historical data, which has a direct impact on the efficiency and
economic benefit of decisions made. In meteorology, the accuracy of weather forecasts is critically important
for predicting natural disasters and planning activities in various sectors of the economy. In this paper, the basic
architecture of transformers was modified to solve time series forecasting problems. The removal of the
tokenizer and embedding layer, as well as the replacement of positional encoding with sinusoidal positional
encoding and batch normalization with layer normalization, provided the ability to work with data with
pronounced seasonality. State-of-the-art optimizers, especially their schedule-free versions, were studied and
experimentally compared to improve forecasting accuracy and reduce the size of the transformer model and its
training time. Modeling was conducted by using the modified transformer architecture based on a large set of
meteorological data, which includes various variables such as temperature, humidity, atmospheric pressure,
and precipitation. The data was pre-processed to remove noise and gaps. The model was trained on historical
data with different context window sizes and for each optimizer, after which testing was conducted on new
data to evaluate the accuracy of forecasts. The results of different optimizers were compared based on criteria
such as SMAPE, MASE, MAE, MSE, and RMSE. The results showed that the modified schedule-free
optimizers significantly improved the accuracy of seasonal time series forecasting compared to classical
methods. The most relevant are both schedule-free SGD and schedule-free AdamW. As a result of comparing
optimizers, schedule-free AdamW proved to be the best. As can be seen from the results in the table, with this
optimizer, the model shows the best metrics with the smallest context, which also makes the model smaller and
thus faster both during training and inference.
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