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 The task of time series forecasting is important for many scientific, technical, 

and applied fields, such as finance, economics, meteorology, medicine, 

transportation, and telecommunications. Existing methods, such as 

autoregressive models and moving average models, have their limitations, 

especially when working with non-stationary and seasonal data. In this work, 

the basic architecture of transformers was modified to solve time series 

forecasting problems. Additionally, state-of-the-art optimizers were 

investigated and experimentally compared, including AdamW, stochastic 

gradient descent (SGD), and new methods such as schedule-free SGD and 

schedule-free AdamW, to improve forecasting accuracy and the efficiency of 

the training procedure for the transformer architecture. Modeling was 

conducted on meteorological data that included seasonal time series. The 

accuracy evaluation of the optimization methods studied in this work was 

performed using a range of different performance indicators. The results 

showed that the new optimization methods significantly improve forecasting 

accuracy compared to the use of traditional optimizers. 
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1. INTRODUCTION 

Time series forecasting is a relevant and extremely important task in various scientific, technical, and 

applied fields [1]. This task arises in the context of disciplines such as finance, economics, meteorology, 

medicine, transportation, telecommunications, and many others, where predicting future values of specific 

variables based on their historical data is necessary [2], [3]. The accuracy of solving the time series forecasting 

problem plays an important role and has a direct impact on the efficiency and economic benefit of decisions 

made. Particularly in the field of meteorology, the accuracy of weather forecasts is critically important for 

predicting natural disasters and planning activities in various sectors of the economy [4]. This task is an integral 

part of effective resource management and strategic planning. 

Time series forecasting is a complex task due to the large number of factors affecting data variability 

and their interrelationships [5]. In particular, seasonal fluctuations, trends, random deviations, and other 

components can significantly complicate the forecasting process [6]–[8]. One of the important tasks is to 

adequately account for all these factors when building a time series forecasting model [9], [10]. Imperfection 

of data, the presence of noise, and gaps in the data can also reduce the accuracy of forecasts [11], [12].  

In addition, the speed of changes in the environment or market may require constant updating of models and 

their adaptation to new conditions [13], [14]. 

https://creativecommons.org/licenses/by-sa/4.0/
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As of today, there are many methods for time series forecasting [15]. Among them, traditional 

statistical methods should be highlighted, such as autoregressive models [16], moving average models [17], 

and their combinations, in particular autoregressive integrated moving average (ARIMA) [18], and other 

artificial neural networks (ANNs) [19]–[22]. Specifically, the latter method assumes a linear relationship 

between past and future values. However, weather patterns often exhibit non-linear behaviors due to the 

complex interactions between various atmospheric variables, which ARIMA models cannot capture effectively 

[23]. In addition, ARIMA models can become overly complex and computationally intensive when dealing 

with multiple seasonal patterns, which are common in weather data. In general, these methods work well for 

forecasting stationary processes, but weather data often exhibit seasonality and trends, requiring extensive  

pre-processing to achieve stationarity, which can be challenging and sometimes inadequate [24]. That's why 

these methods impose a number of limitations when forecasting complex, non-stationary time series. 

The rapid development of machine learning technologies has led to the emergence of new, more 

powerful time series forecasting methods, such as neural networks [13], gradient boosting [25], and ensemble 

methods [26], [27]. In particular, recurrent neural networks (RNN) and long short-term memory (LSTM) have 

become popular for time series forecasting due to their ability to account for dependencies over large time 

intervals. However, they have a number of drawbacks. Specifically, RNNs often face problems of vanishing 

or exploding gradients during training, which complicates the training of models on long time series [28]. This 

leads to the model potentially losing information about previous states or becoming unstable. The effectiveness 

of LSTM strongly depends on the choice of hyperparameters (e.g., number of layers, memory cell size, and 

learning rates). Incorrect choice of hyperparameters can lead to poor model performance [29]. That's why, 

recently, transformers have become widely used-models that were initially developed for natural language 

processing [30]. They allow accounting for relationships between data at different time scales and provide high 

forecast accuracy. 

The emergence of ANN for deep learning based on the transformer architecture opens up many new 

possibilities for solving various applied problems. Although the basic architecture of such ANNs is designed 

for natural language processing [31], there are many other tasks where this architecture can demonstrate 

significant advantages when applied, one of which is time series prediction. This gives rise to the first task of 

this study-modifying the basic architecture of transformers [31] to be able to solve time series forecasting 

problems. This is especially useful when we have a huge amount of cyclical data, such as in meteorology. 

Taking into account the volume of transformer-based forecasting models, it is important not only to have the 

correct model architecture but also to use the best optimizer during the training of such a model [32], [33].  

The model architecture plays a significant role as it determines how information is processed and represented. 

However, even the best architecture may not achieve the expected results without proper tuning and 

optimization. An optimizer is an algorithm used to adjust the weights of a neural network to minimize the loss 

function [32]. The choice of optimizer can have a big impact on convergence speed, training stability, and final 

model accuracy. 

There are many different optimizers, each with its own advantages and disadvantages. For example, 

stochastic gradient descent (SGD) is one of the simplest and most frequently used optimizers [34]. It is effective 

for large datasets but can suffer from slow convergence and get stuck in local minima. Adaptive methods,  

such as Adam, root mean square propagation (RMSprop), and adaptive gradient algorithm (AdaGrad), use 

different approaches to adjust the learning rate of each parameter, which can lead to faster and more stable 

convergence. In particular, RMSprop maintains an adaptive learning rate that changes for each parameter based 

on the average square of previous gradients [35]. This helps avoid the problem of large or small learning rates, 

which can be useful for models with high variability in parameter scale. RMSprop has several drawbacks that 

can affect optimization efficiency. One of the main problems is the bias in moment estimates due to the use of 

exponential smoothing to calculate the average square of gradients. This bias is particularly noticeable in the 

early stages of training and can negatively affect the initial phase of optimization. Additionally, RMSprop can 

be sensitive to initial conditions, meaning incorrect weight initialization can lead to convergence problems and 

getting stuck in local minima. Another important issue is the dependence on batch size. An inappropriate batch 

size can affect the calculation of the average square of gradients and overall optimization efficiency.  

AdaGrad modifies the learning rate based on the frequency of parameter updates, allowing rarely updated 

parameters to have a higher learning rate [36]. However, over time, the learning rate can decrease to very small 

values, which can slow down learning. Adaptive moment estimation (Adam) is one of the most popular 

optimizers that combines the advantages of both AdaGrad and RMSprop. It uses both the first moment (mean 

of gradients) and the second moment (mean of squared gradients) to dynamically adjust the learning rate [37]. 

This allows faster reaching of the loss function minimum, especially in the early stages of training. The Adam 

optimizer also has its drawbacks that should be considered. Similar to RMSprop, Adam uses exponential 

smoothing to calculate the first and second moments of gradients, which can lead to biased estimates in the 

early stages of training and affect optimization stability. Although Adam works well on many tasks, it may 
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show poor generalization on test data. This is because adaptive methods can overfit to training data, especially 

if it contains noise. Adam's excessive adaptivity can lead to unstable convergence and getting stuck in local 

minima, which is especially problematic for complex or very noisy tasks. Additionally, Adam requires more 

computational resources compared to simpler methods like SGD, which can be a problem for large models or 

large datasets. 

In general, the choice of optimizer depends on the specific task, model architecture, and dataset [30], 

[38]. An incorrect choice can lead to prolonged training, instability, or unsatisfactory results. As a result, 

success in time series forecasting depends not only on the model architecture but also on the effective choice 

of optimizer, which underscores the importance of its use when creating highly effective forecasting models 

based on artificial neural networks. Therefore, the second task of this study arises, which involves the correct 

selection of an optimizer for the modified transformer model that would provide the best model performance 

characteristics according to user-selected criteria. 

That is why this work aims to modify the basic architecture of transformers to solve time series 

forecasting problems and to select, study, and experimentally analyze the latest optimization methods to 

improve the efficiency of the modified time series forecasting model in meteorology. The main contributions 

of this paper are the following: 

− We modified the architecture of the transformer model by removing the tokenizer and embedding layer, as 

well as replacing positional encoding with sinusoidal positional encoding and batch normalization with 

layer normalization, which enabled effective solving of time series forecasting tasks in the case of analyzing 

a large amount of data with pronounced seasonality. 

− We selected, studied, and conducted an experimental comparison of a number of state-of-the-art optimizers, 

especially their schedule-free versions, to improve forecasting accuracy and reduce the size of the modified 

transformer model and, accordingly, its training time when solving seasonal time series forecasting 

problems in the field of meteorology. 

The paper is structured as follows: section 2 presents the modification of the transformer model for 

solving the time series forecasting problem, its architecture is presented, all changes made and their advantages 

are explained. This section also describes the principles of operation, advantages, and disadvantages of a 

number of state-of-the-art optimizers that were used in practical research to improve the efficiency of using the 

modified transformer model. Section 3 provides a description of the dataset used for modeling, indicators of 

the effectiveness of using the transformer model. Also, here, modeling of the work of a number of studied 

optimizers is carried out and the results of their work are summarized based on several criteria. A comparison 

of their work is performed and the choice of the best of them for practical implementation and use of the 

modified transformer model for forecasting seasonal time series in the field of meteorology is justified.  

Section 4 presents conclusions on the obtained results and describes prospects for further research. 

 

 

2. METHODS 

This section presents a modification of the transformer model for solving the time series forecasting 

problem, as well as the principles of operation, advantages, and disadvantages of a number of state-of-the-art 

optimizers for this model. 

 

2.1.  Modified architecture of the transformers for solving time series forecasting tasks 

The transformer architecture has become one of the most popular methods in machine learning, 

especially in natural language processing [31]. Transformers are used in tasks such as text translation, question 

answering, and sentiment analysis, due to their ability to efficiently process long sequences of data and capture 

dependencies between distant elements. The main components of a transformer are the encoder and decoder, 

which allow the model to understand the context and structure of input data [31]. 

Transformers can also be effectively applied to time series forecasting. This is especially useful when 

analyzing many time series related to a single topic, such as weather conditions. In the case of weather 

forecasting, we have various variables such as temperature, humidity, atmospheric pressure, and precipitation, 

which interact with each other and have complex time dependencies. Transformers allow the model to capture 

these dependencies and use them for accurate prediction of future values. 

The structure and main components of the modified transformer architecture for the time series 

forecasting task, including the encoder and decoder, are presented in Figure 1. It's worth noting a number of 

differences from the classic transformer architecture [31]: 

− Removal of the tokenizer. In the classic transformer architecture, the tokenizer is used to convert input data 

into tokens. In the adapted architecture, this component was removed, simplifying the model and reducing 

its computational complexity. 
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− Removal of the embedding layer. In the classic architecture, the embedding layer is used to convert tokens 

into fixed-dimension vectors. In the adapted architecture, this layer was also removed, further simplifying 

the model. 

− Sinusoidal positional encoding. Instead of traditional positional encoding, sinusoidal positional encoding 

was used. This encoding has no learnable parameters and is specifically designed to better reflect the 

characteristics of time sequences. It naturally gives more weight to recent elements and allows the model 

to preserve the order of data in the time sequence, which is critically important when analyzing time series. 

− Layer normalization. In the classic architecture, batch normalization is often used, which normalizes the 

outputs of previous layers using statistics from the entire batch of data. However, for models working with 

time series, this approach may not be the best choice. Using layer normalization in the adapted architecture 

ensures training stability, as the normalization of outputs is carried out exclusively based on the distribution 

moments of a single layer and does not depend on the batch size. This mitigates problems associated with 

accounting for possible seasonal or cyclical components of time series. 
 

 

 
 

Figure 1. The modified architecture of the transformer model for time series forecasting 
 

 

Removing the tokenizer and embedding layer, which are typically used for natural language 

processing, allows simplifying the model and reducing its computational complexity. Using sinusoidal 

positional encoding in the adapted architecture for time series forecasting provides better representation of the 

data sequence and preservation of their order. Layer normalization, in turn, provides greater training stability, 

regardless of the batch size, which is especially important when working with time series. All these changes 

make the adapted transformer architecture more adaptive and robust for analyzing various dynamic properties 

of data, improving overall accuracy and computational efficiency. This allows obtaining more accurate 

forecasts and reducing computational costs, which is important when solving time series forecasting problems. 

 

2.2.  Classical and state-of-the-arts optimizers for artificial neural networks 

An important component of a highly effective time series forecasting model based on transformers is 

the optimizer it uses. In this paper, the effectiveness of several classical and completely new [31] optimization 

methods developed in 2024 was investigated. One of the classical optimizers used during the training of 

artificial neural networks is the SGD method. This method involves updating the model parameters based on 

the gradients of the loss function concerning the model parameters [34]. In the SGD method, parameter updates 

are carried out for each individual sample (or small batch of samples) from the training dataset. The update 

formula in this case looks like this [34]: 
 

𝜃𝑡+1 = 𝜃𝑡 − 𝜂 × 𝑔𝑟𝑎𝑑(𝐿𝑖(𝜃𝑡)) (1) 
 

The SGD method has several important advantages [34]. Firstly, it is characterized by high speed, as 

parameter updates are carried out after each sample or small batch of samples. This makes it significantly faster 
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than classical gradient descent, especially for large datasets. Secondly, the method is memory efficient, as it 

requires less memory, processing small portions of data at a time. However, the method also has certain 

disadvantages [34]. For example, parameter updates can be very noisy, which can lead to significant 

fluctuations in the loss function. Additionally, choosing the correct learning rate is critically important. Too 

high or too low learning rate can lead to convergence problems, complicating the model training process. 

A new version of this method called schedule-free SGD [39], which was developed in 2024, aims to 

remove these drawbacks. One of the main advantages of schedule-free SGD is that it eliminates the need to 

adjust the learning rate. In classical SGD, this parameter requires careful tuning and may require the use of 

additional methods, such as learning rate schedulers, to dynamically change the learning rate during the 

optimization process. In schedule-free SGD, this necessity disappears, simplifying the model tuning process 

and reducing preparation time. In particular, its implementation can be described as follows [39]: 
 

𝑦𝑡 = (1 − 𝛽)𝑧𝑡 + 𝛽𝑥𝑡 (2) 
 

𝑧𝑡+1 = 𝑧𝑡 − 𝛾 × 𝑔𝑟𝑎𝑑(𝑓(𝑦𝑡 , 𝜍𝑡)) (3) 
 

𝑥𝑡+1 = (1 − 𝑐𝑡+1)𝑥𝑡 + 𝑐𝑡+1𝑧𝑡+1 (4) 
 

One of the widely used optimization methods is adaptive moment estimation with weight decay 

(AdamW), which is an improved version of the popular Adam optimizer, developed to solve problems related 

to weight regularization in neural networks [38]. The main idea of AdamW is to separate the process of weight 

updating and regularization, which allows avoiding some of the drawbacks of the original Adam algorithm 

[40]. Like Adam, AdamW combines ideas from AdaGrad and RMSprop methods for adaptive learning rate 

adjustment for each parameter. However, unlike Adam, AdamW applies weight regularization separately from 

gradient updates, providing better convergence and efficiency.  

At each iteration, the AdamW optimizer calculates the gradient to minimize the function. The 

pseudocode for AdamW is shown in Figure 2. Then we update the weights taking into account weight 

regularization [39]: 
 

𝜃𝑡 ← 𝜃𝑡−1 − 𝛾𝜆𝜃𝑡−1 (5) 
 

After that updating momentum of first and second order [39]: 
 

𝑚𝑡 ← 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 (6) 
 

𝑣𝑡 ← 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2 (7) 

 

After this, bias-corrected momentums: 
 

𝑚𝑡 ← 𝑚𝑡/(1 − 𝛽1
𝑡) (8) 

 

𝑣𝑡̂ ← 𝑣𝑡/(1 − 𝛽2
𝑡) (9) 

 

And we update the weights again considering the momentums: 
 

𝜃𝑡 ← 𝜃𝑡 − 𝛾𝑚𝑡̂/(√𝑣𝑡̂ + 𝜖) (10) 
 

AdamW has several important advantages. Firstly, thanks to the separation of weight updates and 

regularization, more stable and fast learning is ensured, contributing to better convergence. Secondly, effective 

weight regularization occurs separately, which allows avoiding problems associated with excessive weight 

regularization. Thirdly, like Adam, AdamW automatically adjusts the learning rate for each parameter, making 

it effective for different types of tasks. However, AdamW also has disadvantages. For example, proper tuning 

of hyperparameters can be difficult, as with other adaptive optimizers. Additionally, AdamW requires more 

computational resources compared to simpler methods such as SGD. 

This problem of AdamW, such as hyperparameter tuning, is solved by its schedule-free modification, 

and this is how the modified schedule-free version of AdamW looks. In this version of the optimizer, the 

calculation of the second-order moment is replaced by a combination of interpolations and averages. The added 

version looks like this [39]: 

 

𝛾𝑡 = 𝛾 × 𝑚𝑖𝑛(1, 𝑡/𝑇𝑤𝑎𝑟𝑚𝑢𝑝) (11) 
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𝑧𝑡+1 = 𝑧𝑡 − 𝛾𝑡𝑔𝑡/(√𝑣𝑡̂ + 𝜖) − 𝛾𝑡𝜆𝑦𝑡 (12) 
 

𝑐𝑡+1 =
𝛾𝑡

2

∑   𝑡
𝑖=1 𝛾𝑖

2 (13) 

 

𝑥𝑡+1 = (1 − 𝑐𝑡+1)𝑥𝑡 + 𝑐𝑡+1𝑧𝑡+1 (14) 
 

These optimizers described above were used in this work to conduct experimental studies to determine the best 

of them when solving the time series forecasting problem based on the modified transformer model. 

 

 

3. RESULTS AND DISCUSSION 

The transformer model for time series forecasting with different optimizers was trained on a weather 

dataset [41]. This dataset contains 3010 daily time series representing changes in four weather variables: rain, 

minimum temperature, maximum temperature, and solar radiation, measured at meteorological stations in 

Australia. This dataset, provided by the Australian Bureau of Meteorology (BoM), includes current weather 

data for specific stations, daily forecasts for all Australian forecast locations, agricultural bulletins with 

summarized weather observations for each state or territory, and satellite images in GeoTIFF format. The 

dataset is available in XML and JSON formats and can be accessed through an anonymous FTP server. The 

dataset is well-structured and offers features for automatic retrieval and parsing of data into ordered dataframes. 

The data has applications in agriculture, mapping renewable energy potential, and planning for municipalities 

regarding extreme weather events and infrastructure needs. 

Experimental studies on the effectiveness of different optimizers were performed by running the model 

and the corresponding optimizer with different context lengths. It was a multiple of the seasonality of the data 

in the dataset, which essentially represents one month. Thus, the transformer model was trained on lengths of 

30, 60, and 90 days. The evaluation of the model's performance was based on the following indicators [27], [34]: 

‒ Mean absolute error (MAE): 
 

𝑀𝐴𝐸 =
1

𝑛
∑  𝑛

𝑖=1 |𝑎𝑐𝑡𝑢𝑎𝑙𝑖 − 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖| (15) 

 

‒ Mean square error (MSE): 
 

𝑀𝑆𝐸 =
1

𝑛
∑  𝑛

𝑖=1 (𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖 − 𝑎𝑐𝑡𝑢𝑎𝑙𝑖)2 (16) 

 

‒ Root mean square error (RMSE): 
 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑  𝑛

𝑖=1 (𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖 − 𝑎𝑐𝑡𝑢𝑎𝑙𝑖)2 (17) 

 

‒ Symmetric mean absolute percentage error (SМАPЕ): 
 

𝑆𝑀𝐴𝑃𝐸 =
1

𝑛
∑  𝑛

𝑖=1
|𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖−𝑎𝑐𝑡𝑢𝑎𝑙𝑖|

(|𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖|+|𝑎𝑐𝑡𝑢𝑎𝑙𝑖|)/2
 (18) 

 

‒ Mean absolute scaled error (МАSЕ): 
 

𝑀𝐴𝑆𝐸 =
1

𝑛
∑  𝑛

𝑖=1
|𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖−𝑎𝑐𝑡𝑢𝑎𝑙𝑖|

|𝑎𝑐𝑡𝑢𝑎𝑙𝑖−𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑖|
 (19) 

 

We also used the number of trainable model parameters, expressed in thousands, which can show how 

many resources we will need for its training and what the delay will be when executed in a production 

environment. The results of the experiments based on all the above performance indicators are presented in 

Table 1. The obtained results show that the SGD optimizer gives the worst results. For example, for a context 

length of 60 days, the MASE value is 4.34, which is significantly worse compared to other optimizers. Using 

the schedule-free SGD optimizer improves these indicators, reducing MASE to 1.116 for the same context 

length, which is an improvement of approximately 74%. The AdamW optimizer shows better results compared 

to schedule-free SGD, with a MASE value of 0.954 for a 60-day context length, which is an improvement of 

14%. However, the best results are demonstrated by the schedule-free AdamW optimizer, where for a 60-day 

context length, MASE is 0.987, which is slightly worse than AdamW, but overall shows stable results for all 

context lengths. Thus, from the point of view of stability and overall efficiency, schedule-free AdamW is the 
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best choice among all tested optimizers. However, if we consider the results in terms of SMAPE, the schedule-

free SGD optimizer demonstrates the best performance. For example, for a 30-day context length, SMAPE is 

0.651, which is better than all other optimizers. For 60-day and 90-day context lengths, SMAPE also remains 

lower than other optimizers, making schedule-free SGD the best choice for the SMAPE metric. 

 

 

Table 1. Efficiency estimates of the transformer model in solving the time series forecasting problem using 

different optimizers studied in the work 
Context length MASE SMAPE MAE MSE RMSE Model size 

Schedule-free AdamW optimizer 

30 0.94 0.691 2.041 17.606 2.832 80359 
60 0.987 0.691 2.154 18.781 2.963 82279 
90 0.931 0.686 2.046 17.83 2.836 84199 

AdamW optimizer 
30 1.206 0.666 2.295 19.248 3.056 80359 
60 0.954 0.703 2.071 17.955 2.87 82279 
90 1.063 0.7 2.307 20.074 3.148 84199 

Schedule-free SGD optimizer 
30 1.122 0.651 2.556 20.486 3.203 80359 
60 1.116 0.658 2.574 20.222 3.238 82279 
90 1.184 0.652 2.621 20.669 3.296 84199 

SGD optimizer 
30 1.236 0.724 2.655 21.834 3.489 80359 
60 4.34 1.378 7.704 107.351 8.632 82279 
90 1.573 0.703 2.792 23.33 3.593 84199 

 

 

Figure 2 shows a comparative graph of optimizers with different context sizes, relative to two key 

metrics: MASE and SMAPE. The size of each point corresponds to the number of model parameters. The 

closer the point is to the origin of the coordinate system, the better it is suited for model training. As can be 

seen from the graph, the schedule-free versions of SGD and AdamW performed the best. Depending on which 

metric is prioritized, there will be different results. For MASE, it's schedule-free AdamW, and for SMAPE, it's 

schedule-free SGD. In the future, we can investigate how schedule-free optimizers affect the confidence 

interval of time series model predictions. 

 

 

 
 

Figure 2. Graph with comparison of optimizers by SMAPE and MASE metrics 
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Future research will address several key areas to enhance the accuracy and applicability of forecasting 

models. Firstly, while current studies have utilized a single dataset, future work will expand this research to 

include multiple datasets, allowing for more robust and generalizable findings. Additionally, the impact of 

confidence interval magnitude on forecasting accuracy has not yet been explored as a distinct parameter; 

investigating this aspect could provide valuable insights. Research will also focus on identifying the most 

effective optimizers for improving forecast performance. Another promising avenue for future research is the 

development of transformer-based ensemble models, which could significantly enhance forecast accuracy 

across various application areas [42]. 

 

 

4. CONCLUSION 

Time series forecasting is extremely important in various scientific, technical, and applied fields such 

as finance, economics, meteorology, medicine, transportation, and telecommunications. This task helps predict 

future values of variables based on their historical data, which has a direct impact on the efficiency and 

economic benefit of decisions made. In meteorology, the accuracy of weather forecasts is critically important 

for predicting natural disasters and planning activities in various sectors of the economy. In this paper, the basic 

architecture of transformers was modified to solve time series forecasting problems. The removal of the 

tokenizer and embedding layer, as well as the replacement of positional encoding with sinusoidal positional 

encoding and batch normalization with layer normalization, provided the ability to work with data with 

pronounced seasonality. State-of-the-art optimizers, especially their schedule-free versions, were studied and 

experimentally compared to improve forecasting accuracy and reduce the size of the transformer model and its 

training time. Modeling was conducted by using the modified transformer architecture based on a large set of 

meteorological data, which includes various variables such as temperature, humidity, atmospheric pressure, 

and precipitation. The data was pre-processed to remove noise and gaps. The model was trained on historical 

data with different context window sizes and for each optimizer, after which testing was conducted on new 

data to evaluate the accuracy of forecasts. The results of different optimizers were compared based on criteria 

such as SMAPE, MASE, MAE, MSE, and RMSE. The results showed that the modified schedule-free 

optimizers significantly improved the accuracy of seasonal time series forecasting compared to classical 

methods. The most relevant are both schedule-free SGD and schedule-free AdamW. As a result of comparing 

optimizers, schedule-free AdamW proved to be the best. As can be seen from the results in the table, with this 

optimizer, the model shows the best metrics with the smallest context, which also makes the model smaller and 

thus faster both during training and inference.  
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