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 In recent scenario, fog computing is a new technology deployed between 

cloud computing systems and internet of things (IoT) devices to filter out 

important information from a massive amount of collected IoT data. Cloud 

computing offers several advantages, but also has the disadvantages of high 

latency and network congestion, when processing a vast amount of data 

collected from various devices and sources. For overcoming these problems 

in fog computing environments, an efficient model is proposed in this article 

for precise load balancing (LB). The proposed fractional selectivity model 

significantly handles LB in fog computing by reducing network bandwidth 

consumption, latency, task-waiting time, and also enhances the quality of 

experience. The proposed model allocates the required resources by 

eliminating sleepy, unreferenced, and long-time inactive services. The 

fractional selectivity model’s performance is investigated on three 

application scenarios, namely virtual reality (VR) game, 

electroencephalogram (EEG) healthcare, and toy game. The efficiency of the 

introduced model is analyzed on the basis of makespan, average resource 

utilization (ARU), load balancing level (LBL), total cost, delay, and energy 

consumption. Specifically, in comparison to the traditional task allocation 

models, the proposed model reduces almost 5 to 15% of the total cost and 

makespan time. 
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1. INTRODUCTION 

Currently, internet of things (IoT) technology facilitates internet-connected devices for 

communicating with each other in order to achieve common objectives [1]. In the present decade, 

approximately 30 billion IoT devices are in operation, and by the year 2025, it is expected to reach 80 billion. 

The use of IoT devices is increasing dramatically, leading to the generation of a vast amount of 

heterogeneous data [2]. Recently, IoT devices are extensively applied in several applications, namely smart 

agriculture, traffic monitoring, health, smart homes, and animal tracking [3]–[5]. However, most of the IoT 

devices have limited storage capacity and processing power. These IoT devices are incompatible with 

extensive computational applications because they consume more energy [6]. As a solution, cloud-computing 
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paradigms are utilized for executing IoT applications [7]. In a few circumstances, IoT devices also suffer 

from the problems of delay and poor bandwidth while interacting with the cloud servers. 

In addition to this, the big data generated from the IoT devices also leads to cloud server’s 

congestion. The cloud data centers are dense, often causing high delays and network congestion for outlying 

requests [8], [9]. Fog computing is an emerging technology used to overcome the above-stated constraints, to 

meet the requirements of IoT-based applications [10], [11]. In fog computing systems, load balancing (LB) is 

crucial in order to avoid latency. LB is the process of distributing tasks or requests in computing 

environments that guarantees the reliability and throughput [12]. It is generally difficult to control the 

execution service of the requests when the number of user requests increases. The poor control of computing 

systems causes more power consumption and lower throughput [13], [14].  

Therefore, LB is a crucial aspect in maintaining business continuity in both distributed and parallel 

computing environments [15]. In this article, a novel model is proposed for effective distribution of user tasks 

or requests on various computing resources, with a high degree of task allocation and LB. The proposed 

fractional selectivity model provides a substantial solution to manage LB in fog computing, which produces 

better network performance. Especially, this method minimizes the network energy consumption, latency and 

makespan time, thereby improving user’s overall quality. A special feature of this model is having the 

capability to optimize the resources effectively by removing irrelevant services which are inactive for long 

time periods. For an effective evaluation, numerous state-of-the-art models such as genetic algorithm (GA), 

particle swarm optimization (PSO), non-dominated sorting genetic algorithm II (NSGA-II), Bees, and 

interior point method (IPM) are exploited for showing the effectiveness of proposed model. The 

contributions of this article are outlined as follows: 

‒ Proposed fractional selectivity model for task allocation in fog computing systems. The proposed model 

allocates a fraction of incoming tasks or data to every fog node, based on the requirements and 

properties. This model effectively optimizes resource usage that ensures better storage capacity and 

appropriate processing power for the fog nodes. 

‒ Task allocation based on fractional selectivity is dynamic in real-time application scenarios. The fog 

nodes continuously monitor the workload and adjust the fraction of tasks in order to maintain optimal 

performance. The fractional selectivity enables significant task distribution that decreases system cost 

and response time in fog computing architectures. 

‒ Conducted a series of experiments by varying the number of tasks, utilizing iFogSim toolkit, for 

evaluating the efficiency and effectiveness of the fractional selectivity model by means of makespan, 

average resource utilization (ARU), load balancing level (LBL), total cost, delay, and energy 

consumption. 

This article is structured as follows. Literature review of existing models on the topic of “task 

allocation in fog computing systems” is presented in section 2. The theoretical explanation, numerical 

analysis, and conclusion of the proposed fractional selectivity model are specified in sections 3, 4, and 5 

respectively. 

 

 

2. LITERATURE REVIEW 

Kaur and Aron [16] introduced a hybrid model (water cycle optimization algorithm, simulated 

annealing, and plant growth optimization algorithm) for executing workflow tasks in fog computing by 

efficiently balancing the load. Additionally, a fog-clustering algorithm was developed in this study for 

reducing execution time, computational cost, and energy consumption, while executing the tasks related to 

workflow in fog-cloud environments. The developed hybrid model was simulated using the iFogSim toolkit, 

and its effectiveness was validated in light of cost, energy consumption, and time delay. Similarly,  

Gupta and Singh [17] presented a dynamic LB model in fog-IoT environments by hybridizing two 

metaheuristic algorithms, namely grey wolf optimization (GWO) algorithm and modified Moth-flame 

optimization algorithm. However, running multiple optimization algorithms introduced performance 

overhead, along with increasing the overall complexity of the model.  

Talaat et al. [18] combined a modified PSO algorithm with convolutional neural network (CNN) for 

dynamic LB in fog-computing environments. In comparison to other LB models, the presented model 

significantly decreased the response time with better resource usage. Empirical outcomes stated that the 

presented LB model was efficient and simple in real-time fog computing systems, particularly related to 

healthcare applications. The presented model obtained better LBL, ARU, and makespan related to traditional 

LB models. However, task failures occurred with the presented model due to heavy demand on the servers 

hosting the workflow tasks.  

Talaat et al. [19] introduced a simple and dynamic LB model by integrating GAs and reinforcement 

learning. This LB model continuously monitored traffic in fog computing systems, acquired load information 

from every server, managed requests, and precisely distributed the load among the servers. The presented LB 
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model enhanced quality of services (QoS) in fog-cloud computing environments by means of response time 

and cost allocation. Additionally, it ensured continuous service by efficiently establishing resource 

utilization. Yet, the presented LB model caused bottleneck problems by continuously monitoring traffic in 

fog computing systems. 

Kaur and Aron [20] implemented a hybridized LB model to enhance resource utilization and  

reduce latency in fog computing applications. This hybridized LB model incorporated three algorithms, 

namely ant colony optimization (ACO) algorithm, tabu search, and GWO algorithm. In this study, the 

presented hybridized LB model was simulated using the Eclipse and iFogSim toolkits. Similarly,  

Hussein and Mousa [21] integrated two metaheuristic optimization algorithms, namely PSO and ACO to 

balance the load in fog computing systems with minimal response time and communication costs. However, 

the performance overhead and complexity were the two major problems while hybridizing more optimization 

algorithms in fog computing systems. 

Singh et al. [22] developed a LB model for enhancing resource utilization in software defined 

network (SDN) enabled fog environments. Additionally, a deep belief network (DBN) was employed for 

intrusion detection that decreased communication delays in the fog layer. The results stated that the presented 

model significantly reduced communication delays, average energy consumption, and average response time, 

better than the conventional models. Furthermore, Yakubu and Murali [23] initially used a layer fit strategy 

for distributing tasks between the cloud and fog, based on priority levels. Then, a modified Harris hawks’ 

optimization (HHO) algorithm was designed for effective task scheduling. The primary objective of this 

study was to improve resource usage and reduce power consumption, task execution cost, and makespan 

time, in both the cloud and fog layers. 

Baburao et al. [24] introduced an efficient dynamic resource allocation model based on PSO algorithm 

for handling the LB problems in fog computing. The presented model significantly allocated the required 

resources by eliminating sleepy, unreferenced and long-time inactive services from random access memory. 

Javaheri et al. [25] initially developed a hidden Markov model (HMM) based on Viterbi and Baum-Welch 

algorithms to predict the availability of every fog-computing provider by considering the factors like offload 

tasks, incoming requests, and deadline-missed workflows. Further, a discrete opposition based HHO 

algorithm was introduced for precise workflow scheduling. Still, the DBN, HHO and PSO algorithms faced 

challenges in adapting to rapidly changing environments in fog computing. Kishor and Chakarbarty [26] 

introduced a smart ACO algorithm to offload the tasks of IoT applications in fog computing environments. 

However, this study utilized only single-point connections between fog and cloud, and employed only a 

single-user system.  

In addition, Singh [27] developed a novel LB model for fog computing by integrating a fuzzy 

algorithm with the golden eagle optimization algorithm (GEOA). The presented LB model encompassed of 

three phases, namely task prioritization, ranking and scheduling of resources, and power management. 

Firstly, a fuzzy algorithm was employed for assigning priorities to incoming tasks based on predefined 

priority, task size, and deadline time. By using a fuzzy algorithm, the task prioritization executed important 

tasks without any delay. Secondly, GEOA was applied for ranking and scheduling resources that ensured that 

the tasks were allocated to appropriate resources for efficient execution. Finally, a power management engine 

was implemented to optimize power consumption by disabling and enabling resources based on the 

necessity. Six different evaluation measures, namely waiting time, average turnaround time, communication 

overhead, computational cost, failure rate, and energy consumption were used for assessing the efficacy of 

the model. Nonetheless, running resource intensive optimization algorithms like GEOA on IoT devices, 

generally led to resource contention. 

Natesha and Guddeti [28] introduced an elitism based genetic algorithm (EGA) to solve  

multi-objective problems in fog computing environments. The EGA ensured QoS requirements of IoT 

applications and minimized cost, energy consumption, and service time. The empirical evaluation indicated 

that the EGA outperformed existing algorithms in terms of service time, energy consumption, and service 

cost. The primary concern of this study was identifying appropriate fog devices (nodes) which were 

distributed and varied by means of service time, response time, data processing speed, resource availability. 

These fog nodes were utilized to process the data and host IoT applications. Also, Bey et al. [29] developed a 

quantum computing inspired model based on a neural network, for task allocation in IoT-edge computing 

environments. The developed model efficiently predicted optimal computing nodes in order to deliver  

real-time services. However, the developed fog-computing model was ineffective in managing the increased 

data volume and processing requirements. For addressing the aforementioned concerns, a novel task 

allocation model named fractional selectivity is proposed in this article. The advantages and disadvantages of 

existing studies are illustrated in Table 1. 
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Table 1. Advantages and disadvantages of existing studies 
Author  Advantages Disadvantages  

Kaur and Aron [16] Limited energy consumption Priority is not considered in the distribution of tasks 
Gupta and Singh [17] Limited response time and loss 

rate 

Increased total cost 

Talaat et al. [18] Reduced delay Consumed lot of energy 
Talaat et al. [19] Reduced total cost Task scheduling and LB consumed a lot of time 

Kaur and Aron [20] Decreased makespan Increased response time 

Hussein and Mousa [21] Minimized bandwidth cost and 
resources 

High computational cost 

Singh et al. [22] Reduced ARU and makespan The allocation of resources does not consider the 

current utilization of fog nodes 
Yakubu and Murali [23] Reduction in balanced network 

and network delay 

High failure rate 

Baburao et al. [24] Decreased energy consumption Has high makespan and delay 
Javaheri et al. [25] Limited response time and loss 

rate 

High power consumption  

Kishor and Chakarbarty [26] Decreased delay and bandwidth 

cost 

Task priority is not considered 

Singh [27] Decreased energy consumption Increased response time 

Natesha and Guddeti [28] Decreased makespan and delay Increased energy consumption 
Bey et al. [29] Decreased total cost Increased energy consumption 

 

 

3. METHOD 

The proposed fog computing system includes three layers, namely sensor layer, fog layer, and cloud 

layer. The sensor layer is also called device or edge layer, which is the lowest tier in distributed computing 

environments/architectures [30]. The sensor layer comprises of numerous sensors and physical devices which 

collect data from different aspects of the physical environment. The sensors include global positioning 

system (GPS) devices, motion detectors, cameras, and temperature sensors. The primary objective of the 

sensor layer is to collect data from the monitoring systems and application scenarios. The collected data is 

related to several parameters such as, user interactions, machine performance, and environmental conditions 

[31]. The sensor layer has limited storage capacity and processing capability. It collects data at predetermined 

intervals and then transmits the respective data to higher layers for further analysis and processing. 

Correspondingly, the fog layer is also called edge-computing layer which is an intermediate layer 

between the cloud layer and the sensor layer in distributed computing environments/architectures. The term 

‘fog’ denotes a computing environment, which is closer to the sensors that are related to the ‘remote data 

centers’ [32]. In this layer, the data collected from the sensor layer is analyzed and processed locally in  

near-real-time and real-time scenarios. This process helps in faster decision making with reduced latency.  

In this layer, fog computing includes gateways, edge servers, and computing resources. These devices run 

algorithms and applications for preprocessing, aggregating, and filtering data before transmitting it to the 

cloud layer. Fog computing is especially crucial in applications developed for smart cities, autonomous 

vehicles, and industrial automation, because it provides better data privacy, bandwidth optimization, and 

lower latency [33]. 

Finally, the cloud layer is a cloud-computing layer, which is the topmost layer in distributed 

computing environments. This layer comprises remote data centers which offer more storage, services, and 

computing resources over the internet. The data acquired from the sensors and further processed in the fog 

layer, is then analyzed, managed, stored, and used in the cloud layer [34]. Cloud computing provides 

centralized management, redundancy, and scalability for application scenarios. The cloud services include 

artificial intelligence, machine learning, data analytics, and advanced computing. The organization accesses 

cloud resources, and makes it a cost-effective and flexible solution for several applications such as data 

storage, e-commerce, and web services. 

 

3.1.  Research objectives 

The main motivation behind this research is to handle the resources in the fog nodes to reduce 

complexity and efficiently accomplish the tasks. By optimally allocating the tasks in cloud-fog-IoT device 

environments, this work produces a higher-level efficiency in fog resource management. The main objectives 

that are achieved in this article are outlined as follows:  

‒ As per the task requirements, the availability of the resources are checked and further, the resources are 

listed. 

‒ A novel task allocation model is proposed in fog computing environments for decreasing the network 

usage and response time. 

‒ Based on the energy consumption and resource availability, the tasks are allocated in order to efficiently 

minimize the task execution time. The detailed explanation about the proposed fractional selectivity 



                ISSN: 2252-8938 

Int J Artif Intell, Vol. 14, No. 3, June 2025: 2444-2458 

2448 

based task allocation model is presented in sections 3.1 and 3.2. The block-diagram of the proposed 

model is mentioned in Figure 1. 

 

 

 
 

Figure 1. Block-diagram of the proposed model 

 

 

3.2.  Fractional selectivity model 

The primary objective of the proposed fractional selectivity model is to optimize resource allocation 

among fog nodes. This model aims at reducing response times, enhancing resource utilization, and improving 

overall cost effectiveness. In the context of iFogSim, fractional selectivity refers to a concept or mechanism 

utilized for allocating computing resources in fog computing systems based on the fraction of tasks or data 

that needs to be processed at several fog nodes. iFogSim is one of the effective simulation frameworks used 

to simulate the proposed model in fog-computing environments. In this scenario, data is typically distributed 

across several fog nodes, which are positioned close to edge devices for improving the efficiency and 

reducing latency. 

In a fog computing system, the introduced model is employed for optimizing resource allocation and 

data processing in distributed computing environments. In the present scenario, fog computing extends its 

abilities in cloud computing and is made of numerous sensors and devices in IoT ecosystems. In this context, 

the fractional selectivity model plays a critical role in enhancing the effectiveness and efficiency of data 

processing in a fog computing system. The fog nodes are considered as the computing resources which often 

have limited energy resources, memory, and computational power related to cloud servers. The fractional 

selectivity model assists in filtering out irrelevant data, and processes the necessary information, thus 

reducing the energy consumption and resource utilization. 

The fractional selectivity makes decision-making faster in applications like control systems and  

real-time monitoring systems; here, lower latency is crucial. Fog computing responds quickly to the events 

by filtering and processing relevant data at the edges, and this process superiorly reduces the delay between 

the action and data generation. The transmission of a huge amount of data to the cloud is costly by means of 

bandwidth, and also leads to network congestion. The fractional selectivity reduces the size of data which 

needs to be transmitted to the cloud by filtering and data pre-processing. It ensures that only necessary data is 

transmitted to remote servers and conserves bandwidth. In a few circumstances, some data is confidential and 

sensitive which should not be sent over the network to the cloud. In this scenario, this model performs local 

data processing that ensures that the sensitive information remains within the controlled edge environments 

by improving security and privacy. 

The cloud-fog computing environment has a vast amount of sensors and devices. The fractional 

selectivity-based task allocation model, efficiently scales the fog computing systems by distributing the load 

amongst fog nodes, and makes an optimal usage of available resources. The fractional selectivity leads to 

cost savings in terms of computing resources and cloud storage, through decreasing the amount of data 

processed and transmitted in the cloud. Overall, in fog computing systems, the fractional selectivity is a 

valuable model in achieving cost savings, enhancing security and privacy, conserving bandwidth, decreasing 

latency, and enhancing resource efficiency. The fractional selectivity enables all fog nodes to make an 

intelligent decision about data that is processed locally and transmitted to the cloud. This action provides 

more efficient and responsive edge computing solutions. The working process of the fractional selectivity 

model is denoted in Figure 2. 
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Figure 2. Working process of the fractional selectivity model 

 

 

3.3.  Innovativeness of fractional selectivity in fog computing 

The fractional selectivity-based task allocation model is a flexible and fine-grained model in 

resource scheduling as it significantly optimizes resource allocation in distributed computing environments 

like edge and fog computing. The traditional resource scheduling models allocate resources on the basis of 

the course criteria such as prioritizing applications or tasks. By considering the subsets of data and individual 

data elements, the fractional selectivity operates at a finer granularity, and results in precise resource 

allocation. The proposed model concentrates more on data than the tasks or applications, where it considers 

the data based on the factors like resource requirements, data relevance and importance. This model is vital in 

fog computing systems where data needs to be processed effectively and generated at the edge. 

The suggested model is more efficient in real-time application scenarios with workload variations 

and changing conditions. Based on the needs of the different sources or data streams, this model dynamically 

allocates resources. The adaptive nature of fractional selectivity is crucial in managing IoT data and 

workloads of edge computing. The edge nodes have minimized resources compared to cloud servers in fog 

computing. The fractional selectivity optimizes the usage of resources by selecting data that should be  

off-loaded to the cloud and processed locally. The fractional selectivity significantly contributes to latency 

reduction by selecting the relevant data at the edge. This is necessary in applications like augmented reality, 

industrial automation, and autonomous vehicles, which need low latency or real-time processing.  

The fractional selectivity conserves bandwidth by decreasing the data amount which needs to be sent over the 

network to the cloud. Particularly, it is valuable in application scenarios where the bandwidth of the network 

is expensive and limited. 

Based on the application policies and criteria, the fractional selectivity customizes the decisions of 

data processing. Each use case and application have its own rules in both data selection and processing that 

allows for greater adaptability and flexibility. In the context of IoT applications, a massive amount of data is 

generated from several devices and sensors. The suggested model significantly processes and manages the data 

that ensures and preserves the most valuable information. The pseudocode of the fractional selectivity model is 

described in Algorithm 1. The numerical examination of the proposed model is discussed in section 4, and the 

proposed model’s performance is validated in three application scenarios by utilizing six evaluation measures. 
 

Algorithm 1. Pseudocode of the fractional selectivity model 

Input: workload 

Output: offloading workload to virtual machine (result) 

Function process workload locally (workload): 

//Process the entire workload locally 

Result=perform local processing (workload) 

Return result 

Function offload to fog nodes (workload, fractional selectivity): 

//Determine the portion of the workload to offload based on fractional selectivity 

Offloaded workload=workload×fractional selectivity 

//Offload the workload to fog nodes 

Fog results=offload processing to fog nodes (offloaded workload) 

Return fog results 

Function fractional selectivity (): 
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//Generate workload 

Workload=generate workload () 

//Determine fractional selectivity based on some criteria 

Fractional selectivity=determine fractional selectivity () 

//Decide whether to offload to fog or process locally based on fractional selectivity 

If fractional selectivity>threshold: 

//Offload a fraction of the workload to fog nodes 

Results=offload to fog nodes (workload, fractional selectivity) 

Else: 

//Process the entire workload locally 

Results=process workload locally (workload) 

End 

 

 

4. RESULTS AND DISCUSSION 

The proposed fractional selectivity model is implemented utilizing Java 1.8 Java Development Kit 

(JDK), NetBeans integrated development environment (IDE) 8.2, and iFogSim simulator. This model is 

analyzed on a system featuring Intel i9 processor, 11 GB RTX 2080Ti GPU, 128 GB of RAM, and 1 TB of 

hard disk. The performance of fractional selectivity is assessed in three application scenarios; virtual reality 

(VR) game, electroencephalogram (EEG) healthcare, and toy game. The assumed parameters are as follows: 

processing speed is 4 million instructions per second (MIPS), number of sensors is 7, number of fog devices 

is 4, and RAM is 1 KB. The proposed model’s effectiveness is validated in light of makespan, ARU, LBL, 

total cost, delay, and energy consumption. The details about the stimulating environment are presented in 

Table 2. 

 

 

Table 2. Details about the stimulating environment 
Parameters Value 

Time zone 5 

Bandwidth 10,000 B/S 

Virtual machine model Xen 
Cost 2 

Cost per memory 0.1 

Cost per storage 0.01 
Operating system Linux 

Architecture X86 

 

 

4.1.  Evaluation measures 

The suggested model’s efficacy is analyzed utilizing six different evaluation measures which are, 

total cost, LBL, ARU, makespan, delay, and energy consumption [35]. Makespan represents the time needed 

to complete all tasks 𝐶𝑇(𝑡𝑖), and its mathematical representation is defined in (1)-(3) [36]. 
 

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = 𝑀𝑎𝑥(𝐶𝑇(𝑡𝑖)) (1) 
 

where: 
 

𝐶𝑇(𝑡𝑖) = 𝐴𝑇(𝑡𝑖) + 𝑇𝐴𝑇(𝑡𝑖)  (2) 
 

𝑇𝐴𝑇(𝑡𝑖) = 𝑊𝑇(𝑡𝑖) + 𝐵𝑇(𝑡𝑖)  (3) 
 

Where 𝐵𝑇 is represented as the burst time, 𝐴𝑇 is denoted as the arrival time, 𝑊𝑇 is indicated as the waiting 

time, and 𝑇𝐴𝑇 is the turn-around time. Additionally, LBL estimates the load level of fog computing systems. 

It is computed by dividing the balanced fog servers (BFSs) with the total available fog servers (FSs), as 

depicted in (4) [37]. On the other hand, ARU is computed by dividing both the BFSs and overloaded fog 

servers (OFSs) with the total available FSs, which is mathematically stated in (5) [38]. 
 

𝐿𝐵𝐿 =
𝐵𝐹𝑆𝑠

𝐹𝑆𝑠
× 100%  (4) 

 

𝐴𝑅𝑈 =
(𝐵𝐹𝑆𝑠+𝑂𝐹𝑆𝑠)

𝐹𝑆𝑠
× 100%  (5) 
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In the context of fog-computing environments, total cost is defined as the comprehensive expenses 

related with maintaining, operating, and deploying the fog computing infrastructures [39]. The evaluation 

measure named total cost is mathematically defined in (6). 
 

𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 = ∑ 𝐶𝐵(𝑡𝑖) + 𝐶𝑀(𝑡𝑖) + 𝐶𝑃(𝑡𝑖)𝑛
𝑖=0   (6) 

 

Where 𝑛 represents the number of tasks, 𝐶𝐵(𝑡𝑖) denotes the cost of bandwidth usage, 𝐶𝑀(𝑡𝑖) indicates  

the cost of memory usage, 𝐶𝑃(𝑡𝑖) denotes the processing cost, and 𝑡𝑖 is the time. Furthermore, the overall 

power utilized during the execution of tasks is called as energy consumption 𝐸, and it is mathematically 

expressed in (7). 
 

𝐸 = ∑ 𝑒𝑡(𝑛) +𝑘
𝑛=1 𝑒𝑒(𝑛) + 𝑒𝑠(𝑛)  (7) 

 

Where 𝑒𝑠(𝑛) is represented as the energy in sensing for every task, 𝑒𝑒(𝑛) is denoted as the energy in 

execution, and 𝑒𝑡(𝑛) is indicated as the energy in transmission. In the context of task allocation, delay is 

represented as the time lag, which occurs during the process of allocating tasks to appropriate resources. 

 

4.2.  Quantitative analysis 

In this context, several conventional task allocation models, namely GA, PSO, NSGA-II, Bees, and 

IPM are utilized for assessing the effectiveness of the proposed fractional selectivity model. As shown in 

Tables 3 and 4, the suggested model has minimal makespan time and delay than the conventional models in 

all three-application scenarios (VR game, EEG healthcare, and toy game) for varying number of tasks  

(50, 90, 130, and 150). Particularly, in the EEG healthcare application scenario, the fractional selectivity 

model achieves the lowest makespan time of 84.62, 146.27, 224.57, and 245.30 milliseconds (ms) for tasks 

numbering 50, 90, 130, and 150, respectively. Correspondingly, the fractional selectivity model has minimal 

delay of 84.54, 146.17, 224.48, and 245.20 for tasks numbering 50, 90, 130, and 150 in the EEG healthcare 

application scenario. In comparison to the conventional task allocation models, the proposed fractional 

selectivity model is an innovative model for allocating resources in edge and fog computing environments, 

because it specifically focuses on fine-grained resource allocation, which are valuable to optimize the 

responsiveness, efficiency, and performance of edge computing applications. The results comparison of 

various task allocation models in terms of makespan and delay are presented in Figures 3 and 4. 
 

 

Table 3. Results of various task allocation models by means of makespan 
Makespan (ms) 

Scenarios Tasks GA PSO Bees IPM NSGA-II Fractional selectivity 

EEG healthcare 50 94.10 93.74 89.50 88.61 87.06 84.62 

90 155.03 154.50 149.96 148.83 148.64 146.27 

130 243.18 238.08 228.97 227.75 226.66 224.57 
150 258.23 256.56 251.85 250.92 247.72 245.30 

VR game 50 91.25 87.46 86.43 84.81 82.48 80.46 

90 152.27 147.72 146.53 146.16 144.24 142.13 
130 235.96 226.60 225.40 224.19 222.36 220.33 

150 254.46 249.47 248.61 245.36 242.85 240.42 

Toy game 50 84.99 84.01 82.74 80.07 78.06 75.90 
90 145.50 144.40 143.84 142.23 139.81 137.36 

130 224.31 222.91 222.04 219.94 218.19 215.95 

150 247.10 246.41 242.97 240.71 238.15 236.02 

 

 

Table 4. Results of various task allocation models in light of delay 
Delay (ms) 

Scenarios Tasks GA PSO Bees IPM NSGA-II Fractional selectivity 

EEG healthcare 50 94.02 93.67 89.47 88.60 86.97 84.54 
90 154.95 154.47 149.89 148.81 148.61 146.17 

130 243.11 238.07 228.96 227.72 226.62 224.48 

150 258.14 256.49 251.77 250.91 247.70 245.20 
VR game 50 91.24 87.41 86.40 84.73 82.42 80.45 

90 152.20 147.70 146.44 146.15 144.14 142.04 

130 235.95 226.52 225.33 224.11 222.35 220.31 
150 254.45 249.39 248.60 245.28 242.79 240.41 

Toy game 50 91.16 87.32 86.35 84.70 82.41 80.37 
90 152.19 147.62 146.36 146.05 144.09 142.03 

130 235.88 226.48 225.27 224.03 222.30 220.30 

150 254.38 249.38 248.51 245.23 242.73 240.40 
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Figure 3. Result comparison of various task allocation models by means of makespan 
 

 

 
 

Figure 4. Result comparison of various task allocation models in light of delay 
 

 

The results of different task allocation models by means of ARU and energy consumption are 

depicted in Tables 5 and 6. As shown in Tables 5 and 6, the fractional selectivity model has better ARU and 

energy consumption compared to optimization algorithms GA, PSO, and Bees, but it achieves only a 

comparable performance when related to the NSGA-II and IPM. Generally, the fractional selectivity model 

needs an enormous number of resources (processing power and memory) for efficient execution. This limits 

its applicability in fog and edge computing environments with limited resources. On the other hand, the 

suggested model is well suited for particular types of workloads and application scenarios. The effectiveness 

of the proposed model varies based on the nature of the resources and tasks, and it is not applicable for all 

fog-computing scenarios. The results comparison of six different task allocation models in terms of ARU and 

energy consumption are depicted in Figures 5 and 6. 
 

 

Table 5. Results of different task allocation models in light of ARU 
ARU (%) 

Scenarios Tasks GA PSO Bees IPM NSGA-II Fractional selectivity 

EEG healthcare 50 41.68 42.88 50.97 51.91 53.52 51.23 
90 54.71 54.50 53.46 54.66 56.89 54.55 

130 67.19 68.18 69.55 70.55 73.13 70.83 

150 69.52 70.73 81.56 83.17 84.93 82.81 
VR game 50 40.63 48.92 49.65 51.41 48.77 46.39 

90 52.14 50.97 52.21 54.87 52.39 50.38 

130 66.08 67.48 68.40 70.73 68.49 66.07 
150 68.23 79.45 81.17 82.54 80.75 78.36 

Toy game 50 46.55 47.24 49.07 46.70 44.18 42.01 

90 48.69 49.74 52.49 50.06 48.33 45.91 
130 65.33 66.21 68.24 66.26 63.71 61.23 

150 77.16 78.83 80.41 78.56 75.96 73.70 
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Table 6. Results of different task allocation models in light of energy consumption 
Energy consumption (Joules) 

Scenarios Tasks GA PSO Bees IPM NSGA-II Fractional selectivity 

EEG healthcare 50 41.60 42.84 50.96 51.83 53.46 51.13 

90 54.70 54.46 53.42 54.60 56.81 54.51 

130 67.11 68.14 69.51 70.51 73.07 70.80 
150 69.47 70.71 81.51 83.12 84.89 82.77 

VR game 50 40.56 48.82 49.63 51.38 48.68 46.37 

90 52.09 50.91 52.12 54.83 52.32 50.33 
130 66.01 67.41 68.35 70.65 68.47 66.06 

150 68.23 79.41 81.11 82.50 80.66 78.35 

Toy game 50 46.48 47.15 49.01 46.69 44.11 41.92 
90 48.60 49.65 52.41 50.03 48.26 45.82 

130 65.31 66.13 68.24 66.25 63.62 61.14 

150 77.11 78.83 80.38 78.48 75.92 73.67 

 

 

 
 

Figure 5. Result comparison of six different task allocation models by means of ARU 

 

 

 
 

Figure 6. Result comparison of six different task allocation models in light of energy consumption 

 

 

By inspecting Table 7, similar to ARU, the proposed fractional selectivity model achieves 

significant LBL compared to GA and PSO. However, it achieves comparable performance with that of the 

Bees, NSGA-II, and IPM models. The parameters assumed in GA are as follows; crossover function is 0.8, 

elite count is 2, scaling fraction is rank, stall generations are 50, generations are 230, and population creation 

is constraint dependence. Additionally, the assumed parameters of PSO are, maximum number of iterations is 
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100, population size is 50, final inertia weight is 0.2, initial inertia weight is 0.9, maximum particle velocity 

is 4, and finally 𝑐1 as well as 𝑐2 are 2. Furthermore, the following parameters are assumed in Bees algorithm, 

initial patch size is 0.1, bees around other selected points are 20, bees around elite points are 50, number of 

elite sites is 2, maximum number of iterations is 100, and population size is 200. Correspondingly, NSGA-II 

fixes the following parameters which are, variable type is binary, mutation probability is 34, mutation 

operator is bit string mutation, crossover probability is one, crossover operator is single point crossover, 

maximum generation is 200, and population size is 100. The IPM includes respective parameters as; finite 

difference type is central, lower bound is -15, upper bound is 15, and maximum number of iterations is 100. 

The results comparison of different task allocation models in terms of LBL is mentioned in Figure 7. 

 

 

Table 7. Results of various task allocation models by means of LBL 
LBL (%) 

Scenarios Tasks GA PSO Bees IPM NSGA-II Fractional selectivity 

EEG healthcare 50 27.84 29.07 32.66 33.01 33.54 31.22 

90 34.43 34.63 35.10 36.83 37.13 35.01 

130 37.02 42.94 45.91 46.71 47.35 45.08 
150 39.16 44.71 48.14 49.22 50.63 48.22 

VR game 50 26.84 30.57 30.98 31.45 28.76 26.76 

90 32.43 32.77 34.79 34.90 32.75 30.56 
130 40.87 43.85 44.59 45.27 42.69 40.25 

150 42.45 45.90 47.22 48.22 45.80 43.54 

Toy game 50 28.54 28.77 29.27 26.45 24.46 22.21 
90 30.42 32.74 32.42 30.41 28.27 25.86 

130 41.83 42.40 42.87 40.60 37.92 35.64 

150 43.83 44.87 46.20 43.43 41.07 38.98 

 

 

 
 

Figure 7. Result comparison of different task allocation models in light of LBL 

 

 

By viewing Table 8, it is evident that the proposed fractional selectivity model exhibits limited total 

cost compared to existing task allocation models GA, PSO, NSGA-II, Bees, and IPM. In the context of fog 

computing, this model aims at reducing total cost and improving resource allocation, as opposed to existing 

task allocation models. Fractional selectivity model achieves these two objectives by dynamically allocating 

all computing resources based on the requirements of fog computing applications, and this process results in 

a cost-effective processing. Unlike traditional task allocation models, the proposed fractional selectivity 

model assigns resources on-demand, and hence reduces costs and minimizes wastages in fog computing 

systems. Additionally, it performs scalable resource allocation, which ensures that fog nodes significantly 

handle increasing workloads without accumulating high costs. The results comparison of six different task 

allocation models by means of total cost is graphically represented in Figure 8. 
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Table 8. Results of different task allocation models in terms of total cost 
Total cost 

Scenarios Tasks GA PSO Bees IPM NSGA-II Fractional selectivity 

EEG healthcare 50 3070.58 2994.76 2793.61 1369.50 1360.84 1358.61 

90 3068.66 2991.71 2790.96 1372.70 1362.62 1360.37 

130 3065.62 2987.57 2786.51 1372.76 1364.78 1362.55 
150 3061.93 2984.91 2782.92 1375.71 1367.77 1365.71 

VR game 50 2992.57 2791.55 1367.10 1358.36 1356.58 1354.58 

90 2989.56 2788.65 1370.68 1360.17 1358.16 1355.89 
130 2985.25 2784.14 1370.59 1362.72 1360.54 1358.09 

150 2982.52 2780.58 1373.32 1365.59 1363.70 1361.61 

Toy game 50 2789.35 1364.90 1356.23 1354.33 1352.27 1350.02 
90 2786.60 1368.25 1357.78 1355.98 1353.65 1351.33 

130 2782.13 1368.19 1360.46 1358.24 1355.76 1353.27 

150 2778.16 1371.20 1363.35 1361.42 1359.46 1357.36 

 

 

 
 

Figure 8. Result comparison of different task allocation models by means of total cost 

 

 

4.3.  Discussion 

As depicted in Tables 3 to 8, the proposed fractional selectivity model offers more benefits in fog 

computing systems than the traditional task allocation models. Generally, the fractional selectivity model 

splits and executes the tasks in multiple fog nodes that results in better resource utilization with reduced 

resource wastage. The system becomes more fault-tolerant by distributing tasks across several fog nodes. 

Based on the fog nodes’ current workload and their capability, the fractional selectivity model dynamically 

distributes tasks among fog nodes. This process results in better LB and prevents fog nodes from being 

overloaded. Additionally, the fractional selectivity model helps in minimizing energy consumption and 

latency in fog nodes, by efficiently distributing tasks, and is more scalable when the workload increases. 

Particularly in task allocation, the fractional selectivity model offers higher flexibility because it has better 

adaptation to changing requirements and workloads. The suggested model improves QoS in fog computing 

systems by ensuring that all tasks are assigned to fog nodes with proper resources. In conclusion, the 

proposed fractional selectivity based-task allocation model superiorly improves the reliability, flexibility, and 

efficiency of fog computing systems, and is cost-efficient as it minimizes the operational costs, the use of 

additional hardware resources required for maintenance, and the energy consumption. 

 

 

5. CONCLUSION 

In this article, a novel fractional selectivity model is proposed in fog computing environments for 

efficient task allocation. In a fog computing system, the fractional selectivity model initially splits a single 

task into different portions or fractions. Furthermore, these fractions are allocated to multiple resources or fog 

nodes for better execution. Related to the conventional binary task allocation models, the proposed fractional 

selectivity model provides higher optimization possibilities and flexibility for task allocation, especially in 

fog computing systems. In this article, the proposed fractional selectivity model’s efficiency is analyzed 

using six dissimilar evaluation measures, namely delay, energy consumption, total cost, LBL, ARU, and 
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makespan. In comparison to the traditional task allocation models such as GA, PSO, NSGA-II, Bees, and 

IPM, the fractional selectivity model is superior in reducing total cost and makespan, and improving LBL and 

ARU percentages, in three different application scenarios. However, the proposed fractional selectivity 

model requires a vast amount of resources for better execution, and it is suited only for specific types of 

application scenarios and workloads. Therefore, as a future extension, an effective population-based 

optimization algorithm will be integrated with the proposed fractional selectivity model, to further enhance 

the performance of task allocation in all types of application scenarios and workloads. 
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