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 The abundance of solar energy sources has encouraged many researchers to 

maximize solar photovoltaic (PV) output power using dual-axis solar 

tracking. However, environmental conditions, time of day, and the angle of 

movement of the solar tracker can affect the resulting power output. This 

study aims to predict the power output of dual-axis solar tracking in order to 

maintain the power’s stability and quality. Deep neural networks (DNN) 

with variations of 5 and 6 hidden layers have been proposed. The dataset 

used in this study was obtained from observation results and then divided 

into 80% training data and 20% testing data. A series of algorithms are used 

to recognize relationship patterns between input and hidden layers, between 

hidden layers, as well as hidden layers and output. Statistical results show 

that DNN with a variation of 6 hidden layers is better at estimating solar 

tracking power output with a mean absolute percentage error (MAPE) value 

of 12.328%, mean square error (MSE) of 0.332, and mean absolute error 

(MAE) of 0.425. This study can be used as a reference in utilizing artificial 

intelligence to predict the output power of solar panels as a renewable 

energy source.  
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1. INTRODUCTION 

Solar resources are a renewable energy source that is abundant, easy to utilize, and environmentally 

friendly [1]. The availability of solar energy sources is still being determined due to changes in the sun's 

position, so the solar cells' output power is not optimal. Increasing the output power of solar panels can be 

done with static systems with fixed angles [2] and single-axis [3]–[5] or dual-axis [6]–[9] solar trackers. The 

most effective way to increase solar cell energy is to use dual-axis solar tracking by 25.5% while single-axis 

is only 16.5% compared to a fixed system [10]. Environmental conditions also affect the power output 

produced, such as the intensity of solar radiation and environmental temperature. When the weather is 

cloudy, the radiation intensity will decrease, and the temperature will be low, reducing the required electricity 

supply [11]. The main thing that must be done is to predict the output power of solar cells [12] to maintain 

the stability and quality of the power produced [1]. 

Research related to forecasting photovoltaic (PV) output power based on computational intelligence 

algorithms has been widely carried out; several researchers use the artificial neural network (ANN) method to 

predict current solar radiation, short-term and long-term predictions [13], ANN with input namely 

meteorological conditions, climate, and radiometric, including wind speed and relative humidity as well as 

output in the form of local solar panel energy output [14], input in the form of weather conditions and PV 
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module characteristics [15], input in the form of environmental factors such as irradiance (G), temperature (T), 

humidity (H), wind speed (W) [11], input based on environmental factors [16]. Feed-forward back propagation 

neural network (FBANN) [17]. Support vector machine (SVM) [18], long short-term memory (LSTM) [19], 

support vector machine regression (SVMR) [20], recurrent neural network (RNN) [21], fuzzy regression (FR) 

[22], particle swarm optimization (PSO-Fuzzy) [1], and PSO-adaptive neuro fuzzy inference system (ANFIS) 

[23]. Among the computational methodologies used, ANN is a superior method in predicting solar cell power 

output compared to fuzzy logic [24] and multiple linear regression [25]. Based on this explanation, ANN is 

considered more effective in predicting the output power of solar panels. However, no research has predicted 

the power output of dual-axis solar tracking using a deep neural network (DNN) with input parameters of time, 

tilt angle, solar radiation intensity and environmental temperature. This paper analyses the impact of hidden 

layers variation in DNN model to reach the best performance based on historical data.  

DNN have shown remarkable capabilities in various tasks, including perception-related ones such as 

image and speech recognition [26]. These models can learn increasingly abstract, higher-level representations 

of the input data, and have been successfully applied to medicine and health care [27]. One of the critical 

architectural advantages of deep learning is the use of many hidden neurons and layers, typically more than 

two, which allows for extensive coverage of the raw data at hand [28]. Nevertheless, the determination of the 

optimal number of hidden layers is a crucial aspect in the design of DNN models, as it directly impacts their 

performance and generalization capabilities. 

 

 

2. METHOD  

2.1.  Architecture of deep neural network 

The method applied in this paper to predict the output power of a dual-axis solar tracker is an ANN 

with many hidden layers, also called a DNN. There is a training process carried out to produce the desired 

output. The training process uses a series of algorithms to recognize relationship patterns between input and 

hidden layers as in (1), hidden layer 1 to the next hidden layer as in (2), and hidden layer to output as in (3) 

[29]. In the final stage, the neuron applies a transfer function to obtain output [14]. Therefore, the performance 

of DNN depends on the work of neurons [11]. The developed DNN architecture is shown in Figure 1. 

 

ℎ̅1 = Φ(𝑊1
𝑇𝑥̅)  (1) 

 

ℎ̅𝑝+1 = Φ(𝑊𝑝+1
𝑇 ℎ̅𝑝) ∀𝑝 ∈  {1 … 𝑘 − 1}  (2) 

 

𝑦̅ = Φ(𝑊𝑘+1
𝑇 ℎ̅𝑘)  (3) 

 

Where ℎ̅1 is the first hidden layer, 𝑊 is the weight, Φ is the activation function, and 𝑦̅ is the output.  

 

 

 
 

Figure 1. Architecture of DNN 

 

 

The activation function functions to receive and send signals between layers [15]. Several activation 

functions are often used, namely Tanh, Linear, and rectified linear unit (ReLu), but the ReLu activation 

function provides the best results among the two [14]. Determining the number of neurons in the hidden layer 
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is based on trial and error, because there is no mathematical equation that can determine the number of 

neurons in a layer [15]. 

 

2.2.  Data collection 

The dataset used in this research was obtained from observations made from 08.30 to 16.30. Time 

parameters are divided into two categories, namely am and pm. Temperature (°C) is the environmental 

temperature measured during observations as well as the radiation parameter (W⁄m2). Meanwhile, the tilt 

angle (°) is the angle of movement of the solar tracking which is measured at a certain time during the 

observation [30]. Before the training process, the dataset is divided into 80% training data and 20% testing 

data. The algorithm will take data periodically from all datasets in the training process using the Adamax 

optimizer with 100 epochs. 

 

2.3.  Test performance of model 

Mean square error (MSE) is used to measure the average squared error to minimize the error  

as in (4) [31].  

 

𝑀𝑆𝐸 =  
1

𝑛
 ∑ (𝑦 − 𝑦̅𝑖)

2𝑛
𝑖=1  (4) 

 

With 𝑦 is actual data and n representing the total number of samples. The mean absolute error (MAE) is the 

average of the absolute error value of actual data and the predicted value as in (5) [31]. 

 

𝑀𝐴𝐸 =  
1

𝑛
 ∑ |𝑦 − 𝑦̅𝑖|

𝑛
𝑖=1  (5) 

 

Mean absolute percentage error (MAPE) aims to measure the level of model accuracy by calculating the 

absolute difference between actual data and predicted values, then dividing it by the actual value, then 

multiplying by 100 to express it as a percentage as in (6) [31]. 

 

𝑀𝐴𝑃𝐸 =  
1

𝑛
 ∑ |

𝑦−𝑦̅𝑖

𝑦
| 𝑥100𝑛

𝑖=1  (6) 

 

 

3. RESULTS AND DISCUSSION 

The main objective of this research is to develop a DNN model by comparing 5 hidden layers, and  

6 hidden layers to predict the output power of a dual-axis solar tracker with the input parameters of time,  

tilt angle, solar radiation intensity, and environmental temperature. Table 1 shows the performance of the 

DNN model used with various hidden layers in the training and testing process. Based on Table 1, it can be 

seen that both predictors track actual data and can be used for estimation, but the DNN model with  

6 hidden layers have the best performance compared to 5 hidden layers. The best performance is the DNN 

model with 5 hidden layers at the 95th epoch with a loss (MSE) of around 0.9626 and 0.3213 for 6 hidden 

layers at the 89th epoch. This is because each layer builds on the features extracted by the previous layer, 

allowing the model to understand and represent complex patterns and structures in the data.  

 

 

Table 1. Performa DNN model with a variety of hidden layer 

Hidden layers 
Training Testing 

MAPE (%) MSE MAE MAPE (%) MSE MAE 

5 33.228 1.309 0.891 42.553 1.001 0.776 

6 19.417 0.595 0.586 12.328 0.332 0.425 

 

 

The performance of the model developed in the training and testing process is shown in Figure 2, 

with matrix performance in Figures 2(a) to 2(f). Meanwhile, the comparison of actual data with predicted 

data for the two models is shown in Figure 3, with 5 hidden layers in Figure 3(a) and 6 hidden layers in 

Figure 3(b). The results clearly show that the DNN algorithm may be used to estimate the output power of 

PV modules. The following provides a succinct and understandable summary of the outcomes of trained 

DNN mapping predictors to continuous responses. It is important to highlight from the above results that 

testing and validity dates were not conducted on the training dataset.  

From the Figure 3, we can see that there is still a significant inaccuracy in predicting the output 

power of the solar tracker on the 1st, 6th, 7th, 19th, and 21st test data using DNN with 5 hidden layers; the 

resulting prediction results are lower than the actual data. Otherwise, on the 3rd, 11th, and 14th test data, the 
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DNN model with 5 hidden layers predicts higher results than the actual data. Meanwhile, the performance of 

the DNN model with 6 hidden layers can better predict the solar tracker's output power. This is because the 

more hidden layers can produce higher accuracy [15]. 

 

 

  
(a) 

 

(b) 

 

  
(c) 

 

(d) 

 

  
(e) (f) 

 

Figure 2. Training and testing process of (a) loss (MSE) value for 5 hidden layers, (b) loss (MSE) value for 6 

hidden layers, (c) MAE for 5 hidden layers, (d) MAE for 6 hidden layers, (e) MAPE for 5 hidden layers, and 

(f) MAPE for 6 hidden layers 
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(a) (b) 

 

Figure 3. Comparison between actual data with predicted data for both models of (a) 5 hidden layers and  

(b) 6 hidden layers 

 

 

4. CONCLUSION 

The main goal of the current study was to optimize the power output of a dual-axis solar tracker. 

These experiments confirmed that a DNN model was successfully trained with hidden layer variations.  

The current data highlight the importance of the number of hidden layers. The accuracy of DNN with  

6 hidden layers have better model performance in the testing process with a MAPE value of 12.328%, MSE 

of 0.332, and MAE 0.425 compared to DNN with 5 hidden layers. This work contributes to the existing solar 

tracker power output forecasting knowledge by providing a predictive model that leverages historical data. 

By optimizing power output predictions, this research could support the development of more efficient and 

cost-effective solar tracking systems. This, in turn, can encourage wider adoption of solar energy as a more 

reliable energy source. The model’s performance may vary based on geographical location, sun path, and 

environmental factors not included in the training data. Testing the model in diverse locations could reveal 

limitations in generalizability. 
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