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 This paper explores the prediction of cardiovascular disease (CVD) through 

the classification of electrocardiogram (ECG) sequences using both 

supervised and unsupervised machine learning (ML) algorithms. ECG 5000 

dataset is considered to perform essential data analytics, clustering, and 

classification, effectively categorizing ECG heartbeats into optimal groups 

to forecast CVD. The Elbow and Silhouette methods are applied to estimate 

optimal number of clusters within the dataset. Using K-means and 

hierarchical clustering algorithms, the data is grouped into two and five 

distinguishable clusters, with performance metrics indicating that two 

clusters are more viable. Subsequently, multiple supervised ML classifiers—

including kernel classifiers, support vector machine (SVM), naïve Bayes 

(NB), decision trees (DT), k-nearest neighbor (KNN) and neural networks 

(NN)—are trained on the labeled and clustered datasets to ensure accurate 

classification of ECG sequences and anomaly detection. A novel modified 

ML classifier, kernel-SVM with Chi-Square (χ²) feature selection, is 

introduced and demonstrates exceptional performance, achieving an 

impressive accuracy of 0.9848, recall of 0.9973, and a training time of 

1.6944 seconds, surpassing benchmarks from prior research. The results and 

discussion section includes a comparison of various algorithm performances, 

affirming that the proposed approach is an alternative to the complex deep 

learning (DL) and transformer-based models. 
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1. INTRODUCTION 

In accordance with the 2019-world health organization (WHO) report, it is evident that roughly  

17.9 million people deceased, where 85% of these attributed to cardiovascular diseases (CVDs), underscoring 

CVD as a significant root of mortality [1]. The project of cardiovascular lifetime risk pooling, involving over 

30,000 members from seven US cohort studies focusing on individuals aged sixty and older with low heart 

health, found that thirty-five years old have the highest risk of CVD, with the maximum among white males 

being 65.5%, followed by white females, black females, and black males being 57.1%, 51.9% and 48.4% 

respectively. Estimating of this risk accounted for the influence of competing risks of death from non-CVD 

causes. Examination of 14 studies investigating the effect of coronavirus disease 2019 (COVID-19) on 

individuals with preexisting CVD revealed that these individuals face a 2.25% relative rate of mortality due 

to COVID-19. This finding underscores the significantly heightened risk for this vulnerable demographic [1]. 

In 2020, a concerning statistic emerged: nearly 19 million deaths worldwide were attributed to CVD, 

https://creativecommons.org/licenses/by-sa/4.0/
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marking an 18.7% increase from the statistics recorded in 2010, indicating a significant rise in CVD-related 

mortality globally [2]. The 2022 report from the American heart association (AHA) states that CVD 

accounted for around 19.1 million deaths globally. Projections indicate a potential rise to 24.2 million deaths 

by the year 2030 [3]. An electrocardiogram (ECG) stands as a diagnostic modality employed to gauge the 

intricate electrical dynamics of the heart. Functioning as a visual representation, it delineates the microvolts 

electrical patterns manifested within the cardiac activity. The paramount objective of an ECG lies in 

interpreting the rhythm and tempo of the heart's contractions, alongside scrutinizing the intensity and 

sequential sequence of electrical signals coursing through distinct cardiac regions. It has the ‘P’ wave, ‘QRS’ 

complex, and ‘T’ wave. Detailed measurements of an ideal ECG 5000 sequences are provided in Figure 1. 

 

 

 
 

Figure 1. ECG 5000 data set: 10 sequences plot 

 

 

The ECG 5000 dataset, widely studied and publicly available, has been a cornerstone in research 

focused on the prognosis of CVDs for over a decade. Numerous machine learning (ML) and deep learning 

(DL) algorithms recorded in the research, which are trained and tested for effective classification of ECG 

sequences. However, improving the accuracy and reliability of anomaly classification remains a critical area 

of research. Notably, comprehensive exploratory data analysis (EDA), clustering, and the integration of 

unsupervised and supervised algorithms are underexplored in literature. Eventually, a widespread 

examination is built of the existing research on ECG datasets and aims to address these gaps. This paper 

presents a holistic study that combines EDA with both unsupervised and supervised ML algorithms. The 

algorithms are trained and tested with and without feature selection techniques to enhance the classification 

of ECG signals and overcome limitations identified in previous studies. 

To provide context for this work, the next section offers a detailed review of key research articles, 

emphasizing significant findings and identifying gaps in current approaches. The paper is structured as 

follows: section 2 examines associated works, focusing on the existing methodologies in detecting anomalous 

ECG signals. Section 3 outlines the methodology which includes EDA and approach of training unsupervised 

and supervised algorithms to address the classification challenge. Section 4 discusses the results, highlighting 

comparisons with existing approaches and drawing insights from the analysis. Section 5 concludes the study, 

summarizing the findings and presenting broader implications of the research. 

 

 

2. RELATED WORK 

Recent scholarly discourse on anomaly detection within sequential data, exemplified by ECGs, has 

increasingly leveraged sophisticated recurrent neural networks (RNNs) and convolutional neural networks 

(CNNs) renowned for their adeptness in capturing intricate sequential dependencies. Revolutionary 
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endeavors by Chauhan and Vig [4] underscore the efficacy of long short-term memory (LSTM) network for 

detecting anomalies within sequential data which are extended to ECG datasets. A plethora of methodologies 

has been advanced in the ECG sequences classificastion, ranging from support vector machine (SVM) 

methods proposed by Raj et al. [5] to time-domain analyses presented by Öztürk et al. [6]. Deep belief 

network (DBN) based methodologies proposed by Lu et al. [7] have garnered substantial traction in cardiac 

disease prognostication endeavors. Malhotra et al. [8] introduced a pre-trained deep recurrent neural network 

(DRNN) model tailored to extract salient sequential features conducive to supervised classification tasks. 

Hybrid architectures amalgamating RNNs and CNNs are demonstrated by [9], [10] have presented innovative 

nine-layer CNN architecture to address CVD prediction issues. The authors of [9], [10] have exemplified the 

evolving landscape of ECG anomaly detection methodologies. Innovative paradigms continue to emerge, as 

elucidated in [11] pioneering proposition of the local deep field (LDF) approach, which harnesses DL models 

to discern underlying class information amidst local variations. Yildirim et al. [12] introduced a 1D-CNN 

model tailored to detect arrhythmia. Furthermore, Yildirim [13] introduced deep bidirectional long short-term 

memory networks (BLSTMs) specifically optimized for classifying ECG signals. Oh et al. [14] have 

proposed composite network architectures fusing CNNs and LSTMs for enhanced ECG arrhythmia 

diagnosis. 

While supervised learning methodologies have garnered significant attention, unsupervised anomaly 

detection techniques have been comparatively understudied. The emergence of advanced models like 

variational autoencoders (VAEs) and generative adversarial networks (GANs), known for their self-

generative capabilities, has renewed academic interest in unsupervised anomaly detection techniques.  

Li et al. [15] utilized GANs to identify anomalies in time series data. Likewise, Hannun et al. [16] adapted 

deep neural networks (DNNs) to classify a diverse range of ECG rhythm patterns, highlighting the 

continuous advancements in anomaly detection methodologies. Yildirim et al. [17] achieved remarkable 

accuracy employing LSTM classifiers coupled with convolutional autoencoder (CAE) networks, boasting an 

accuracy of 99% on ECG arrhythmia dataset. Furthermore, Hou et al. [18] proposed an innovative fusion of 

LSTM and SVM to classify ECG arrhythmia effectively, and Pereira and Silveira [19] have also worked 

upon unsupervised learning of ECG sequences via VAEs, both results underscore the continuous evolution 

and diversification of anomaly detection methodologies within the ECG domain. 

Ebrahimi et al. [20] have meticulously recorded a comprehensive review concerning the deployment 

and efficacy of a spectrum of DL methodologies, encompassing CNNs, DBNs, RNNs, LSTM networks, and 

gated recurrent units (GRUs). Their results emphasize the exceptional performance of DL methodologies in 

accurately classifying cardiac arrhythmias, with atrial fibrillation (AF) achieving a remarkable 100% accuracy, 

supraventricular ectopic beats (SVEB) attaining 0.998, and ventricular ectopic beats (VEB) achieving 0.997 

accuracy. Notably, the utilization of GRU/LSTM architectures, CNNs, and LSTMs demonstrated expertise in 

achieving these remarkable classification accuracies, however extended training time and usage of graphics 

processing unit (GPU) for training pose real challenge in deployment. Khandual et al. [21] have recorded 

LSTM autoencoder-based approach which boasts an accuracy of 0.9793 in ECG anomaly detection, and  

Roy et al. [22] LSTM autoencoder model achieving an accuracy exceeding 0.98 on the ECG5000 dataset, 

alongside commendable precision, recall, and F1-scores. Matias et al. [23] utilized the VAE technique, 

incorporating a local similarity score, on the ECG5000 and MIT-BIH arrhythmia datasets analyzed in this 

study. Their approach yielded an area under the curve (AUC) comparable to previously reported results in the 

literature, achieving an impressive accuracy of 0.968. 

Oluwasanmi et al. [24] introduced three distinct models for classifying ECG sequences: VAE, 

concat attention autoencoder (CAT-AE), and AE-without-attention. Ismail et al. [25] utilized a noise-free, 

augmented version of the ECG 5000 dataset to implement a temporal convolutional network (TCN). Using 

an 80/20 training/testing % split, they reported an accuracy of 0.9612, underscoring the effectiveness of 

temporal networks in capturing time-series patterns. Khalid et al. [26] worked with preprocessed and 

augmented ECG 5000 signals, applying CNN and GAN models. The CNN model achieved a strong accuracy 

of 0.98, while GAN models showed slightly lower performance at 0.9505. This study further confirmed the 

reliability of CNN in handling preprocessed datasets. Gladis et al. [27] focused on real-time signal clusters 

within the ECG 5000 dataset and proposed the use of a stripped NAS-network (SID-NASNet). Their 

approach demonstrated a high accuracy of 0.9822 using a 75/25 training/testing % split, highlighting the 

potential of novel neural architecture search methods for ECG analysis [27]. Ameen et al. [28] used 

augmented ECG 5000 signals to compare the performance of CNN, RNN, and random forest models, 

achieving a 10–15% improvement over traditional ML methods. Their work utilized a 70/30 training/testing 

% split to validate results, showing the benefits of DL over classical approaches. A comprehensive 

comparison of the previous work put up in classifying ECG 5000 data set is described in Table 1. 

Following a thorough review, it has been confirmed that LSTM, VAE, RNN, DNN, CNN and 

LSTM are among the most effective algorithms for categorizing and identifying ECG time sequences. This 
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paper makes a significant contribution by performing a comprehensive data analysis of the ECG 5000 dataset 

through the following steps: 

‒ EDA: generating elbow and silhouette curves to determine the optimal number of clusters. 

‒ Unsupervised learning: training, testing, and evaluating clustering algorithms to segment the unlabelled 

data into two and five clusters effectively. 

‒ Supervised learning: training, testing, and evaluating multiple supervised ML algorithms for the 

classification of anomalous ECG time sequences. 

‒ The study culminates in proposing a kernel-SVM classifier integrated with a chi-square (χ²) algorithm, 

which demonstrates an improvement over previously reported performance metrics in classifying labelled 

ECG 5000-time sequences. 

The article highlights efforts to enhance classification accuracy reported in prior studies by [19], [22]‒[28]. 

Detailed comparisons and advancements over these works are described under results section, underscoring 

the study's success in surpassing prior benchmarks on the ECG 5000 dataset. 

 

 

Table 1. Recent signinficant research findings in the years 2021-2024: comparison 
Authors/year Dataset details Algorithm Training/ testing split Accuracy 

Ameen et al. [28] ECG 5000, augmented signals CNN, RNN, random forest 70% training /  

30% testing 

+10–15% over 

ML 

Gladis et al. [27] ECG 5000, real-time signal 

clusters 

SID-NASNet 75% training /  

25% testing 

0.9822 

Khalid et al. [26] ECG 5000 (preprocessed), 
augmented signals 

CNN, GAN 70% training /  
30% testing 

CNN: 0.98, 
GAN: 0.9505 

Ismail et al. [25] ECG 5000 (noise-free, 

augmented) 

TCN 80% training /  

20% testing 

0.9612 

Roy et al. [22] ECG 5000, augmented data Deep LSTM autoencoder 80% training /  
20% testing 

0.98 

Matias et al. [23] ECG 5000 (normal and 

abnormal samples) 

VAE with 1D Training: 80%; 

Validation: 20% 

0.9711 

Oluwasanmi et al. [24] ECG 5000 dataset VAE, AE-without-

attention, CAT-AE, LSTM 

70% training /  

30% testing 

VAE: 0.948, AE-

without-attention: 
0.956, CAT-AE: 

0.958, LSTM: 

0.984 

Pereira and Silveira [19] ECG 5000 dataset VAE 20% training/  

80% of data 

0.9843 

 

 

3. METHODOLOGY 

As depicted in Figure 2, the initial phase of the methodology involves cleaning and arranging ECG 

sequences dataset. This step is followed by the plotting of Elbow and Silhouette curves aimed at predicting 

the optimal number of clusters within the dataset. Subsequently, K-means and hierarchical unsupervised 

clustering algorithms are deployed to segment and label the data into five and two distinct classes. Based on 

performance metrics, we proceeded with supervised ML classifier algorithms for the two-class classification 

task. Furthermore, feature selection algorithm is employed and modified ECG sequences are used again to 

train the models. Averaged test results are then presented in the results section, providing a detailed account 

of our methodology and findings. Among the various available ECG datasets, MIT-BIH database of 

arrhythmia, physikalisch-technische bundesanstalt (PTB) diagnostic database of ECG, and databased of 

PhysioNet are widely explored by professionals and researchers in cardiology and biomedical engineering. 

The dataset considered for this work is referred to as "ECG5000", it originates from an ECG 

recording of a 48-year-old patient afflicted with adverse congestive heart failure [29], and it is recorded for a 

duration of 20 hours from the patient. Automated annotation was utilized to assign class values to the data. 

The BIDMC congestive heart failure database (CHFD) data set which has 17,998,834 data points containing 

92,584 heartbeats. Interpolated data of 5000 heartbeats are considered for the implementation with each 

sample representing a time sequence of Table 2, detailed descriptions of five and two classes and 

corresponding their labels are depicted. 

 

3.1.  EDA: ECG 5000 data set 

The first step in building the classification model is conducting EDA, focusing on estimating the 

tangible number of groups in the dataset. Key metrics: are the distortion score and silhouette score (SS), 

which help determine the appropriate number of clusters. A detailed theoretical explanation of these metrics 

for the ECG5000 dataset is furnished in the following sections. 
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Figure 2. Flow chart: supervised and unsupervised ML classifier implementation 
 

 

Table 2. ECG data set: two and five classes 
S. No Name of cluster label Abbreviation (five classes) Clusters Abbreviation/description (two class) 

1 Normal N 1 0 (Normal) 

2 R-on-T premature ventricular contraction R 2 1(Anomaly) 
3 Supraventricular premature or ectopic beat S 3 1(Anomaly) 

4  Premature ventricular contraction V 4 1(Anomaly) 

5 Unclassified beat Q 5 1(Anomaly) 

 

 

3.1.1. Elbow method 

Elbow method is used to evaluate cluster cohesion by grouping similar data points. However, with 

increaseing number of clusters (K), the cohesion value will eventually approach ‘0’, which alone does not 

indicate cluster quality. The method involves plotting the within-cluster sum of squares (WSS) on a graph, 

with the Y-axis showing the WSS value (also known as the distortion score) and the X-axis showing K where 

WSS gauges the compactness of the clusters [30]. WSS values can be calculated as per (1). 
 

WSS =  ∑ ∑ (𝑥 − 𝑚𝑖)2
𝑥€ 𝐶𝑖𝑖  (1) 

 

3.1.2. Silhouette method 

The silhouette method employs a coefficient of silhouette, and it integrates separation and cohesion 

characteristics. 
 

If cohesion < separation: 𝑆 = 1 − (
𝐶𝑜ℎ𝑒𝑠𝑖𝑎𝑛 𝑚𝑒𝑎𝑠𝑢𝑟𝑒

𝑆𝑒𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑚𝑒𝑎𝑠𝑢𝑟𝑒
) (2) 

 

If cohesion > separation: 𝑆 =  (
𝐶𝑜ℎ𝑒𝑠𝑖𝑎𝑛 𝑚𝑒𝑎𝑠𝑢𝑟𝑒

𝑆𝑒𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑚𝑒𝑎𝑠𝑢𝑟𝑒
) − 1 (3) 

 

The silhouette coefficient/score is computed as per (2) and (3). If the separation measure surpasses the 

cohesion measure, the equation for SS will be as given in (2). Conversely, if the cohesion measure is greater 

than the separation measure, the SS is altered, and it will be as given in (3). A higher silhouette coefficient 

indicates a superior quality of clustering [30]. As per [29], the ECG 5000 data set is labeled with five and two 

classes. The same is affirmed with distortion and SS presented in results section. 
 

3.2.  Unsupervised algorithms for clusterring or grouping 

After the assessment of elbow curve and silhouette curves with scores, K-means and hierarchical 

unsupervised clustering algorithms are considered to evaluate ECG 5000 data set. Both algorithms are trained 

and tested to ensure the possible clusters/classes exist in this data set. 
 

3.2.1. K-means algorithm for clustering 

This algorithm is one of the much deployed unsupervised ML algorithm in the clustering of datasets. 

This algorithm aims is to devide the data into ‘K’ clusters with each point assigned to the nearest cluster 

centroid. The algorithm starts by randomly initializing ‘K’ centroids and assigns data points to the closest 
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centroid based on a distance metric, usually Euclidean distance, forming the clusters. The centroids are then 

recalculated based on the mean of all points in their clusters. This process repeats until the centroids stabilize 

or a maximum number of iterations is reached, aiming to minimize within-cluster variance for compact and 

consistent clusters. Choosing the optimal value of ‘K’ can be estimated using methods like the elbow method, 

silhouette method, or gap statistic [31]. 
 

3.2.2. Hierarchical algorithm for clustering 

Hierarchical clustering is a sophisticated technique for organizing data into a hierarchy of clusters, 

operating in two modes: agglomerative and divisive. Agglomerative clustering starts with each data point in its 

own cluster and merges them based on predefined criteria until all points form a single cluster. Divisive 

clustering begins with one large cluster and recursively splits it until each point is in its own cluster. A key 

aspect of this method is creating a distance matrix based on pairwise distances, which guides the clustering 

process. Linkage criteria, such as single, complete, average linkage, and ward's method, determine how clusters 

are merged or split. The method has been applied to ECG data clustering using hierarchical algorithms [32]. 
 

3.3.  Supervised algorithms 

Based on the performance analysis of unsupervised algorithms, several supervised ML based classifiers 

were developed for the ECG 5000 dataset. The dataset comprises 5,000 ECG sequences, each containing 140 

instances. Of these, 80% of the sequences were used to train the classifier models, while the remaining 20% were 

reserved for testing. To this end, various kernel-based classifiers, including SVM, naïve Bayes (NB), decision 

tree (DT), k-nearest neighbor (KNN) and neural network (NN)-were trained and evaluated. A detailed discussion 

of the performance of these supervised classifiers is provided in the following section. 
 

3.3.1. Decision tree classifiers 

The foundational research on DT is first introduced in [33], focusing on three levels of DTs: 'fine,' 

'medium,' and 'coarse,' used during training. Fine Trees are highly pruned, leading to fewer branches and a more 

streamlined decision-making process. Medium trees offer a balance between precision and complexity, moderately 

pruned to avoid overfitting while still identifying patterns. Coarse trees, with minimal pruning and numerous 

branches, excel in detecting intricate data patterns. As illustrated in Figure 3, the DT classifier implementation 

begins at the root node, involves node splitting, and concludes at the leaf nodes, where data is classified. 
 

 

 
 

Figure 3. Decision tree workflow 
 

 

3.3.2. Naïve Bayes classifiers 

NB classifiers, grounded in Bayes' theorem, adopt a "naïve" assumption that all features are 

independent given the class label. Available in diverse variants such as Gaussian, multinomial, and Bernoulli, 

they are tailored to suit different data types. These classifiers estimate class priors and class-conditional 

probabilities from training data and subsequently make predictions by computing the posterior probability of 

each class given the features of a new instance. Renowned for their simplicity, computational efficiency, and 

efficacy, NB classifiers find widespread application in diverse domains including text classification, spam 

filtering, and medical diagnosis. Particularly lauded for their effectiveness in handling categorical attributes, 

the NB classifier is recognized as a straightforward and efficient tool for classification tasks [34]. NB 

classifiers basically functions based on the following equation of probability of class ‘y’ for features 𝑥1, 𝑥𝑛. 

𝑥𝑛 of an instance is as defined in (4): 
 

𝑃(𝑦|𝑥1, 𝑥2, . . 𝑥𝑛) =  
𝑃(𝑥1, 𝑥2, . . 𝑥𝑛|𝑦).𝑃(𝑦)

𝑃(𝑥1,𝑥2,..𝑥𝑛)
 (4) 

 

Where, 𝑃(𝑦) = prior probability of class ‘y’, 𝑃(𝑥1, 𝑥2, . . 𝑥𝑛|𝑦) = is the likelihood, representing the probability 

of observing the features given class ‘y’, 𝑃(𝑥1, 𝑥1, . . 𝑥𝑛) = the evidence probability, which serves as a 



Int J Artif Intell  ISSN: 2252-8938  

 

Electrocardiogram sequences data analytics and classification using unsupervised and … (Sami Ghnimi) 

2061 

normalization factor and can be ignored for classification purposes since it's constant across all classes, 

𝑃(𝑦|𝑥1, 𝑥2, . . 𝑥𝑛) = probability of ‘y’ class for features 𝑥1, 𝑥2,.. 𝑥𝑛 of an instance. 
 

3.3.3. Support vector machine classifiers 

SVM introduced by Vapnik in 1998, were initially designed to address two-class classification 

problems. SVM operates by identifying an optimal hyperplane to achieve maximum margin separation 

between classes. The fundamental concept underlying SVM is to determine the hyperplane that effectively 

separates the data into distinct classes while maximizing the margin between these classes [35]. The 

fundamental version of the decision function for the LSVM classifier is defined in (5): 
 

𝑓(𝑥) = {∑ 𝛼𝑖 + 𝑦𝑖  𝐾(𝑥𝑖 , 𝑥) + 𝑏𝑁
𝑖=1 } (5) 

 

where, 𝑓(𝑥) = decision function, ∝𝑖  = language multiplier, 𝑦𝑖= class labels, 𝐾(𝑥𝑖 , 𝑥) = kernel function,  

b = bias term or intercept, N = no. of support vectors. In accordance with the sign of the sum, 𝑓(𝑥) assigns 

specific class is assigned to the input ′𝑥′. If 𝑓(𝑥) is positive, ‘𝑥’ is assigned to one class; if it's negative, ‘𝑥’ is 

assigned to the other class. 
 

3.3.4. K-nearest neighbor classifiers 

This algorithm is in use since the 1970s, classifies new cases based on similarity measures by 

storing all cases. KNN is a nonparametric classification method, broadly categorized into two types: 

structure-less NN techniques and structure-based NN techniques. In structure-less techniques, the dataset is 

divided into training and test samples, and the nearest neighbor is identified based on the shortest distance 

between points. In structure-based techniques, methods such as orthogonal structure trees (OST), ball trees, 

k-d trees, axis trees, nearest future lines, and central lines are used to determine the structure of the data [36]. 
 

3.3.5. Neural network classifiers 

The artificial neural network (ANN) classification algorithm uses ANN, modeled after the human 

brain, to classify input data into predefined categories. The network is made up of an input layer, one or more 

hidden layers, and an output layer. Each layer is composed of interconnected neurons that process and refine 

data by passing it through weighted connections, allowing the model to learn and make predictions. Training 

involves labeled data and backpropagation, where errors are propagated backward through the network to 

adjust weights and biases. Activation functions like sigmoid, rectified linear unit (ReLU), and SoftMax 

introduce non-linearity, enabling complex mappings between inputs and outputs. Various NN classifiers are 

trained and tested with different hyperparameters, and the results are discussed in [37]. 
 

3.3.6. Kernel classifiers 

Kernel classifiers are powerful for classification tasks, especially with non-linearly separable data. 

Unlike linear classifiers such as logistic regression or linear SVMs, which can only draw linear decision 

boundaries, kernel classifiers address this limitation by projecting input features into a higher-dimensional 

space where linear separation is possible. This projection is achieved through the kernel trick, which allows 

computations in this higher-dimensional space without explicitly transforming the data. Instead of computing 

the dot product between vectors in the higher-dimensional space, kernel functions directly compute it in the 

original feature space, and they are as per (6) to (8): 
 

𝐾(𝑥, 𝑥′) = 𝑥. 𝑥′ (6) 
 

𝐾(𝑥, 𝑥′) = (𝛾𝑥. 𝑥′ + 𝑟) 𝑑 (7) 
 

𝐾(𝑥, 𝑥′) =  𝑒𝑥𝑝. (−𝛾||𝑥 − 𝑥′||2) (8) 
 

Where, γ = control element of the influence of the dot product; r = coefficient; d = degree of the polynomial, 

and γ = control element of the spread of the kernel. 

Kernel functions measure similarity or distance between data points in the original feature space and 

are crucial for kernel-based algorithms in ML and statistics. The choice of kernel function and its parameters 

can significantly impact classifier performance. In kernel-SVM, three key kernel functions are used: i) linear 

kernel: computes the dot product of input features, ii) polynomial kernel: calculates dot products of input 

vectors raised to a specific power, and iii) radial basis function (RBF) kernel: measures similarity using the 

Gaussian function Kernel-LR, an advanced form of traditional logistic regression, utilizes kernel functions to 

project data into a higher-dimensional space, improving its capability to capture non-linear relationships. 

This method improves performance on complex datasets like ECG5000 [38]. 

 



                ISSN: 2252-8938 

Int J Artif Intell, Vol. 14, No. 3, June 2025: 2055-2071 

2062 

3.4.  Chi-square feature selection algorithm 

Feature selection involves choosing the essential attributes necessary to accurately represent data. 

By focusing on relevant features, classification algorithms typically enhance their classification accuracy, 

reduce the learning time, and simplify the underlying concepts. There is a wide array of feature selection 

algorithms available [39]. Chi- Square (χ2) feature selection algorithm proposed herewith relies on the chi-

square (χ2) statistic and comprises two distinct phases. Initially, it sets a high significance level (sigLevel), 

like 0.5, for all numeric attributes to initiate discretization. The importance score is calculated as per (9), 

based on which most influencing signal features are extracted for training the ML algorithm: 

 

χ2 =  ∑ ∑ (𝐵𝑚𝑛 − 𝐷𝑚𝑛)2

𝐶𝑚𝑛
⁄𝑘

𝑛=1
2
𝑚=1  (9) 

 

where, K = number of classes; Bmn = number of patterns in mth interval, nth class; ∑ 𝐵𝑚𝑛
𝑘
𝑛=1 : number of 

patterns in mth interval = Ri; ∑ 𝐴𝑚𝑛
2
𝑚=1  : number of patterns in mth interval = Cj; N: total no. of patterns = 

∑ 𝑅𝑖
2
𝑚=1 ; Dmn: expected frequency of Bmn = Ri * Cj / N. If Ri or Cj is 0, Dmn is set to 0.1. 

The degree of freedom of the χ2 statistic is one less the number of classes. Each attribute undergoes 

sorting based on its values, followed by the following steps: i) calculation of the χ2 values, as per (9), for 

every pair of adjacent intervals, ii) initially, each pattern resides in its interval containing only one attribute 

value, iii) merging of adjacent intervals possessing the lowest χ2 value. This merging continues until all 

interval pairs exhibit χ2 values surpassing the parameter determined by sigLevel, iv) initially set at 0.5, its 

corresponding χ2 value is 0.455 when the degree of freedom is 1, as explained further below, and v) this 

process repeats with a reduced sigLevel until an inconsistency rate exceeds the discretized data. Phase 1 

essentially embodies a generalized version of Kerber's ChiMerge technique. Instead of setting a χ2 threshold, 

χ2 employs a loop that automatically adjusts the χ2 threshold (by decrementing sigLevel). It introduces 

consistency checking as a stopping criterion to ensure the discretized dataset accurately represents the 

original one. With these additions, χ2 autonomously determines an appropriate χ2 threshold that preserves the 

fidelity of the original data.  

Phase 2 refines the process from Phase 1. Beginning with sigLevel 0 determined in Phase 1, each 

attribute ‘i’ is assigned a sigLevel [i] and takes turns in merging. Consistency checking occurs after each 

attribute's merging. If the inconsistency rate doesn't exceed, sigLevel [i] is reduced for the next round of merging; 

otherwise, attribute ‘i’ isn't further involved. This continues until no attribute's values can be merged. If an 

attribute is merged to only one value by the end of Phase 2, it signifies that the attribute isn't relevant in 

representing the original dataset. Consequently, when discretization concludes, feature selection is achieved [40]. 

 

 

4. RESULTS AND DISCUSSION 

In this section, the results related to three key aspects of the ECG 5000 dataset are presented. First, 

the findings from EDA are discussed, with a focus on determining the optimal number of clusters. Following 

this, the performance metrics and outcomes of unsupervised ML algorithms applied for clustering—

considering both two-class and five-class scenarios—are detailed. Finally, the classification results obtained 

using various supervised ML algorithms are reported, highlighting their comparative effectiveness in 

identifying ECG patterns.  
 

4.1.  Exploratory data analysis: elbow curve and SS 

According to the elbow curve method, the optimal value of ‘K’ is identified when the graph exhibits 

a significant bend which denotes the optimal number of clusters. We have plotted an elbow curve for ECG 

5000 data set to visualize the distortion score vs ‘K’. The "elbow" point in the plot indicates the optimal 

number of clusters where the distortion score starts to level off. As indicated in Figure 4, rate of change 

(decrement) in distortion is slowed down at ‘K’ =5 with the score of distortion score maintained consistently 

in the around 121042.463. As per the elbow curve visualization, distortion score tends to decrease with 

increasing ‘K’ value because the smaller clusters lead to lower inner-cluster distances. However, beyond a 

certain point, adding more clusters may not significantly reduce distortion, resulting in a less pronounced 

decrease in the distortion score. A lower distortion score indicates that data points are positioned closer to 

their respective cluster centroids, suggesting more compact and well-defined clusters. Thus, ECG 5000 data 

heartbeats can be possibly categorized into five types as they are illustrated in Table 2. Silhouette curve is 

also plotted for ECG 5000 data set to visualize the SS with respect to ‘K’ (no of clusters). As depicted in 

Figure 5, SS range from 0.45 to 0.20 for the ECG5000 data set. It is witnessed that the data set can be 

efficiently clustered into 2 classes with a higher SS of 0.45. 
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Figure 4. Elbow method: distortion score for ECG 

500 data set 

 

Figure 5. Silhouette method: SS for ECG 500 data set 

 

 

4.2.  Unsupervised algorithms: electrocardiogram 5000 data set clustering 

The preceding analysis of the elbow graph and SS indicates that the ECG 5000 dataset can be 

effectively partitioned into either two or five clusters. The results in this section confirm the ideal set of 

clusters to be used for further analysis of the ECG 5000 dataset. Unsupervised K-Means and hierarchical ML 

clustering algorithms were trained and tested to classify the data into five and two distinct categories. The 

assessment of both clustering algorithms carried out by estimating the following eight performance 

parameters: adjusted rand index (ARI), normalized mutual information (NMI), calinski-harabasz index 

(CHI), davies-bouldin index (DBI), homogeneity, completeness, v-measure (Vm), and SS. Table 3 presents 

the scores for all performance metrics, with the highest scores highlighted for clarity, providing valuable 

insights into the effectiveness and efficiency of the clustering process. 
 

 

Table 3. Performance indexes of unsupervised clustering algorithms: k-means and hierarchical 
Performance indexes Hierarchical_2 clusters Hierarchical_5 clusters K-means_2 clusters K-means_5 clusters 

ARI 0.8255 0.5551 0.7853 0.4230 

NMI 0.7669 0.5494 0.6877 0.4993 

CHI 4449.1977 1918.3003 4730.194 2082.707 

DBI 0.9184 1.6359 0.9173 1.6218 
Homogeneity 0.7560 0.8228 0.6822 0.8033 

Completeness 0.7782 0.4123 0.6934 0.3622 

Vm 0.7669 0.5494 0.6877 0.4993 

SS 0.4509 0.2601 0.4596 0.2506 

 

 

ARI, typically ranging from -1 to 1, serves as a metric for evaluating clustering agreement, where a 

score of 1 indicates perfect clustering alignment, ‘0’ suggests clustering performance akin to random chance, 

and negative values indicate clustering discordance. As demonstrated in Table 3, ARI values for both 

hierarchical and K-means clustering algorithms notably excel for two clusters over five clusters. In contrast, the 

NMI values span from 0 to 1, with a score of 1 denoting flawless concordance between clustering outcomes, 

and 0 implying minimal shared information between clusters. Remarkably, NMI scores for hierarchical and K-

Means clustering algorithms closely approach '1' for two clusters, unlike their performance for five clusters. The 

CHI endeavors to ascertain the optimal cluster count by maximizing the separation between clusters. The cluster 

count corresponding to the peak CHI is deemed optimal for the dataset. CHI values for hierarchical and K-

means clustering algorithms peak at two clusters, while they remain relatively subdued for five clusters. On the 

other hand, the DBI lacks a singular optimal value. Lower DBI values are generally preferred, particularly when 

comparing diverse clustering solutions or determining the ideal cluster count. Notably, DBI values for 

hierarchical and K-means clustering for two clusters are lower compared to those for five clusters, underscoring 

their superior performance in the former scenario. Homogeneity serves as a measure of whether each cluster 

exclusively consists of members from a single class, with a perfect score of 1.0 indicating absolute 

homogeneity. An elevated homogeneity score suggests clusters populated solely by data points belonging to a 

singular class. Notably, homogeneity scores for both hierarchical and K-means clustering algorithms 

demonstrate superiority when employing five clusters compared to two clusters, implying that the former 

configuration optimally fulfills this criterion. Conversely, Completeness assesses whether all members of a 

particular class are assigned to the same cluster. A higher completeness score indicates greater consistency in 

assigning all data points associated with the same class to a single cluster, with a perfect score of 1.0 indicating 
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complet assignment coherence. Notably, both K-means and hierarchical algorithms exhibit completeness scores 

close to 1 for two clusters, implying their superior performance in this regard.  

The Vm quantifies the harmonic mean of homogeneity and completeness, offering a balanced metric 

that considers both aspects. An ideal Vm score of 1.0 signifies optimal equilibrium between homogeneity and 

completeness. Mirroring other metrics, the Vm favors the two-cluster configuration with higher scores 

compared to five clusters for both K-Means and hierarchical algorithms, highlighting the superior balance 

achieved by the former. Lastly, the SS, spanning from -1 to 1, provides insight into the quality of clustering. 

Elevated scores indicate well-clustered data points, while negative scores suggest potential misassignments. 

Notably, SS for both K-Means and hierarchical clustering algorithms perform better for two clusters 

compared to five clusters, underscoring superior clustering quality for the former arrangement. Out of eight 

parameters observed, only one parameter is suggested for five optimal clusters, the rest are proposing two 

clusters. Detailed descriptions of performance indexes and results related to the unsupervised clustering 

algorithms are provided in Tables 3 and 4. Possible clusters in ECG 5000 dataset are presented in Figure 6, 

where Figure 6(a) indicates five clusters and Figure 6(b) indicates two clusters. 
 
 

  
(a) (b) 

 

Figure 6. 3D plots of ECG 5000 data set (a) 3D scatter plot with 5 clusters and (b) 3D scatter plot with 2 clusters 
 

 

The effectiveness of K-means and hierarchical algorithms is assessed through the examination of 

recall, precision, F1-score, and accuracy which are computed as per (10) to (13) using false positives (FP), 

true negatives (TN), true positives (TP), and false negatives (FN) quantities derived from testing: 
 

Accuracy (A) =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑁+𝐹𝑃
 (10) 

 

Precision (P) =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (11) 

 

Recall (R) =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (12) 

 

F − Measure =  
(𝛽2+1).𝑃.𝑅

𝛽2 .𝑃+𝑅
 (13) 

 

where, β = parameter adjusts the balance between precision and recall (β greater than or less than 1). 

Results associated with unsupervised clustering algorithms are presented in Table 4, both 

hierarchical and K-Means algorithms witness higher accuracy, F1-score, recall, precision values for two class 

clustering over five class clustering. Amongst the two algorithms, hierarchical clustering algorithm is 

superior to K-means algorithm with higher accuracy, recall, F1-score, and precision scores. Indexes 

mentioned in Table 3 and results revealed in Table 4 concerning algorithms affirm that optimal clustering of 

ECG 5000 is achieved with 2 classes. Therefore, ECG 5000 dataset classified into two classes such as 

“normal” and “anomalous”, which are labeled with '0' and '1' respectively, and the same is used for further 

investigation of supervised classification algorithms to identify the anomalous ECG signal. 
 

 

Table 4. Performance of unsupervised clustering algorithms: K-means and hierarchical 
Unsupervised 

algorithm 

% Accuracy F1-Score Recall Precision 

2-Clusters 5- Clusters 2-Clusters 5-Clusters 2-Clusters 5-Clusters 2-Clusters 5-Clusters 

K-Means 0.9432 0.6182 0.94 0.72 0.94 0.62 0.94 0.91 

Hierarchical 0.9544 0.486 0.95 0.53 0.95 0.49 0.96 0.61 
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4.3. Supervised machine learning for classification 

A comprehensive training of multiple supervised ML classification algorithms is meticulously 

conducted using MATLAB 2022a. Classifiers such as DT, NB, SVM, KNN, NN, and Kernel classification 

algorithms with different learners and preset specifications are trained and tested with 2 class ECG 5000 

labeled dataset. Amongst 5000 samples, 500 are considered for training and 4500 are considered for testing 

the performance of algorithms which is like the work presented in [19]. Average of accuracy scores of all the 

classifier algorithms trained and tested for three times are presented in Table 5. 
 
 

Table 5. Performance of supervised DT based classifiers 
Classifier type Classifier with preset Accuracy  

DT FT 0.9560 

MT 0.9560 

CT 0.9590 
NB GNB 0.9670 

KNB 0.9790 

SVM LSVM 0.9790 

QSVM 0.9813 

FGSVM 0.8990 
MGSVM 0.9770 

CGSVM 0.9810 

KNN FKNN 0.9780 

MKNN 0.9780 

CKNN 0.9580 
CosKNN 0.9790 

WKNN 0.9800 

NN MNN 0.9820 

WNN 0.9810 
BNN 0.9793 

TNN 0.9793 

Kernel Classifiers Kernel-SVM learner 0.9827 

Kernel-LR learner 0.9760 

 
 

4.3.1. Decision tree classifier 

Fine tree (FT), medium tree (MT), and coarse tree (CT) are classifiers categorized under DT 

classifiers. These algorithms were executed with varying preset conditions and a maximum number of splits. 

Details of the training specifications are given as: “fine tree classifier: Preset: coarse tree; maximum number 

of splits in the tree: 4, splits criterion: gini’s diversity criterion”. “medium tree: Preset: medium tree, 

maximum number of splits in the tree: 4, splits criterion: gini’s diversity criterion”. “Coarse tree: preset: 

coarse tree, maximum number of splits in the Tree: 4, splits criterion: gini’s diversity criterion”. As per the 

test results described in Table 5, CT algorithm exhibits superior performance with higher accuracy of 0.9590 

over other classifiers.  
 

4.3.2. Naïve Bayes classifier 

Two NB classifiers by choosing different preset, distribution and kernel type are trained and tested and 

the results associated are presented in Table 5. Training specifications concerning two NB classifiers are given 

as: “Gaussian naïve Bayes (GNB): Preset=Gaussian NB; Numeric predictions distribution = Gaussian”. “Kernel 

naïve Bayes (KNB): Preset=Kernel NB; Numeric predictions distribution = Kernel, kernel type= Gaussian”.  

As per the results present in Table 5, amongst all the NB classifiers, KNB classifier exhibits superior 

performance with higher accuracy of 0.9790. 
 

4.3.3. Support vector machine classifier 

Five SVM classifiers with different presets, kernel functions, kernel scales, Box constraint levels and 

multi class methods are trained and tested, and the results associated are mentioned in Table 5. Training 

specifications pertaining to all the SVM classifiers are given: “Linear SVM (LSVM): Preset = Linear SVM; 

Kernel function = Linear; Kernel scale: Automatic; Box constraint level =1; Multi class method: one (vs) one”. 

“Quadratic SVM (QSVM): Preset = Quadratic SVM; Kernel function = Quadratic; Kernel scale = Automatic; 

Box constraint level =1; Multi class method: one (vs) one”. “Fine Gaussian SVM (FGSVM): Preset = Fine 

Gaussian SVM; Kernel function = Gaussian; Kernel scale = Automatic; Box constraint level =1; Multi class 

method: one (vs) one”. “Medium Gaussian (MGSVM): Preset = Medium Gaussian SVM; Kernel function = 

Gaussian; Kernel scale =12; Box constraint level =1; Multi class method: one (vs) one”. “Coarse Gaussian 

SVM (CGSVM): Preset = Coarse Gaussian SVM; Kernel function = Gaussian; Kernel scale =47; Box 

constraint level =1; Multi class method: one (vs) one”. As per the results present in Table 5, amongst all 

SVM classifiers, QSVM classifier exhibits superior performance with higher accuracy of 0.9813. 
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4.3.4. K-nearest neighbor classifiers 

Six KNN classifiers with different presets, number of neighbors, distance metrics, eclidean, distance 

weights and standardized data are trained and tested, and the results associated are mentioned in Table 5. 

Training specifications concerning all the KNN classifiers are as given as- “fine KNN (FKNN): preset = fine 

KNN; number of neighbors =1, distance metric = euclidean; distance weight: equal”. “medium KNN 

(MKNN): preset = medium KNN; number of neighbors =10, distance metric = euclidean; distance weight: 

equal”. “Coarse KNN (CKNN): preset = coarse KNN; number of neighbors =100, distance metric = 

euclidean; distance weight: equal”. “Cosine KNN (CosKNN): preset = cosine KNN; number of neighbors 

=10, distance metric = cosine; distance weight: equal”. “weighted KNN (WKNN): preset = weighted KNN; 

number of neighbors =10, distance metric = euclidean; distance weight: squared inverse”. As per the results 

described in Table 5, amongst all KNN classifiers with different learners, WKNN classifier exhibits superior 

performance with higher accuracy of 0.9800. 

 

4.3.5. Artificial neural network 

Multiple NN classifiers with different preset, number of connected layers, first layer size, activation 

function, iteration limit and regularization strength (lamba) are trained and tested, and the results associated 

are mentioned in Table 5. Training specifications concering all the ANN classifiers are given as- “medium 

neural networks (MNN): preset = medium neural networks; number of connected layers =1, first layer size 

=25, activation function = ReLU, Iteration limit =1,000; regularization strength (lamba) =0”. “wide neural 

networks (WNN): Preset = wide neural networks; number of connected layers =1, first layer size =100, 

activation function = ReLU, iteration limit =1,000; regularization strength (lamba) =0”. “Bi-lateral neural 

networks (BNN): Preset = bi-layered neural networks; number of connected layers =2, first layer size =10, 

second layer size =10; activation function = ReLU, Iteration limit = 1000; regularization strength (lamba) 

=0”. “Tri-Lateral neural networks (TNN): Preset = tri-layered neural networks; number of connected layers 

=3, first layer size =10, second layer size =10; third layer size =10, activation function = ReLU, iteration 

limit =1,000; regularization strength (lamba) =0”. As per the results, MNN classifier exhibits superior 

performance with higher accuracy of 98.20% which is very close to kernel classifier trained with SVM 

learner. 

 

4.3.6. Kernel classifiers 

Two kernel classifiers with SVM and logistic regression learners are considered for the evaluation. 

In this regard, different presets, learners, number of expansion dimensions, regularization strength (Lamba), 

Kernel scale, multi class method and iteration limit are considered for training and testing, and the results 

associated are presented in Table 5. Training specifications considered for Kernel-SVM and kernel with 

logistic regression (Kernel-LR) are given as: “kernel-SVM: preset = SVM kernel, learner = SVM, number of 

expansion dimensions = auto, regularization strength (Lamba) = auto, Kernel scale = auto, multi class 

method = one (vs) one and iteration limit =1,000”.“Kernel-LR: Preset = LR Kernel, learner = logistic 

regression, number of expansion dimensions = auto, regularization strength (Lamba) = auto, kernel scale = 

auto, multi class method = one (vs) one and iteration limit =1,000”. Amongst the two Kernal classifiers, the 

kernel-SVM learner classifier exhibits superior performance with an accuracy of 98.27%. Kernel-SVM is 

evident to be the best fit algorithm amongst all the classifier algorithms implemented in this work, thus it is 

considered for further deployement of proposed classification apporach. 

 

4.3.7. Proposed novel approach: kernel-SVM classifier with χ2 feature selection algorithm 

The best performing kernel-SVM algorithm is further explored by training with the modified ECG 

sequences. Consequently, a novel approach ‘kernel-SVM with χ2 algorithm’ is proposed, the process flow 

for the same is depicted in Figure 7. Firstly, χ2 feature selection algorithm is run, and the modified ECG 

sequences are considered for further implementation. Modified signal depicted in Figure 8(b) has only 125 

features/data points per sequence/heartbeat. χ2 Algorithm has importance score in the range of  

2.9101< Importance score <184.7235; features with importance scores less than 10 are excluded. Thus, only 

125 features out of 140 are considered to train kernel-SVM. Features (Instants) 55, 81, 66, 63, 58, 1, 84, 57, 

60, 61, 65, 64, 83, 15 and 82 are excluded from the ECG sequence. It is then deployed with kernel function to 

arrange the data from 2-dimensional space to 3-dimensional space. Subsequently SVM function is called to 

separate the data using support vector hyperplane which leads to effective learning under the supervision of 

input and outputs. For improved reader comprehension, an ECG sequence representing one heartbeat before 

and after applying the χ² (Chi-squared) feature selection algorithm is presented in Figure 8. Figure 8(a) 

illustrates the features considered prior to applying the χ² algorithm, while Figure 8(b) depicts the features 

retained after feature selection. MATLAB 2023b is used to train and test ML based classifier algorithms. 
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Figure 7. Proposed approach: Kernel-SVM + χ2 algorithm 
 

 

 
(a) 

 

 
(b) 

 

Figure 8. ECG 5000 data set: (a) One heartbeat without χ2 algorithm; (b) One heartbeat with χ2 algorithm 

 

 

Confusion matrices resulted from proposed implementation is presented in Figure 9, specially, 

Figure 9(a) illustrates the confusion matrics for the Kenel + SVM model with χ2 algorithm and Figure 9(b) 

illustrates confusion matrics for Kenel + SVM model with χ2 algorithm. Kernel-SVM without χ2 algorithm 

has 60 FPs, 1813 TPs, 4 FNs, 2622 TNs, whereas Kernel -SVM with χ2 algorithm has 78 FPs, 1795 TPs, 

5 FNs, 2621 TNs over all the 4500 samples considered for testing while 500 samples considered for training. 

Proposed algorithm is tested for 10 times and averaged performance metrics: accuracy, precision, recall,  

F1-score, training time, and prediction speed are recoorded. A comprehensive analysis is established by 

comparing the performance of proposed Kernel-SVM + χ2 with F-tALSTM-FCN from [9], VRAE+SVM 
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from [19], Deep LSTM Autoencoder from [22], VAE from [23] and [24], AE-Without-Attention from [24], 

CAT-AE from [24], TCN from [25], CNN, GAN from [26] SID-NASNet from [27] and the same is 

presented in Table 6. Proposed approach of Kernel-SVM + χ2 algorithm outperformed other algorithms, it is 

quick in training and prediction aspects compared to heavy LSTM and DL algorithm notified in the research 

records. And also, proposed ML based kernel-SVM + χ² algorithm is the best alternative to complex DL and 

transformer algorithms to run on the edge devices. Unlike DL algorithms, ML based classification algorithms 

do not need graphical processing units (GPUs) to perform computation-intensive ECG anomaly classification 

tasks on the edge devices. 

 

 

  
(a) (b) 

 

Figure 9. Confusion matrix: (a) Kenel-SVM with χ2 algorithm (b) Kenel-SVM without χ2 algorithm 

 

 

Table 6. Comparative analysis of different supervised ML classifiers 
Classifier models Performance Parameters 

Accuracy Precision Recall F1- Score Training time in 

seconds 

Prediction in 

obs/sec 

F-tALSTM- FCN [9] 0.9496 - - - - - 

VRAE + SVM [19] 0.9843 - - 0.9844 - - 

VAE [23] 0.968 0.984  0.957 - - 
VAE [24] 0.952  0.925 0.954 - - 

AE-Without-Attention [24] 0.97 0.988 0.955 0.971 - - 

CAT-AE [24] 0.972 0.992 0.956 0.974 - - 

LSTM-AE [21] 0.9793 - - - - - 
TCN [25] 0.9612 - - - - - 

CNN, GAN [26] CNN: 0.98, 

GAN: 0.9505 

     

SID-NASNet [27] 0.9822 - - - - - 

Proposed: kernel-SVM + χ2 0.9848 0.9640 0.9973 0.9804 1.6944 9040 

 

 

5. CONCLUSION 

This study demonstrates significant advancements in the prediction of CVD through the 

classification of ECG sequences using both supervised and unsupervised ML techniques. By leveraging the 

ECG 5000 dataset, the research effectively identified optimal clustering and classification strategies, utilizing 

the Elbow and Silhouette methods to determine cluster viability. Among unsupervised approaches, K-means 

and hierarchical clustering were tested, with the two-cluster solution emerging as the most practical for 

stratifying ECG data. The introduction of the kernel-SVM with Chi-Square (χ²) feature selection stands out 

as a key innovation, delivering exceptional performance metrics, including a high accuracy of 98.48%, recall 

of 99.73%, and minimal training time of 1.6944 seconds. These results not only surpass benchmarks reported 

in prior studies but also underscore the efficiency and reliability of the proposed methodology for anomaly 
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detection in ECG classification. This work highlights the potential of combining robust clustering techniques 

with innovative classifiers to enhance predictive performance while optimizing computational efficiency. 

Looking forward, integrating these ML classifiers into edge devices presents a promising area of research for 

developing cost-effective solutions in CVD prognostics. Collectively, these findings furnish compelling 

evidence that substantiates the effectiveness of our proposed approach in the realm of ECG sequences 

classification. 
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