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 Deep learning facilitates human activities across various sectors, including 

agriculture. Early disease detection in plants, such as tomato plant that are 

susceptible to diseases, is critical because it helps farmers reduce losses and 

control the disease spread more effectively. However, the ability of machine 

to recognize diseased leaf objects is also influenced by the quality of data. 

Data collected directly from the field typically yields lower accuracy due to 

challenges faced in machine interpretation. To address this challenge, we 

propose a two-stage detection architecture for identifying infected tomato 

plant classes, leveraging YOLOv5 to detect objects within the images 

obtained from the field. We use Inception-V3 for classifying objects into 

known classes. Additionally, we employ a combination of two dataset: 

PlantDocs which represent field data, and PlantVillage dataset which serves 

as a cleaner dataset. Our experimental results indicate that the use of 

YOLOv5 in handling data under actual field conditions can enhance model 

performance, although the accuracy value is moderate (62.50 %). 
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1. INTRODUCTION 

Early disease detection in plants enables farmers to minimize losses and more effectively control the 

spread of disease [1]. Certain plants, particularly tomatoes, are vulnerable to a variety of diseases that can 

reduce crop productivity and fruit quality. Bacterial spot, late blight, leaf mold, septoria leaf spot, and spider 

mites are among the diseases that affect tomato plants. Consequently, early detection of diseases in tomato 

plants is crucial to minimizing losses [2]. 

Existing research indicates significant advancements in developing systems for identifying and 

classifying plant diseases using machine learning methods that utilize images of infected leaves. Initially, 

these methods relied on manual feature extraction, demanding expert knowledge and limiting the quality and 

relevance of features. Algorithms such as support vector machines, decision trees, k-nearest neighbors, naïve 

Bayes, and random forests have demonstrated the potential of traditional machine learning in agricultural 

applications [3], [4]. The advent of deep learning has revolutionized traditional machine learning through 

automatic feature extraction [5], greatly improving classification accuracy. Deep learning, first introduced in 

1943 [6], continues to evolve and is widely applied across various domains, including text recognition [7], 

[8], speech recognition [9], [10], and image recognition [11], [12]. One of the deep learning architectures 

commonly used for image classification is the convolutional neural network (CNN). CNN leverages the 
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movement of convolution kernels to classify objects based on visual features such as color, texture, and leaf 

edges. This approach delivered superior performance for various image data tasks while progressively 

superseding traditional machine learning methods [11]. However, for small dataset use cases, the traditional 

machine learning still outperforms [13]. 

In agriculture and plantation applications, existing research indicates that CNNs are capable of 

improving classification accuracy through various popular architectures. Different CNN architectures have 

been widely used to identify plants or classify plant diseases. AlexNet, GoogleNet, and VGG-16 each possess 

distinct characteristics for identifying and classifying diseased leaves [14]. The Inception architecture has 

been applied for classifying fruit plants [15], lung cancer [16], and plant diseases [17]–[20]. CNN 

architectures categorized as skip connection architectures, have also been used for classifying plant diseases 

such as ResNet [19], [21]–[23], and DenseNet [19], [21], [24], and also DenseNet for detecting plant nutrient 

deficiencies [25]. Other CNN architectures, developed for improved performance and efficiency, include 

ComNet [26], EfficientNet [19], [21], [24], MobileNet [20]–[22], [27], and InceptionResNet [21], [22]. In its 

development, some researchers have proposed models categorized under the detector family, namely one-

stage and two-stage object detection. YOLO is recognized as a popular one-stage object detection model, 

while the region-based CNN family falls into two-stage object detection. Wu et al. [28] applies two learning 

models, YOLOv5 and EfficientNetV2, to classify tomato leaf diseases. 

Nevertheless, many studies on plant disease classification rely heavily on clean datasets, which 

enable models to achieve high accuracy. However, most datasets found in real-world environments are 

captured under uncontrolled, real-world conditions, unlike laboratory datasets. We refer to such datasets as 

"dirty datasets," representing real-world conditions. Often, models struggle to perform well when tested on 

dirty datasets. This situation presents a challenging task for machines, which must recognize and classify 

objects from real-condition data into predefined categories.  

Based on this background, our research focuses on improving model performance, particularly when 

tested with real-world (dirty) datasets, to develop a robust model for classifying tomato plant leaf diseases. 

There are several crucial factors to consider to address this research question. First, we employ an object 

detector and a classifier to propose a two-stage object detection architecture. Second, we leverage YOLOv5 

to be integrated into the architecture as an object detector, performing pre-processing tasks before the data 

enters the classifier. For the preliminary research of our proposed architecture, we consider utilizing 

YOLOv5, which offers balanced performance, speed, a lightweight model, and adaptability for future 

requirements while also accounting for the constraints of our current hardware [27], [29]. We utilize 

Inception-V3 to classify detected objects from YOLOv5 into known tomato disease classes. The justification 

for choosing Inception-V3 as our baseline classifier is that it is quite efficient in terms of computational cost, 

has a simple design model, and is straightforward to study [30]. Many studies use this model as a baseline 

and achieve good performance. Third, we utilize the PlantDocs dataset to represent the challenges of  

real-world conditions (dirty datasets). Meanwhile, the PlantVillage dataset is used to validate the findings of 

many studies that rely on clean datasets. PlantDocs and PlantVillage will be alternately used as training and 

testing data. However, we assume that the role of YOLOv5 in pre-processing tasks will be more effective 

when the model is trained and tested using the PlantDocs dataset. Fourth, we aim to assess whether YOLOv5 

as a pre-processor can improve classifier performance. The classifier will be evaluated with and without 

YOLOv5 pre-processing. 

 

 

2. METHOD 

2.1.  Inception-V3 

Inception-V3 is a deep learning architecture that has achieved an accuracy of more than 78.1% on 

classification tasks involving 1000 classes on the ImageNet dataset [31]. This level of accuracy renders it 

suitable for various image recognition tasks. Several studies have been conducted to classify 28 flower 

species using the Inception-V3 architecture and transfer learning to enhance accuracy by retraining the flower 

category collection. Based on the experiment results, from the two datasets used, the Oxford-17 and  

Oxford-102 flower datasets, the resulting accuracy is 95%. This indicates that Inception-V3 performs well in 

image classification tasks, even with datasets containing numerous class categories [32]. 

Additionally, Inception is designed to deliver high performance results with a lower computational 

load compared to other architectures. This is achievable due to the fewer parameters in Inception compared 

to other architectures. Inception-V3 is an advancement of the earlier architecture, Inception-V1, introduced in 

2014 as GoogLeNet [33]. Several modifications have been implemented in this architecture compared to its 

predecessor, including factorization into smaller convolutions, spatial factorization into asymmetric 

convolutions, utilization of auxiliary classifiers, and efficient grid reduction. Figure 1 show the Inception-V3 

architecture generally. Overall, the Inception-V3 architecture comprises thirteen modules: one stem module, 

ten inception modules, two reduction modules, and one auxiliary classifier module. This combination of 
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modules allows Inception-V3 to process images efficiently, capturing a wide range of features at multiple 

scales while maintaining a balance between computational cost and performance. 

 

 

 
 

Figure 1. The inception-V3 architecture 

 

 

2.2.  YOLOv5 

The architecture of CNN is excellent for classification. Nevertheless, object detection can be a good 

solution in certain cases to ensure that the classified images do not contain noise or other images outside the 

intended object. YOLOv5 is a method suitable for object detection. YOLOv5 is the evolution of the family of 

YOLO. Widely used, this object detection method balances speed and detection performance, and also offers 

a smaller model weight [27], enabling effective multi-scale object detection [29]. YOLOv5 also becomes a 

suitable and easy method to be modified for enhancements in further development needs [27], [29]. YOLOv5 

can detect and classify multiple objects including humans, animals, and vehicles, in an image or video. 

Figure 2 is a depiction of YOLOv5 architecture. 

 

 

 
 

Figure 2. The YOLOv5 network architecture 
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YOLOv5 is available in five different sizes, based on the number of layers and parameters it 

possesses. This architecture comprises three main parts: the backbone, neck, and head. The backbone is 

responsible for forming features in the image, leveraging the CSPDarknet53 architecture, which is a modified 

version of Darknet. The cross-stage partial (CSP) structure helps overcome gradient problems by splitting the 

flow of gradients [34], reducing the number of parameters, and computing the load. In other words, the 

BottleneckCSP can handle the feature map extraction and reduce gradient information duplication in the 

CNN optimization process. Meanwhile, the spatial pyramid pooling (SPP) module enhances the detection of 

targets at different scales by aggregating features from multiple layers. The neck is the part that connects the 

backbone with the head, responsible for merging features from different scales. The head is responsible for 

detecting objects. Similar to other YOLO architectures, it uses YOLO layers to build this part. The output of 

this part includes bounding boxes and class probabilities. 

 

2.3.  YOLOv5 as pre-processing method for two-stages object detection architecture 

As we have explained in the introduction section, we utilize YOLOv5 to support the pre-processing 

stage, including localizing and detecting objects within an image. This stage is the first step in the two-stage 

object detection process. The research commenced with the preprocessing stage, where we applied YOLOv5 

to two datasets for object detection. We apply this process to the selected datasets, focusing the images on the 

important areas for easier and more accurate classification. 

The first step in the object detection process in YOLOv5 involves extracting features from each 

dataset, using a resolution of 768×768×3 from the original backbone. This part splits each image into feature 

maps, each representing the image at different levels of abstraction. The neck part then concatenates these 

feature maps to aggregate information from various scales. After concatenation, a convolution process with 

32 kernels transforms the concatenated feature maps into a 320×320×32 feature map. The head part then 

localizes and detects objects from these various scales of feature maps, ultimately producing classification 

results and object coordinates. Figure 3 illustrates the architecture of a two-stage object detection system, 

where the YOLOv5 object detection process forms an integral part of the entire system. 

 

 

 
 

Figure 3. The proposed architecture of two-stages object detection 

 

 

During object detection, we train the YOLOv5 model using the original dataset to generate a new 

dataset. This new dataset consists of classified leaf objects resulting from the detection process, specifically 

tomato leaf images classified as either diseased or healthy. The original dataset comprises tomato leaf 

images, both diseased and healthy, obtained from the PlantDocs and PlantVillage datasets. After object 

detection, we proceed to the classification stage. In this stage, we train the Inception-V3 model to classify 

tomato leaf diseases using the new dataset. 

Interestingly, this study shows how YOLOv5, which is an object detector, contributes to the  

pre-processing stage to support the Inception-V3 classifier in identifying diseased tomato leaves. Using a 

dataset that accurately reflects real-world conditions, such as the PlantDocs dataset in Figure 4, significantly 

enhances its effectiveness. This figure illustrates a sample image from PlantDocs taken in field conditions. 

Through the object detection process, YOLOv5 localizes and detects three diseased leaf objects, then crops 

these leaves from the original image, resulting in three separate diseased leaf images, as shown on the right 
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side of the arrow in Figure 4. The Inception-V3 classifier finds it easier to recognize and classify the leaves 

using these three individual leaf images, as opposed to using the original image on the left side. 

 

 

 
 

Figure 4. Object detection by YOLOv5 on PlantDocs sample image 

 

 

We exclusively present the PlantDocs sample image for the object detection process, as it showcases 

the ability to detect and crop multiple leaf objects within an image into separate object images. However, we 

applied the same pre-processing using YOLOv5 to the PlantVillage dataset in our study, despite its 

classification as a clean dataset. PlantVillage images are well-organized tomato leaf images arranged in 

laboratory settings with uniform color backgrounds. 

 

2.4.  Dataset preparation 

Preparing the data before using the datasets to train the model is another step in the pre-processing 

stage. Data preparation is essential for achieving excellent model performance. In our study, YOLOv5's 

object detection process produces the prepared data, which we refer to as the new dataset, as illustrated in 

Figure 4. As previously explained, we use two different datasets: the PlantVillage dataset and the PlantDocs 

dataset. The PlantVillage dataset consists of 38 class categories based on disease types for various plant 

species, totaling 54,303 images across all classes. The PlantDocs dataset consists of 2,598 images from  

13 plant species, with a total of 17 class categories based on disease types. PlantDocs and PlantVillage are 

public datasets that are widely used for developing and testing plant disease detection models and can be 

accessed freely. Each of them has their own unique characteristics. Images samples for the PlantVillage 

dataset are shown in Figure 5, and Figure 6 illustrate sample of the images for the PlantDocs dataset. 

 

 

 
 

Figure 5. PlantVillage sample image 
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Figure 6. PlantDocs sample image 

 

 

Both figures highlight the differences in image conditions between the two datasets. The 

PlantVillage dataset exhibits a relatively clean condition due to the process of capturing images takes place in 

a controlled environment setting. Meanwhile, the PlantDocs dataset contains images that may contain 

multiple leaves, each with varying backgrounds and lighting conditions. For our study, we use only tomato 

plants from each dataset, focusing on a subset of 6 disease classes, namely bacterial spot, late blight, leaf 

mold, septoria leaf spot, mosaic virus, yellow leaf curl virus, and 1 healthy class. 

Table 1 shows the data distribution of the original datasets used as input for the object detection 

process. There are 12,357 images from the PlantVillage dataset and 648 images from the PlantDocs dataset. 

Since YOLOv5 can detect multiple classes in a single image, the number of instances in each class in the 

PlantDocs dataset has changed, as shown in Table 2. This change only occurs in the PlantDocs dataset 

because the PlantVillage dataset consists of single-leaf images. 

 

 

Table 1. The data distribution for two original datasets 
Disease class PlantVillage PlantDocs 

Bacterial spot 1914 107 

Late blight 1689 111 

Leaf mold 857 91 

Septoria leaf spot 1582 148 

Mosaic virus 307 54 
Yellow leaf curl virus 4671 75 

Healthy 1337 62 

 

 

Table 2. The data distribution for the PlantDocs dataset 
Disease class Original dataset New dataset 

Bacterial spot 107 265 
Late blight 111 141 

Leaf mold 91 368 

Septoria leaf spot 148 195 

Mosaic virus 54 482 

Yellow leaf curl virus 75 1095 
Healthy 62 582 

 

 

2.5.  Experimental setup 

We divide each dataset into 80% training data and 20% testing data, respectively. The datasets we 

used contain images with various pixel sizes. Therefore, some pixel transformations or adjustments are 

required to adapt to the model architecture. We standardized all data sizes to 128×128 to ensure uniformity. 

We scale the pixel values from 0-255 to 0-1, speeding up the model's training and homogenizing the values 

in the data. We also use data augmentation to diversify the available data, allowing the model to learn from 

additional data during the training process. This can lead to better results by capturing targeted 

characteristics. Augmentation techniques used include shift, rotation, shear, zoom, and flip. 
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The images prepared in the pre-processing stage are then input into the Inception-V3 classifier.  

We use these images to train the model for optimal performance in classifying diseases in tomato plants.  

As outlined in our proposal, this study emphasizes leveraging YOLOv5 to detect objects within images, 

enhancing the pre-processing stage in a two-stage object detection architecture. Our hope is to improve 

Inception-V3 model performance in detecting tomato leaf diseases by incorporating YOLOv5. 

To test our proposal, we train and test the Inception-V3 model using a combination of two datasets, 

allowing the model to learn from diverse data types. We alternately use these two datasets as training and 

testing data. Additionally, we train the Inception-V3 model without using YOLOv5 in the pre-processing 

stage, which we defined as our baseline architecture. In the baseline architecture, we directly train and test 

the Inception-V3 model using the two original datasets, by passing the YOLOv5 pre-processing stage.  

To support the training and testing of the model, we use the following hyperparameter settings: Adam 

optimizer with a learning rate of 1×10⁻⁴, a batch size of 32, and 30 epochs per experiment. 

 

 

3. RESULTS AND DISCUSSION 

We divided the model performance results into two subsections: the first section, when the model 

uses PlantVillage as training data, and the second section, when the model uses PlantDocs as training data, 

including comparisons between the best proposed and its baseline. This comparison illustrates the effect of 

using YOLOv5 in the pre-processing stage on model performance. To clarify the terminology, "proposed" 

refers to the pre-processing method that uses YOLOv5, while "baseline" refers to the standard pre-processing 

method that does not use YOLOv5. We also use the term "PV" to refer to the PlantVillage dataset and "PD" 

to refer to the PlantDocs dataset. 

 

3.1.  Performance model based on PlantVillage as the training data 

Table 3 demonstrates that the Inception-V3 model, trained and tested on the PlantVillage dataset, 

achieved an accuracy value of 98.28% for both our baseline and the proposed model. Conversely, testing the 

model with the PlantDoc dataset results in a decrease in its performance. However, as mentioned in the 

introduction, this outcome is not surprising, given that many classifications achieve high accuracy when 

using clean datasets, particularly for tomato plant diseases [14]. We also observe that in this case, the use of 

YOLOv5 does not significantly influence performance improvement. 

 

 

Table 3. Model performance when trained by PlantVillage dataset 
Testing data Accuracy (%) Architecture 

PlantVillage 98.32 baseline 

PlantVillage 98.32 Proposed 

PlantDocs 21.54 basaeline 

PlantDocs 15.28 Proposed 

 

 

3.2.  Performance model based on the PlantDocs as the training data 

Based on the accuracy curves presented in Figures 7 and 8, we can observe that the model overfits 

with a high accuracy during training, but the validation process reveals a decline in the model's performance. 

It occurs when the model learns the training data too precisely, including noise, which negatively impacts its 

performance on testing data. In Figure 8, we can see our model performance through some of the curves with 

different levels of fluctuation. We observe that the proposed curve with a higher fluctuation indicates that the 

model has more difficulty in generalizing the learned features from the dirty PlantDocs dataset to the cleaner 

PlantVillage dataset. Overall, the use of the PlantDoc dataset tends to decrease model performance, both with 

the baseline and the proposed model.  

Nevertheless, there is something intriguing to note in the results presented in Table 4. When the 

model is trained on the PlantDocs dataset and tested on the PlantVillage dataset, it shows a slight increase in 

accuracy of 13.9%. Similarly, training and testing the model on the PlantDoc dataset results in a greater 

accuracy increase of 27.08%, which causes the model's performance to achieve an accuracy of 62.50%. This 

demonstrates that using YOLOv5 can assist in improving accuracy, even though the results obtained are not 

very high. 

When trained and tested on the field dataset (PlantDocs dataset), our proposed architecture achieved 

62.50% accuracy. While this value isn't very high, it highlights YOLOv5's strength in object detection during 

pre-processing, which is key for identifying tomato plant leaf diseases. This underscores the importance of 

using real-condition datasets to build robust models. However, it is necessary to be attentive to preparing the 
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dataset well, which needs systematic analysis of field-specific data variations and their influence on the 

model's error rates. 

 

 

 
 

Figure 7. Training accuracy 

 

 

 
 

Figure 8. Validation accuracy 

 

 

Table 4. Model performance when trained by PlantDocs dataset 
Testing data Accuracy (%) Architecture 

PlantVillage 12.59 baseline 

PlantVillage 26.49 proposed 

PlantDocs 35.42 basaeline 

PlantDocs 62.50 Proposed 

 

 

Many researchers in the previous study focus on achieving high accuracy using clean datasets with 

various CNN architectures, but our results suggest that popular CNNs struggle with real-condition datasets. 

To verify this, we tested several CNNs on the PlantDocs dataset, showing a drop in performance, as detailed 

in Table 5. The PD dataset encompasses images of diseases and unwanted objects, boasts a wide range of 

image sizes, and may include multiple leaves with a variety of backgrounds and lighting conditions. The 

convolutional layers find it challenging to extract features from the PD dataset, which frequently contains 
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irrelevant background or noise. Therefore, the model has difficulty distinguishing disease spots or noise. It is 

necessary to apply a robust pre-processing technique to help localize the desired disease spots and separate 

them from the noise objects. To improve the quality of the noise and increase the amount of artificial data, 

we need to apply the augmentation technique. This will allow us to adapt the model to domains with different 

levels of variability [35]. Further, we can benefit from YOLOv5's capability in various augmentation 

techniques due to its ease of modification. 

 

 

Table 5. Comparison of performance between our proposed and other CNN architectures 
Architecture Accuracy (%) 

Resnet-50 41.07 

DenseNet-121 43.57 

MobileNet-V3 33.13 

EfficientNet-V2 43.48 

InceptionResNet-V2 32.71 
Inception-V3 35.42 

Our proposed 62.50 

 

 

To develop a robust classification model, we need to train and test the model using a field dataset 

with high variability that represents the real environment, including various image backgrounds and noise 

[36]. We utilized the highly variable PlantDocs dataset for our proposed architectures [37], but Table 2 

reveals an imbalance in the number of samples for each disease type. Class imbalance arises when one 

disease class dominates the dataset, leaving other diseases underrepresented. This imbalance makes the 

model difficult to generalize important features to new data, as it learns overly specific patterns and ignores 

more general ones. 

For future work, it is necessary to increase the amount of data to ensure a balanced number for each 

class while also ensuring balanced variability [38], [39]. We also considered combining the dirty and clean 

datasets to aim at a balanced variability of the dataset. The use of YOLO still provides confidence as a robust 

pre-processor. YOLOv5 significantly aids the model in focusing on the extracted features. However, the use 

of background removal techniques needs to be involved to improve data quality. Without robust  

pre-processing, the model has difficulty extracting focused features, resulting in decreased accuracy [36]. For 

improving the model's ability to generalize features between domains with different variability, it is 

necessary to select the right domain adaptation technique and regularization technique. Furthermore, we must 

enhance the hyperparameter value settings for model training, including learning rate, optimizer, and batch 

size, while also implementing suitable regularization techniques. 

 

 

4. CONCLUSION 

In this study, we propose a two-stage detection architecture for identifying classes of infected 

tomato plants. In the pre-processing stage, we utilize YOLOv5 to detect objects within the images. The 

detected objects from the PlantDocs and PlantVillage dataset are then classified into known classes using 

Inception-V3 model. Our evaluation of two datasets confirms that our proposed architecture is more effective 

for diseased tomato plant detection, specifically when the classifier model is trained and tested using the 

PlantDocs dataset. In this case, YOLOv5 support our architecture for detecting regions of interest (ROI) and 

distinguishing important features from the noise which are present in the PlantDocs dataset. Although the 

experimental results show a moderate accuracy value (62.50 %), this research has the potential for future 

improvement. We need to prepare the dataset with balanced variability to achieved a more robust model for 

detecting diseased tomato leaves. Our hope is to develop a more accurate model by using a balanced dataset, 

a sophisticated pre-processor like YOLOv5, the appropriate regularization techniques, and the suitable 

domain adaptation technique. 
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