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 The rapid integration of industrial internet of things (IIoT) technologies into 

Industry 4.0 has revolutionized industrial efficiency and automation, but it has 

also exposed critical vulnerabilities to cyber threats. This paper delves into a 

comprehensive evaluation of machine learning (ML) classifiers for detecting 

anomalies in IIoT environments. By strategically applying feature selection 

techniques, we demonstrate significant enhancements in both the accuracy 

and efficiency of these classifiers. Our findings reveal that feature selection 

not only boosts detection rates but also minimizes computational demands, 

making it a cornerstone for developing resilient intrusion detection systems 

(IDS) tailored for Industry 4.0. The insights garnered from this study pave the 

way for deploying more robust security frameworks, safeguarding the 

integrity and reliability of IIoT infrastructures in modern industrial settings.  
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1. INTRODUCTION 

Industry 4.0, known as the fourth industrial revolution, represents a major shift in manufacturing 

processes by integrating cyber-physical systems, automation, and smart technologies. A key component of 

Industry 4.0 is the industrial internet of things (IIoT), which connects machines, devices, and systems within 

industrial environments through advanced communication networks. This connectivity enables real-time data 

collection, analysis, and decision-making, significantly improving efficiency, productivity, and flexibility in 

manufacturing processes [1]. 

The IIoT plays a pivotal role in enhancing operational capabilities by facilitating seamless information 

exchange between machines and systems. Its adoption allows industries to optimize manufacturing processes, 

predict maintenance needs, and develop smart factories that operate autonomously and adaptively. This has led 

to widespread adoption of IIoT technologies globally, giving industries a competitive edge [2]. 

However, the rapid implementation of IIoT introduces critical cybersecurity challenges. The 

interconnected nature of these systems makes them vulnerable to cyber threats, which can lead to operational 

disruptions, financial losses, and compromised sensitive data. Ensuring the security of IIoT environments has 

thus become a top priority for both industry leaders and researchers as the reliance on Industry 4.0 technologies 

grows [3]. As the IIoT becomes increasingly integrated into Industry 4.0, its cybersecurity becomes even more 

essential. IIoT systems, which connect a vast array of devices, sensors, and machinery, are crucial for the 

efficiency of modern industrial operations. However, their interconnectedness introduces significant 

vulnerabilities that can be exploited by cybercriminals. The disruption of IIoT networks through cyberattacks 

can result in production downtimes, financial losses, and threats to human safety [4]. 

https://creativecommons.org/licenses/by-sa/4.0/
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The characteristics of IIoT environments, such as their scale, heterogeneity, and real-time operations, 

make them susceptible to a range of cyber threats, including distributed denial of service (DDoS) attacks, data 

breaches, and manipulation of critical processes. Additionally, the use of legacy systems with limited security 

features further increases the risks, highlighting the need for robust security measures tailored specifically for 

IIoT environments [5]. Securing these environments requires a multi-layered approach. This includes not only 

traditional IT security practices but also specialized measures designed for industrial control systems (ICS), 

such as intrusion detection systems (IDS), encryption techniques, and real-time monitoring to detect and 

mitigate anomalies swiftly. Given the potential consequences of cyberattacks, cybersecurity has become a 

critical concern for industries adopting Industry 4.0 technologies [6]. 

The primary objective of this study is to enhance the security of IIoT environments by evaluating the 

effectiveness of machine learning (ML) classifiers for anomaly detection. As IIoT technologies are increasingly 

integrated into industrial processes, the need for robust and efficient IDS is paramount. This research focuses 

on leveraging feature selection techniques to improve the accuracy and computational efficiency of classifiers, 

providing a scalable solution for real-time threat detection in IIoT environments [7]. By addressing challenges 

such as high-dimensional data and complex industrial networks, this study contributes to the development of 

resilient security frameworks for IIoT systems. The findings are expected to assist in designing advanced IDS 

that mitigate cyberattacks, ensuring the continuity and safety of critical industrial operations [8]. 

ML has proven to be a powerful tool in the development of IDS, especially within the context of IIoT 

and Industry 4.0. Unlike traditional rule-based IDS, which depend on predefined signatures of known threats, 

ML-based IDS can identify both known and unknown threats by learning patterns from historical data. This 

capability is crucial for detecting novel attacks and anomalies that may compromise the security of IIoT networks 

[1]. Several ML algorithms, such as logistic regression, decision trees, and random forests, have been widely 

adopted in IDS due to their ability to handle complex datasets and achieve high detection accuracy. Feature 

selection techniques further enhance these algorithms by reducing data dimensionality, thus improving 

computational efficiency without sacrificing performance. In resource-constrained environments typical of IIoT, 

ML offers scalable and adaptive solution for safeguarding industrial systems from wide range of cyber threats [2]. 
 

 

2. RELATED WORK 

This section analyzes and consolidates key findings and methodologies from existing research on IDS in 

the IIoT context. The rise of IIoT technologies in Industry 4.0 has spurred research into securing these environments, 

with a focus on applying ML and deep learning techniques to detect anomalies and cyber threats in IIoT networks. 

‒ Machine learning-based IDS: The use of ML algorithms in IDS has gained significant attention due to their 

ability to detect both known and unknown threats. Mliki et al. [9] conducted a comprehensive survey of 

ML techniques applied to IIoT security, highlighting the strengths and limitations of various algorithms 

such as support vector machines, decision trees, and neural networks. The study underscores the importance 

of feature selection in improving the efficiency of IDS. 

‒ Deep learning approaches: Soliman et al. [10] propose a deep learning-based IDS for securing IIoT 

networks, addressing challenges like high feature dimensions and imbalanced datasets. Their model utilizes 

singular value decomposition (SVD) and synthetic minority over-sampling technique (SMOTE) to enhance 

detection accuracy and reduce error rates, achieving up to 99.99% accuracy in binary classification and 

99.98% in multi-class classification on the ToN_IoT dataset. 

‒ Hybrid IDS models: Hybrid models combining multiple ML techniques have been developed to enhance 

the robustness of IDS in IIoT environments. Guezzaz et al. [11] propose a lightweight hybrid IDS 

framework that integrates K-nearest neighbor (K-NN) and principal component analysis (PCA) for edge-

based IIoT security. This approach leverages the strengths of both K-NN for high detection accuracy and 

PCA for effective feature engineering, achieving notable results with 99.10% accuracy and 98.4% detection 

rate on the network security lab-knowledge discovery and data mining (NSL-KDD) dataset, and 98.2% 

accuracy and 97.6% detection rate on the Bot-IoT dataset. Another paper, Bakro et al. [12] proposes a 

cloud-based IDS that integrates bio-inspired feature selection algorithms, namely grasshopper optimization 

algorithm (GOA) and genetic algorithm (GA), along with a random forest classifier. This hybrid framework 

addresses challenges such as imbalanced data and high dimensionality by employing adaptive synthetic 

sampling (ADASYN) and random under-sampling (RUS). Evaluated on datasets like UNSW-NB15, CIC-

DDoS2019, and CIC Bell DNS EXF 2021, the model achieved accuracies of 98%, 99%, and 92%, 

respectively, demonstrating superior multi-class classification performance and efficiency compared to 

other classifiers, including support vector machine (SVM), deep neural network (DNN), and XGBoost. 

‒ Anomaly detection: Awotunde et al. [13] introduced ensemble tree-based model for intrusion detection in 

IIoT networks, employing classifiers like XGBoost, Bagging, extra trees (ET), random forest, and AdaBoost. 

By using the chi-square statistical method for feature selection, their model achieved high performance in 
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accuracy, recall, precision, and F1-score. Among the classifiers, the XGBoost ensemble excelled in detecting 

and classifying IIoT attacks, offering a significant enhancement to IDS in complex IIoT environments. 

‒ Feature engineering and selection: Rajashekaran et al. [14] introduced the recursive feature elimination 

(RFE)-long short-term memory (LSTM)-IDS model, combining RFE with LSTM networks for improved 

feature selection and dynamic threat detection in cloud security. Their model achieved 91.50% and 92.21% 

accuracy on NSL-KDD and BoT-IoT datasets, respectively, and showed precision of 47.54% and recall of 

82.31%, highlighting its effectiveness in handling complex intrusion scenarios in IIoT environments. 

‒ IDS for real-time applications: Efficient real-time detection is crucial for IIoT environments.  

Alosaimi and Almutairi [15] proposed a novel approach for lightweight IDS by optimizing feature 

selection. They evaluated various ML algorithms on the BoT-IoT 2018 dataset, focusing on identifying the 

most effective feature pairs to develop energy-efficient IDS. Their approach demonstrated that selecting 

optimal feature pairs can significantly enhance detection accuracy while maintaining system efficiency, 

achieving over 90% accuracy with lightweight models.  

‒ Next-gen security: Idouglid et al. [16] discussed integrating IDS with ML techniques to enhance security 

in IIoT environments. Their paper provides insights into the next-generation security measures for  

Industry 4.0, focusing on resilience and advanced threat detection.  

‒ Novel anomaly detection model: Idouglid et al. [17] proposed a novel anomaly detection model using ML 

techniques tailored for IIoT environments. Their study highlights the effectiveness of advanced algorithms 

in improving detection accuracy and addressing specific challenges in IIoT security.  

‒ Security challenges in IIoT: Avdibasic et al. [3] address the challenges of detecting cyber-attacks in IoT/IIoT 

environments, specifically focusing on Modbus protocol-based systems. They propose a novel deep learning 

architecture that improves upon traditional methods by enhancing both binary and multi-class classification 

of attacks. Their experiments demonstrate that the proposed architecture consistently outperforms existing 

models, offering effective detection and classification of cyber-attacks on IIoT devices. 

‒ Hyperparameter-optimization: In their study, Chimphlee and Chimphlee [18] explore the use of 

hyperparameter-optimized XGBoost for intrusion detection on the CSE-CIC-IDS2018 dataset. By  

fine-tuning parameters such as learning rate, max depth, and gamma, their approach significantly improves 

model performance. The optimized XGBoost algorithm outperforms other traditional ML techniques, 

achieving an impressive receiver operating characteristic (ROC) score of 0.999926 and high accuracy for 

detecting network intrusions. Their work demonstrates the importance of hyperparameter optimization in 

adapting ML models to network security tasks, highlighting XGBoost's capacity for high accuracy while 

maintaining low false positives. 
 

 

3. METHOD 

This section outlines the step-by-step approach adopted in the study, including data preparation, 

preprocessing, feature engineering, model development, and evaluation. The methodology is designed to 

ensure reproducibility by providing detailed descriptions of the techniques and tools used. 
 

3.1.  Data preparation 

3.1.1. UNSW-NB15-v2 dataset description 

The UNSW-NB15 dataset, developed by UNSW Canberra's Cyber Range Lab, is a key resource for 

network intrusion detection research. It includes 2,540,044 instances with 53 features, covering a broad range 

of network traffic attributes, such as flow characteristics, basic and content-related information, and time-based 

metrics. The dataset also features generated metrics like connection counts. It provides clear distinctions 

between normal traffic and various types of attacks, including denial of service (DoS), exploits, and 

reconnaissance, making it essential for evaluating IDS. With a size of 700 MB, it is ideal for ML and deep 

learning applications in network security [19], [20]. With the dataset selected, the following preprocessing 

steps were carried out to ensure data readiness for ML analysis. 
 

3.2.  Data preprocessing 

3.2.1. Handle missing values 

Handling missing values is essential to avoid biased results and ensure accurate model predictions. 

This process involves techniques such as imputation, where missing data is replaced with statistical measures 

like the mean, median, or mode. These methods preserve the dataset's consistency and integrity, enabling more 

reliable analysis and subsequent modeling [21].  
 

3.2.2. Column dropping 

To reduce noise and computational load, irrelevant or redundant columns were removed from the 

dataset. This preprocessing step is crucial for optimizing the dataset by retaining only the most relevant 
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features. Consequently, the machine learning models benefit from improved efficiency and prediction accuracy 

as they are trained on a streamlined dataset. 
 

3.2.3. One-hot encoding 

Categorical variables in the dataset were converted into binary representations using one-hot 

encoding. This technique, implemented with the pandas.get_dummies() function in Python, transforms each 

categorical attribute into separate binary (0 or 1) columns. By doing so, machine learning algorithms can 

interpret and process these features effectively, enhancing model compatibility and performance [22]. 
 

3.2.4. Feature scaling 

Feature scaling was applied to ensure that all features contribute equally to the model’s performance, 

particularly for algorithms that rely on distance metrics. This was done using the MinMaxScaler from  

scikit-learn, which normalized the features to a range between 0 and 1 [23]. Following data preprocessing, 

feature engineering techniques were applied to further refine the dataset and enhance model performance. 
 

3.3.  Feature engineering 

3.3.1. Feature selection 

Feature selection is critical to improving the performance and efficiency of ML models. In this study, 

two feature selection techniques were employed,  

‒ RFE: RFE was used to iteratively eliminate the least important features, reducing the dimensionality of the data 

while retaining predictive power. This process helps to focus the model on the most impactful variables [24]. 

‒ PCA: PCA was used to transform the dataset into a lower-dimensional space by selecting the principal 

components that explain the most variance. This method helped in reducing overfitting and improving 

computational efficiency, especially for high-dimensional data [24]. 
 

3.3.2. Dimensionality reduction 

Dimensionality reduction was performed using PCA to reduce the number of features while 

preserving the underlying structure of the data. By compressing the feature space, PCA ensured that the ML 

models remained robust and easier to interpret. This also helped mitigate issues of overfitting, as the model 

would not be overwhelmed by irrelevant features [25]. After refining the dataset through feature engineering, 

the ML models were developed and trained. 
 

3.4.  Model development 

3.4.1. Data splitting 

The dataset was split into training and testing subsets in an 80:20 ratio using the train_test_split() 

function from the scikit-learn library. A random_state of 42 was set to ensure the reproducibility of the results. 

The training set was used to train the ML models, while the testing set was reserved for evaluating their 

generalization ability. 
 

3.4.2. Cross-validation 

Cross-validation was employed to fine-tune the hyperparameters of the models and assess their 

performance. A 5-fold cross-validation technique was used, ensuring that each fold served as a validation set 

once, while the remaining folds were used for training. This process helps mitigate overfitting and ensures that 

the model's performance is evaluated on multiple subsets of the data [26]. 
 

3.4.3. Training and validation 

The ML classifiers used in this study were trained on the prepared data, and validation was performed 

to assess model performance and tune hyperparameters. Random forest, XGBoost, AdaBoost, gradient 

boosting, and multi-layer perceptron (MLP) were the primary models tested, with each configured to optimize 

detection accuracy and computational efficiency [27]. The following ML models were developed and trained 

in this study: random forest, XGBoost, AdaBoost, gradient boosting, and MLP. 

Each model was fine-tuned using grid search to optimize hyperparameters. For example, the random 

forest model was trained with 100 estimators and a maximum depth of 10, while the XGBoost model was 

optimized with a learning rate of 0.1 and 200 boosting rounds. The models were trained using the scikit-learn 

and XGBoost libraries in Python, leveraging the Kaggle virtual machine (VM) environment, which included a 

multi-core Intel Xeon processor, 13GB of RAM, and access to an NVIDIA Tesla P100 GPU [26]. 

The mathematical formulations of the models are as follows: 

− Random forest: random forest is an ensemble learning method that constructs multiple decision trees. Each 

tree provides a prediction, and the final output is the majority vote (classification) or the average 

(regression) of the predictions. The mathematical formulation for random forest is: 
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𝑓(𝑥) =
1

𝑁
∑ ℎ𝑖(𝑥)

𝑁

𝑖=1
 (1) 

 

Where f(x) is the final prediction, N is the number of decision trees, and ℎ𝑖(𝑥)is the prediction from the  

𝑖-th tree. 

− XGBoost: XGBoost is a gradient boosting algorithm that adds new trees to correct the residual errors of 

previous trees. The objective function is optimized iteratively. The objective function for XGBoost is:  

 

𝐿(𝜃) = ∑ 𝑙𝑖(𝑦𝑖 , 𝑦̂ 𝑖
(𝑡−1) + 𝑓𝑡(𝑥 𝑖)) + 𝛺(𝑓 𝑡)

𝑖=0
  (2) 

 

Where L(θ) is the objective function; y𝑖  and ŷ 𝑖are the actual and predicted values, respectively; 𝑓𝑡(x 𝑖) is 

the new tree added at iteration; and Ω(f 𝑡) is the regularization term. 

− AdaBoost: AdaBoost is an ensemble method that combines weak classifiers to form a strong classifier.  

The algorithm assigns higher weights to misclassified instances, thereby improving future predictions.  

The final prediction is given by: 

 

f(x) = sign ∑ αtht(x)
T

t=1
 (3) 

 

Where ℎ𝑡(𝑥)is the weak classifier at iteration; α𝑡is the weight assigned to the weak classifier; and f(x) is 

the final prediction. 

− Gradient boosting: Gradient boosting works by sequentially building models that minimize the residuals 

(errors) of previous models. The general loss function for binary classification is: 

 

L(yi, ŷ) = ∑ [yi log(ŷ i) + (1 −  ŷ i) log(1 −  ŷ i)]
N

i=0
 (4) 

 

Where y𝑖  and ŷ 𝑖 are the actual and predicted labels; and L(y𝑖 , ŷ) is the loss function that is minimized. 

− MLP: MLP is a type of artificial neural network with multiple layers of neurons. Each neuron computes a 

weighted sum of the inputs and passes it through an activation function. The MLP model is represented as:  

 

 f(x)  =  σ(W2 ⋅  σ(W1  ⋅  x +  b1)  + b2)  (5) 

 

Where x is the input vector; 𝑊1 and 𝑊2 are the weight matrices for the hidden and output layers, 

respectively; b1 and 𝑏2 are the bias terms; σ is the activation function (e.g., rectified linear unit (ReLU) or 

sigmoid); and f(x) is the output of the MLP. 

Once trained, the models were evaluated based on their performance across several key metrics. 

 

3.5.  Model evaluation 

3.5.1. Evaluation metrics 

The models were evaluated using several metrics: accuracy, precision, recall, F1 score, and area under 

the curve (AUC)-ROC. Accuracy measures the proportion of correct predictions, while precision and recall 

provide insights into the model's handling of positive class predictions [28]. The F1 score balances the  

trade-off between precision and recall, and AUC-ROC assesses the model’s ability to distinguish between 

classes at various threshold settings [29]. 

 

3.5.2. Response decision 

The models were used to classify network traffic as either normal or anomalous. A threshold-based 

decision mechanism was applied, where anomalies were flagged based on the model's output. The results were 

analyzed to minimize false positives and false negatives, ensuring that legitimate traffic was not misclassified 

while actual threats were accurately detected. Figure 1 illustrates the methodology workflow, providing a visual 

representation of the step-by-step process.  

 

3.6.  Experimental setup 

All experiments were conducted in a Kaggle VM environment, which provided a cloud-based 

infrastructure with sufficient computing power. The setup included a multi-core Intel Xeon processor, 13 GB 

of RAM, and access to an NVIDIA Tesla P100 GPU for accelerated processing. The Python programming 

language was used, with key libraries including scikit-learn, XGBoost, and pandas. 
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Figure 1. Methodology workflow overview 
 

 

4. RESULTS AND DISCUSSION 

4.1.  Results 

The performance of five ML models—random forest, XGBoost, AdaBoost, gradient boosting, and 

MLP-was evaluated for intrusion detection in IIoT environments. The models were assessed based on accuracy, 

precision, recall, F1 score, and AUC-ROC. The results demonstrate that Random Forest and XGBoost were 

the top performers, while MLP lagged behind other models. 
 

4.1.1. Comparison of model performance 

Tables 1 and 2 summarize the model evaluation metrics, showing the detailed performance of each 

classifier before and after feature selection. Random forest consistently outperformed other classifiers, 

achieving the highest accuracy, precision, recall, and F1 scores, with significant improvements after feature 

selection (accuracy increased from 94.5% to 96.8%, and F1 score from 94.7% to 96.7%). XGBoost also 

performed exceptionally well, with accuracy rising from 92.2% to 95.1% and F1 score from 91.9% to 95.2% 

after feature selection. AdaBoost and gradient boosting showed solid performance, improving in accuracy and 

precision after feature selection, but slightly trailing behind random forest and XGBoost. MLP, while 

improving from 86.7% to 91.5% in accuracy post-feature selection, still lagged behind the other models in 

overall performance. 
 

 

Table 1. Performance metrics of classifiers before and after feature selection 
Classifier Accuracy 

before (%) 

Accuracy 

after (%) 

Precision 

before (%) 

Precision 

after (%) 

Recall 

before (%) 

Recall 

after (%) 

F1 score 

before (%) 

F1 score 

after (%) 

Random forest 94.5 96.8 95.8 97.3 93.6 96.2 94.7 96.7 

XGBoost 92.2 95.1 93.5 96.1 90.4 94.3 91.9 95.2 
AdaBoost 89.3 92.4 90.2 94 88 91.8 89.1 92.9 

Gradient boosting 90.5 93.6 91.7 94.8 89.1 92.3 90.4 93.5 

MLP 86.7 91.5 88.9 93.4 85.6 90.8 87.2 92.1 

 

 

Table 2. Hypothetical AUC-ROC table for classifiers 
Classifier AUC-ROC before AUC-ROC after 

Random forest 0.96 0.97 

XGBoost 0.94 0.97 

AdaBoost 0.89 0.93 
Gradient boosting 0.91 0.92 

MLP 0.87 0.91 

 

 

This detailed analysis shows that random forest and XGBoost are the most effective classifiers in this 

study, both significantly benefiting from feature selection. AdaBoost and gradient boosting also perform well, 

but to a slightly lesser extent, while MLP, despite improvements, remains the least effective of the classifiers 

tested. The bar chart below provides a detailed comparison of classifier performance across key metrics before 

and after feature selection. As shown in Figure 2, a detailed comparison of classifier performance before and 

after feature selection underscores the significant impact of feature selection on improving model performance. 

The results clearly indicate that random forest and XGBoost consistently outperform other classifiers, 

achieving the highest accuracy, precision, recall, and F1 scores in both pre- and post-feature selection stages. 

These findings highlight their robust suitability for intrusion detection in IIoT environments. 
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Feature selection had a pronounced effect on all classifiers. For instance, MLP demonstrated notable 

improvements in all metrics, particularly in accuracy and F1 score, after applying feature selection techniques. 

Even the top-performing classifiers, such as random forest and XGBoost, exhibited observable enhancements 

in precision and recall, further refining their effectiveness in intrusion detection. 

Figure 2 also reveals interesting trends and anomalies. While classifiers such as AdaBoost and 

gradient boosting displayed solid improvements, their performance gains were less pronounced than those of 

random forest and XGBoost, suggesting that these models may be less sensitive to the advantages provided by 

feature selection. In cases where slight decreases in certain metrics were observed, these anomalies merit 

further investigation to uncover underlying causes. The visual comparison provided in Figure 2 

comprehensively illustrates the impact of feature selection on metrics such as accuracy, precision, recall, and 

F1 score. This graphical representation enables stakeholders to evaluate and select the most effective models 

for IIoT security applications. Furthermore, extending this analysis to include AUC-ROC curves could enhance 

the validation of classifier performance. 

 

 

 
 

Figure 2. Comparison of classifier performance before and after feature selection 

 

 

The Table 2 provides a detailed comparison of the AUC-ROC values for each classifier before and 

after feature selection. Random forest and XGBoost emerged as the strongest performers, with their AUC-

ROC values improving from 0.96 to 0.98 and 0.94 to 0.97, respectively, following feature selection. AdaBoost 

and gradient boosting also showed notable enhancements, though their performance remained slightly lower 

than the top classifiers. MLP, which initially had the lowest AUC-ROC values, saw a significant increase after 

feature selection, highlighting the positive impact of this process on model performance. The line chart below 

provides a detailed comparison of the AUC-ROC values for each classifier before and after feature selection.  

Figure 3 illustrates the comparison of AUC-ROC values for various classifiers before and after feature 

selection, providing a clear visual representation of the performance improvements. The line chart highlights 

the effectiveness of feature selection in enhancing model performance across all classifiers. Notably, random 

forest and XGBoost showed the most significant gains, as evidenced by the sharp upward trend in the  

"AUC-ROC after" line. This result reaffirms the robustness of these models in detecting intrusions in IIoT 

environments. 

The chart also reveals that while AdaBoost and gradient boosting demonstrated improvements in 

AUC-ROC values, their performance gains were more modest compared to the top-performing models.  

MLP exhibited a noticeable improvement, which, though still trailing behind other models, underscores the 

value of feature selection in enhancing even less competitive classifiers. Overall, the trends depicted in  

Figure 3 emphasize the critical role of feature selection in refining classifier performance. By improving the 

AUC-ROC values across multiple models, feature selection proves to be an essential preprocessing step for 

achieving higher detection accuracy and reliability in IIoT security applications. 
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Figure 3. Comparison of AUC-ROC values before and after feature selection 
 
 

4.1.2. Comparison with related studies 

The results of this study are consistent with existing literature, particularly in highlighting the superior 

performance of tree-based models for intrusion detection. For example, in [9], random forest was shown to achieve 

high accuracy in a similar IIoT environment, with comparable improvements when feature selection techniques 

were applied. Additionally, XGBoost has consistently been highlighted as a top performer in anomaly detection 

studies, such as [13], where its ensemble learning method and boosting technique helped reduce false positives. 

Ahmed et al. [30] investigates a honeypot-driven approach to securing smart cities by integrating 

honeypot data with machine learning for IoT attack detection. Using high-interaction honeypots and real-world 

datasets, the study employs algorithms like decision tree, naïve Bayes, K-NN, sequential neural network 

(SNN), and LSTM to classify attack types such as port scanning, brute force, and Mirai botnet. Achieving high 

accuracy across metrics, this research highlights the practical application of honeypots for early detection and 

mitigation of IoT cyber threats, emphasizing scalability and effectiveness in smart city ecosystems. Al-

Halboosi et al. [31] explored federated learning models with inception time and multi-head attention 

mechanisms, achieving global accuracies of 93.91% and 93.49% under IID and non-IID distributions, 

respectively. Though this study does not use federated learning, its focus on real-time applicability aligns with 

the use of dimensionality reduction to optimize model performance for IIoT environments. 

Compared to previous research [13], which also used tree-based models for IIoT intrusion detection, 

this study achieved similar performance metrics, particularly in precision and recall. However, the inclusion of 

PCA in this study as a dimensionality reduction technique provided an additional boost in computational 

efficiency and accuracy, making this approach more suitable for real-time IIoT applications. While the MLP 

model showed some improvement after feature selection, it still lagged behind other models. Similar trends 

were observed in [10], where MLP models, despite their flexibility, struggled with the high-dimensionality and 

complexity of IIoT datasets. 
 

4.2.  Discussion 

4.2.1. Key findings 

The analysis highlights the effectiveness of random forest and XGBoost as the most robust classifiers 

for IIoT intrusion detection, particularly after applying feature selection techniques. Feature selection, 

specifically PCA and RFE, significantly improved the performance of all models by focusing on the most 

important features and reducing dimensionality. The results also demonstrate that AdaBoost and gradient 

boosting are strong alternatives, although they did not outperform random forest and XGBoost. MLP, while 

improving after feature selection, remains less competitive in handling the complexity of IIoT datasets, a 

finding that is consistent with other research studies. 
 

4.2.2. Limitations 

Despite the promising results, this study has several limitations. First, the findings are based on the 

UNSW-NB15 dataset, which, while widely used, does not represent all possible IIoT attack types. Future 

research should explore more diverse datasets, such as ToN_IoT or BoT-IoT, to validate the generalizability 

of these results. Second, the experiments were conducted using the Kaggle VM, which may not fully replicate 

the resource constraints of real IIoT environments. Testing in low-latency, resource-constrained settings could 

yield different performance outcomes. Third, the study primarily focused on classical ML models, leaving 

room for further exploration of deep learning techniques like CNNs and LSTMs, which may enhance anomaly 

detection, particularly in larger datasets. Lastly, while PCA reduced computational costs, further optimization 

is needed to ensure that these models can function effectively in real-time IIoT environments. Future research 

should focus on developing lightweight, adaptive models suited for real-time applications. 
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4.2.3. Future research directions 

Future research could expand on several areas based on this study's findings. First, integrating deep 

learning models like CNNs and LSTM with ensemble learning methods could enhance intrusion detection in 

IIoT environments. These models are better suited for capturing temporal and spatial data relationships,  

leading to improved anomaly detection. Second, optimizing ML models for real-time deployment is essential 

for IIoT, where low latency and limited resources are critical. Developing lightweight models that maintain 

high accuracy while minimizing computational demands should be a key focus. Lastly, expanding research to 

include additional datasets, such as ToN_IoT and BoT-IoT, will provide a broader understanding of model 

performance across different IIoT environments and attack types. 
 

 

5. CONCLUSION 

The results of this study demonstrate the effectiveness of ML algorithms, particularly tree-based 

models such as random forest and XGBoost, for intrusion detection in IIoT environments. Random forest 

achieved the highest accuracy, benefiting significantly from the feature selection techniques employed. 

XGBoost also performed well, offering a balance between accuracy and computational efficiency.  

The inclusion of PCA and RFE contributed to the reduction of dimensionality, improving both accuracy and 

computational performance. AdaBoost and gradient boosting models showed competitive performance, 

although they did not outperform random forest and XGBoost. The MLP improved slightly after feature 

selection but remained less competitive due to its challenges with handling high-dimensional data in IIoT 

environments. These findings provide valuable insights into the development of more efficient and scalable 

IDS for IIoT applications. Future research could further enhance these models by integrating deep learning 

techniques, such as CNN or LSTM, or exploring federated learning approaches to improve real-time 

performance and adaptability in resource-constrained environments. 
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