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 This research aims to develop a multi-class instance segmentation model for 

segmenting, detecting, and classifying objects in fetal heart ultrasound 

images derived from fetal heart ultrasound videos. Previous studies have 

performed object detection on fetal heart images, identifying nine anatomical 

classes. Further, these studies have conducted instance segmentation on fetal 

heart images for six anatomical classes. This research seeks to expand the 

scope by increasing the number of classes to ten, encompassing four main 

chambers left atrium (LA), right atrium (RA), left ventricle (LV), right 

ventricle (RV); four valves tricuspid valve (TV), pulmonary valve (PV), 

mitral valve (MV), and aortic valve (AV); one aorta (Ao), and the spine. By 

developing an instance segmentation method for segmenting ten anatomical 

structures of the fetal heart, this research aims to make a significant 

contribution to improving medical image analysis in healthcare. It also aims 

to pave the way for further research on fetal heart diseases using AI. The 

instance segmentation approach is expected to enhance the accuracy of 

segmenting fetal heart images and allow for more efficient identification and 

labeling of each anatomical structure in the fetal heart. 
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1. INTRODUCTION 

The rapid development of AI technology has become an integral part of modern society. This is due 

to the capability of AI to rationalize and take actions or solutions that have the highest probability of 

achieving set goals [1]. In recent years, AI has been widely applied across various sectors, including 

government [2], infrastructure [3], agriculture [4], and healthcare [5]. By leveraging this technology, 

companies and organizations can integrate vast amounts of data to process information and make decisions. 

To support decision-making processes, an AI-based approach in developing models using machine learning 

(ML) algorithms is necessary. Various AI methodologies have been developed, one of which is ML. ML 

operates by utilizing neural networks to process data with the aim of generating knowledge that supports 

organizational or individual activities. In the process, ML extracts key features from data for model 

formation [6]–[8]. 

In the healthcare field, ML has been extensively used to aid medical professionals in decision-

making. Research by Pullagura et al. [9] utilized ML to enhance the accuracy of fetal heart disease 

identification. Canadilla et al. [10] conducted research employing ML to improve the evaluation of fetal heart 

https://creativecommons.org/licenses/by-sa/4.0/
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function by optimizing image acquisition and measurements, thereby aiding in prenatal diagnosis of fetal 

heart remodeling and abnormalities. Hoodbhoy et al. [11] studied the accuracy of ML algorithm techniques 

in identifying high-risk fetuses through cardiotocography. Cömert and Kocamaz [12] used ML as a 

monitoring technique that provides crucial and vital information about fetal status during antepartum and 

intrapartum periods, as well as classifying fetal heart rate signals. However, previous studies have shown that 

ML methods have limitations in analyzing structured and limited data. Additionally, ML methods involve 

more complex stages, such as manual image augmentation, which can be time-consuming to produce 

actionable information for decision-making and actions [13]. 

To address the challenges of traditional ML methods, several studies have adopted a deep learning 

(DL) [14] approach for analyzing and predicting medical examination outcomes, especially in image 

classification and object detection to support fetal echocardiography examinations. By processing large 

amounts of data, DL has demonstrated potential in enhancing accuracy and efficiency in medical image 

analysis. DL methods are frequently employed in the medical field, such as in fetal cardiography image 

detection [15]. One of the primary advantages of DL techniques is their ability to extract significant insights, 

patterns, and information from images and videos. This is achieved through the development of algorithms 

and models that enable machines to analyze, process, and make decisions based on visual data [16]. 

Moreover, DL techniques can identify and depict individual objects in images while providing labels for each 

object, making them applicable in various fields such as object tracking [17] and medical imaging [18]. 

However, these studies mainly focus on the classification of medical images or videos by comparing one 

image object with another. Additionally, the classification technique in DL methods can only identify a 

single object within an image and categorize it based on that object. To overcome the limitations of DL 

classification techniques, a solution is required that can detect multiple objects within a single image or video 

[19]. In addition to classification and detection capabilities, DL methods also possess the ability to detect 

multiple objects in one image and video. For example, research conducted by Sapitri et al. [20] utilized DL 

for object detection in fetal ultrasound videos, identifying anatomical substructures of the fetal heart, 

including i) four main chambers: left atrium (LA), right atrium (RA), left ventricle (LV), right ventricle 

(RV); ii) four valves: tricuspid valve (TV), pulmonary valve (PV), mitral valve (MV), and aortic valve (AV); 

and iii) one aorta (Ao). 

Subsequent developments in object detection [21], [22] have enabled the identification and 

categorization of every pixel in an image into meaningful object categories or areas, known as segmentation. 

Segmentation techniques include semantic segmentation and instance segmentation. Research by 

Rachmatullah et al. [23] used semantic segmentation methods to develop a semantic model that detects objects 

by assigning labels to each pixel in an image, ensuring that pixels with the same label have the same image. 

Simply put, semantic image segmentation is a technique used to identify specific object types within an image. 

However, semantic segmentation techniques have several drawbacks, including the inability to distinguish 

between individual objects in an image and difficulty identifying individual objects with similar textures  

[23], [24]. In contrast, instance segmentation can provide unique labels for each individual object [25], [26]. 

Efforts to recognize and separate each class of objects in an image rely heavily on instance 

segmentation, which in turn depends on the backbone architecture [27]. The backbone architecture plays a 

crucial role in instance segmentation by providing essential feature information of the areas to be segmented 

for the model [28]. Research conducted by Nurmaini et al. [29], has utilized the use of ResNet as the main 

structure to achieve optimal instance segmentation. The application of instance segmentation in the medical 

field includes automating the segmentation process and improving detection accuracy [30]. For instance, an 

instance segmentation approach for fetal echocardiography can simultaneously separate the four standard 

heart views and detect defects [29]. To accurately detect fetal heart abnormalities through fetal ultrasound, 

all heart substructures must be recognized in normal anatomy [20]. One of the most significant limitations 

associated with ultrasound involves interpersonal variability, meaning it depends on the examining doctor's 

skills and the patient's condition [28]. Referring to research by Sapitri et al. [20], which examined 

anatomical structure detection in fetal heart images, as well as research by Nurmaini et al. [28], which 

focused on instance segmentation for the four main chambers of the fetal heart and heart disease detection, 

this study expands its scope to include additional anatomical objects, namely the spine. The addition of the 

spine is crucial for medical practitioners in identifying the four-chamber view (A4C) of the fetal heart in 

images [31]. Therefore, the contributions of this study are the inclusion of ten anatomical objects of the fetal 

heart, namely LA, RA, LV, RV, TV, PV, MV, AV, Ao, and spine, and the development of a DL approach 

using instance segmentation methods for these ten anatomical structures. By developing a sample 

segmentation method for ten fetal heart anatomy objects and applying hyperparameter tuning to find the 

optimal settings [32], [33], this study aims to significantly improve medical image analysis in the healthcare 

field and pave the way for future research in detecting fetal heart disease. This approach promises accuracy 

in segmenting the fetal heart. 
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The segmentation of these ten anatomical structures was chosen based on clinical considerations as 

each has an important role in the diagnosis of congenital heart defects. The four main heart chambers  

(LA, RA, LV, RV) and the four valves (TV, PV, MV, AV) are the structures most frequently used in the 

functional assessment of the fetal heart via ultrasonography. The structure of the Ao is important in 

identifying blood outflow, while the spine helps to ensure correct anatomical orientation in the A4C. 

Accurate segmentation of these structures allows early identification of various abnormalities such as septal 

defects, valve stenosis, and abnormal positioning of the heart or other organs. 
 
 

2. MATERIAL AND METHOD 

Detecting the normal fetal heart anatomy from A4C video between 14 and 28 weeks of gestational 

age is a complex task. Segmentation aims to delineate cardiac structures using contour boundaries; however, 

this method is limited in capturing the spatial relationships among components. As illustrated in Figure 1, the 

workflow begins with the extraction and selection of video frames based on the A4C perspective. The 

selected frames are refined through cropping, filtering, and resizing, followed by manual annotation of fetal 

heart anatomy guided by expert knowledge. The dataset is then divided into training and testing sets. The 

model configuration includes hyperparameter tuning as well as refinement of anchor boxes and prediction 

layers within the region proposal network (RPN). The model is trained iteratively using various 

configurations. Its performance is evaluated using mean average precision (mAP), which reflects the 

accuracy of object detection across different recall levels in medical image analysis. 
 

 

 
 

Figure 1. The flowchart of the AI-based models and experimental methods applied 

 

 

2.1.  Data acquisition 

The initial phase of this study began with the acquisition of fetal echocardiography videos obtained 

from authorized online sources [34]. These videos display the fetal heart from the A4C perspective and are 
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provided in .mp4 format, with a file size of 13.7 MB, a duration of 178 seconds, and a frame rate of 30 fps. 

The entire video was converted into two-dimensional images with a resolution of 1280×720 pixels through a 

frame extraction process. 

 

2.2.  Data pre-processing 

After the frame extraction process, a preprocessing stage was carried out to filter and select 

relevant images, ensuring the quality of the data used for model training. This stage consists of three main 

steps: filtering, cropping, and resizing. Filtering was performed to retain only the images that clearly 

depict fetal heart structures [35]. Cropping was applied to focus on the regions containing the fetal heart; 

in some cases, multiple crops were taken from a single image if it contained more than one fetal heart 

object. Finally, resizing was performed to standardize the image dimensions, with all images resized to 

400×300 pixels. 

 

2.3.  Data labeling 

Subsequently, the selected normal fetal heart images were manually annotated by fetal cardiology 

experts using a specialized graphical annotation tool, namely the makesense application [36]. The annotation 

process was conducted individually for each image, guided by expert knowledge of fetal cardiac anatomy. 

The annotated objects included: LA, RA, LV, RV, TV, PV, MV, AV, Ao, and spine. The annotation results 

were saved in JSON format and served as the ground truth for model training. 

 

2.4.  Data splitting 

Following the annotation process, the dataset was divided into two primary subsets: training data 

and validation data, using an 80:20 split ratio. The splitting was performed randomly while ensuring that the 

class distribution remained balanced across both subsets. This approach allows the model to learn from the 

majority of the available data while reserving a portion for evaluating its generalization performance on 

unseen samples. Such a strategy is commonly employed in DL workflows to prevent overfitting and ensure 

an unbiased performance assessment. 

 

2.5.  Configuration 

Prior to training, a hyperparameter tuning process was conducted, including the configuration of 

anchor boxes, learning rate, batch size, and number of epochs. The proposed model was developed and 

trained on a computer equipped with an Intel Core i3-4170 CPU @ 3.70 GHz (4 CPUs), 8 GB of RAM, and 

an Nvidia GeForce GTX 1050 Ti GPU featuring 768 CUDA cores, a GPU clock speed of 1392/1506 MHz,  

4 GB of GDDR5 memory, and a memory bandwidth of 112.1 GB/s. The programming language used was 

Python 3.6.13, with TensorFlow 1.14.0, Keras 2.3.1, and Protobuf 3.19.6 libraries. 

 

2.6.  Instance segmentation 

In the subsequent stage, the Mask region-based convolutional neural network (Mask R-CNN) [37] 

instance segmentation model is employed. This model consists of several key components: a backbone 

network (ResNet50) for feature extraction, a RPN for generating candidate object regions, region of interest 

(ROI) aligns for aligning proposed regions with the feature maps, fully connected layers for bounding box 

classification and regression; and a fully convolutional network (FCN) for generating binary masks of each 

detected object. The model is specifically designed to perform segmentation of the normal fetal heart 

anatomy based on the A4C view. Mask R-CNN was selected due to its ability to perform both object 

detection and instance-level segmentation with high accuracy. Mask R-CNN offers better performance on 

medical imaging datasets with limited data and complex object boundaries. No structural modifications were 

made to the original architecture, but model performance was optimized through hyperparameter tuning 

specific to fetal heart image characteristics. 

 

2.7.  Evaluation metrics 

To evaluate the overall performance of the model, a specific metric called mAP was used. mAP is a 

widely employed metric for assessing the quality of object detectors. This metric measures the accuracy of 

the model in detecting objects by calculating the average precision (AP) for each class. mAP provides 

valuable insights into the performance of the DL model in the task of detecting fetal heart objects. To obtain 

the mAP value [17], the AP is first calculated by combining precision and recall at various threshold levels. 

The equations for AP and mAP are provided in (1) and (2), respectively: 

 

𝐴𝑃 =  ∑ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑎𝑡 𝑟𝑒𝑐𝑎𝑙𝑙 𝑝𝑜𝑖𝑛𝑡 𝑘 ×  ∆ 𝑟𝑒𝑐𝑎𝑙𝑙𝑘)𝑘  (1) 
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where precision at recall point k is the precision value at a specific recall; and ∆ 𝑟𝑒𝑐𝑎𝑙𝑙𝑘  is the change in 

recall between two adjacent recall points. 

 

𝑚𝐴𝑃 =  
1

𝑁
 ∑ 𝐴𝑃𝑖

𝑁
𝑖=1  (2) 

 

where N is the number of classes or objects; and 𝐴𝑃𝑖 is the AP for the i-th class.  

To calculate precision and recall, use (3) and (4). Precision measures how many of the predicted 

positive cases are truly positive, and it decreases when there are many false positives. Recall indicates how 

many actual positive cases are correctly detected, and it decreases with high false negatives. Together, these 

values determine AP, which is then averaged to compute mAP, giving a robust overall measure of object 

detection performance. 

 

𝑃 =  
𝑇𝑃

𝑇𝑃+ 𝐹𝑃
 (3) 

 

𝑅 =  
𝑇𝑃

𝑇𝑃+ 𝐹𝑁
 (4) 

 

where P is precision; R is recall, TP is true positive; and FP is false positive.  

 

 

3. RESULTS AND DISCUSSION 

3.1.  Pre-processing of normal fetal heart image data 

Following the preprocessing to obtain fetal heart images, the process involved converting ultrasound 

videos into still images, resulting in a total of 357 images. These images include those showing fetal heart 

objects, with some images containing one, two, or three fetal heart objects. Additionally, there are images 

that do not show any fetal heart objects and those where the fetal heart objects are out of focus or blurred, as 

illustrated in Figure 2. For images containing multiple fetal heart objects or where other text or objects are 

present in the image, cropping is performed to ensure that the data used for the instance segmentation model 

meets the specific requirements. This process aligns with the steps outlined in method section. The output of 

the video extraction process and the resulting images are summarized in Table 1. 

 
 

Table 1. Video extraction 
No Image type Number of extracted images 

1. Images showing fetal heart objects 114 

2. Image showing multiple fetal heart objects 50 
3. Images showing fetal heart objects but out of focus 105 

4. Images not showing any fetal heart objects 88 

 Total 357 

 
 

Table 1 presents the results of image extraction from fetal heart examination videos, categorized into 

four main groups based on the quality and presence of fetal heart structures. A total of 357 images with a 

resolution of 1280×720 pixels were obtained. Most of the images contain fetal heart objects with varying 

levels of clarity and object count, while others lack relevant features for further analysis. This classification 

supports the selection of suitable images for the annotation and model training stages. 

Visually, Figure 2 illustrates four main categories resulting from the image extraction process. 

Figure 2(a) displays images that do not display any fetal heart object, Figure 2(b) presents images that 

contain a fetal heart object but are out of focus, Figure 2(c) shows images that clearly show a single fetal 

heart object, and Figure 2(d) presents images that display multiple fetal heart objects within a single frame. 

These categories are derived from the video-to-image conversion process and will subsequently undergo 

preprocessing as part of the dataset preparation for training the segmentation model. 

Following the cropping and selection process for images displaying fetal heart objects, the total 

number of images was reduced to 176, which aligns with the requirements for the instance segmentation 

model, as shown in Figure 3. After obtaining the fetal heart images, the next step involved scaling the images 

to ensure uniform size across the dataset. The scaling process was conducted as described in the method 

section, with images resized to 400×300 pixels. Following this, all normal fetal heart images were annotated 

with ten labels corresponding to the anatomical features of the fetal heart. This annotation was performed 

using polygon points on the fetal heart object images. The annotation process is illustrated in Figure 4.  

The final annotated fetal heart images were exported in JSON file format. 
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(a) (b) 

  

  
(c) (d) 

 

Figure 2. Four image categories from the extraction process of (a) not showing any fetal heart 

objects, (b) showing fetal heart objects but out of focus, (c) showing a fetal heart object, and 

(d) showing multiple fetal heart object 
 

 

 
 

Figure 3. Fetal heart images from the A4C 
 
 

Figure 4(a) represents the anatomical location of the fetal heart that has been determined based on 

expert designation, but has not gone through the AI-based modeling stage. This identification is done 

manually by the radiologist or specialist by considering the visual characteristics seen on the ultrasound 

image. The location of anatomical structures in this image serves as the ground truth, which becomes the 

reference in further annotation and modeling stages. Meanwhile, Figure 4(b) is the result of annotation 

performed using annotation tools, where each fetal heart structure has been labeled with a color mask and 

bounding box to distinguish specific areas. This annotation is an important part of preparing the dataset for 

training AI-based segmentation models. 

 

 

  

(a) (b) 

 

Figure 4. Annotation of fetal heart images (a) original image with manual identification and (b) annotated 

image with color masks and bounding boxes 

 

 

After the annotation phase is complete, the JSON annotation files are paired with the annotated 

images. This combined dataset is then used to train the instance segmentation model for fetal heart image 



Int J Artif Intell  ISSN: 2252-8938  

 

Multiclass instance segmentation optimization for fetal heart image object interpretation (Hadi Syaputra) 

4143 

objects. A sample of the annotation results is shown in Figure 5. Figure 5 shows the results of ground truth 

annotation for segmentation of anatomical structures in fetal heart ultrasound images. Figure 5(a) displays the 

original ultrasound image, while Figures 5(b) to 5(k) represent the manually annotated segmentation of 

various heart structures. The structures shown include Ao, AV, LA, LV, MV, PV, RA, RV, spine, and TV. 

The masking visualized in Figures 5(b) to 5(k) shows the areas identified as part of each anatomical structure 

based on the ground truth annotations. This image is generated from annotated data in JSON format imported 

into Python code and visualized using image processing libraries such as OpenCV or Matplotlib. The process 

involves mapping the JSON data into an array of binary images for each anatomical structure, then visualized 

against a blue background to clarify the segmented parts. 
 

 

 
(a) 

     

(b) (c) (d) (e) (f) 

     

 (g) (h) (i) (j) (k) 

 

Figure 5. Ground truth of annotation results (a) original image, (b) Ao, (c) AV, (d) LA, (e) LV,  

(f) MV, (g) PV, (h) RA, (i) RV, (j) spine, and (k) TV 
 

 

3.2.  Splitting data 

This study utilizes a dataset that is divided into two parts: the training set and the validation set.  

The training set is used to train the model, while the validation set is used to evaluate the model's 

performance on data that was not seen during the training process. Out of the total 176 images, the dataset is 

split into 140 images for the training set and 36 images for the validation set, as shown in Table 2. 
 

 

Table 2. Dataset split for training and validation sets 
No Data Number of images 

1. Training data  140 

2. Validation data  36 

 

 

3.3.  Model segmentation design 

This study employs the Mask R-CNN method, optimizing the model by fine-tuning the 

hyperparameters specific to Mask R-CNN. The hyperparameters used are listed in Table 3. These 

hyperparameters are critical for improving accuracy with the image data. The selected hyperparameters result 

in 24 model combinations. According to Table 4, the parameters include image size, learning rate, learning 

momentum, with 8 epochs and 500 steps per epoch, a ResNet-50 backbone architecture, stochastic gradient 

descent (SGD) optimizer, and a batch size of 1. 

 

 

Table 3. Hyperparameters used for Mask R-CNN model training 
No Configurations Hyperparameter 

1. Image size [64,128,256,512] 

2. Learning rate [0.01,0.001,0.0001] 

3. Learning momentum [0.7,0.9] 

 

 

Table 4 presents 24 combinations of convolutional neural network (CNN) architecture models 

experimented to evaluate the impact of various hyperparameters on classification performance. The varied 

parameters include input image size, learning momentum, and learning rate. All models use the ResNet-50 

backbone, optimized with the SGD algorithm, and trained for 8 epochs with 500 steps per epoch, and with a 

batch size of 1. 
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Table 4. Model experimentations with ResNet-50 backbone and SGD optimizer 
Model Size Learning momentum Learning rate 

R50_sgd_1 (64,64) 0.7 0.01 
R50_sgd_2 (64,64) 0.9 0.01 

R50_sgd_3 (64,64) 0.7 0.001 

R50_sgd_4 (64,64) 0.9 0.001 
R50_sgd_5 (64,64) 0.7 0.0001 

R50_sgd_6 (64,64) 0.9 0.0001 

R50_sgd_7 (128,128) 0.7 0.01 
R50_sgd_8 (128,128) 0.9 0.01 

R50_sgd_9 (128,128) 0.7 0.001 

R50_sgd_10 (128,128) 0.9 0.001 
R50_sgd_11 (128,128) 0.7 0.0001 

R50_sgd_12 (128,128) 0.9 0.0001 

R50_sgd_13 (256,256) 0.7 0.01 
R50_sgd_14 (256,256) 0.9 0.01 

R50_sgd_15 (256,256) 0.7 0.001 

R50_sgd_16 (256,256) 0.9 0.001 
R50_sgd_17 (256,256) 0.7 0.0001 

R50_sgd_18 (256,256) 0.9 0.0001 

R50_sgd_19 (512,512) 0.7 0.01 
R50_sgd_20 (512,512) 0.9 0.01 

R50_sgd_21 (512,512) 0.7 0.001 

R50_sgd_22 (512,512) 0.9 0.001 
R50_sgd_23 (512,512) 0.7 0.0001 

R50_sgd_24 (512,512) 0.9 0.0001 

 
 

3.4.  Results of Mask R-CNN model optimization 

The evaluation of the Mask R-CNN model was conducted by calculating the mAP, which reflects 

the overall accuracy of the model. The results of the model evaluation from various experiments are detailed 

in Table 5. This table presents the mAP results for each category within the training dataset, indicating that 

the model has successfully learned to recognize all classes. 
 

 

Table 5. AP and mAP for training dataset original 
Model AP (IoU)=50 mAP 

Ao LA LV RV RA Spine TV MV PV AV 

R50_sgd_1 0.000 0.278 0.244 0.278 0.278 0.000 0.000 0.000 0.000 0.000 0.1078 

R50_sgd_2 0.000 0.000 0.222 0.247 0.222 0.000 0.000 0.000 0.000 0.000 0.0691 

R50_sgd_3 0.000 0.056 0.188 0.222 0.222 0.000 0.000 0.000 0.000 0.000 0.0688 
R50_sgd_4 0.000 0.139 0.278 0.191 0.250 0.000 0.000 0.000 0.000 0.000 0.0858 

R50_sgd_5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 

R50_sgd_6 0.000 0.000 0.139 0.000 0.028 0.000 0.000 0.000 0.000 0.000 0.0167 
R50_sgd_7 0.139 0.278 0.278 0.278 0.278 0.222 0.000 0.000 0.000 0.000 0.1473 

R50_sgd_8 0.244 0.278 0.278 0.250 0.278 0.250 0.000 0.000 0.000 0.000 0.1578 

R50_sgd_9 0.000 0.194 0.278 0.250 0.278 0.000 0.000 0.000 0.000 0.000 0.1 
R50_sgd_10 0.028 0.278 0.278 0.250 0.278 0.163 0.000 0.000 0.000 0.000 0.1275 

R50_sgd_11 0.000 0.000 0.194 0.056 0.111 0.000 0.000 0.000 0.000 0.000 0.0361 
R50_sgd_12 0.000 0.139 0.222 0.250 0.250 0.000 0.000 0.000 0.000 0.000 0.0861 

R50_sgd_13 0.028 0.083 0.056 0.083 0.278 0.028 0.000 0.000 0.000 0.000 0.0556 

R50_sgd_14 0.000 0.250 0.250 0.222 0.194 0.167 0.037 0.000 0.000 0.000 0.112 

R50_sgd_15 0.250 0.222 0.250 0.219 0.278 0.219 0.054 0.000 0.000 0.000 0.1492 

R50_sgd_16 0.278 0.250 0.278 0.278 0.278 0.250 0.151 0.000 0.000 0.000 0.1763 

R50_sgd_17 0.000 0.000 0.139 0.111 0.056 0.000 0.000 0.000 0.000 0.000 0.0306 
R50_sgd_18 0.056 0.222 0.216 0.222 0.222 0.056 0.000 0.000 0.000 0.000 0.0994 

R50_sgd_19 0.842 0.250 0.278 0.278 0.278 0.222 0.231 0.188 0.182 0.000 0.2749 

R50_sgd_20 0.565 0.278 0.278 0.278 0.278 0.250 0.267 0.25 0.155 0.042 0.2641 
R50_sgd_21 0.333 0.278 0.250 0.239 0.278 0.111 0.007 0.000 0.000 0.007 0.1503 

R50_sgd_22 0.278 0.278 0.278 0.278 0.278 0.222 0.165 0.042 0.157 0.125 0.2101 

R50_sgd_23 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 
R50_sgd_24 0.222 0.159 0.099 0.028 0.222 0.134 0.000 0.000 0.000 0.000 0.0864 

 

 

Table 5 presents the Mask R-CNN model evaluation results based on AP at intersection over union 

(IoU)=50 for each fetal heart anatomy category in the training dataset as well as the mAP as a measure of 

overall model performance. Based on the results obtained, models R50_sgd_19 and R50_sgd_20 showed the 

best performance with mAP of 0.2749 and 0.2641, indicating the ability to recognize various anatomical 

structures more accurately than other models. Cardiac structures such as right RV, LV, RA, LA, and AV 

tended to have higher AP values, indicating that the models were able to recognize these parts better than 
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other structures, such as TV or PV, which had lower or even zero AP values. The evaluation results also 

show that there are some models with AP value=0.000 in certain categories, indicating that the model failed 

to detect objects of that class in the training dataset. This could be due to various factors, such as a limited 

amount of annotation data or the complexity of anatomical structures that are difficult for the model to 

recognize. In addition, models such as R50_sgd_5 and R50_sgd_23 have mAP=0, indicating that they did not 

successfully segment any objects in the dataset. Models with higher mAP show better performance in 

detecting and labeling fetal heart structures, while models with many values of 0.000 or mAP=0 show 

weaknesses in the learning process from the available data. 

Figure 6 displays the mAP for various ResNet-50 models trained using the SGD optimizer with 

different hyperparameter combinations. mAP is a commonly used metric to evaluate the performance of 

object detection models, with higher values indicating better performance. From the graph, it is evident that 

models R50_sgd_19 and R50_sgd_20 achieved the best results, with mAP values of approximately 0.27 and 

0.26, respectively. This suggests that models with an input image size of 512×512 and a learning rate of 0.01 

perform better in detecting objects within the dataset used. Other models, such as R50_sgd_1, R50_sgd_7, 

and R50_sgd_15, also showed fairly good performance with mAP values ranging from 0.1 to 0.15. However, 

their performance was still below that of models R50_sgd_19 and R50_sgd_20. Some models exhibited very 

low or even zero performance, such as R50_sgd_5 and R50_sgd_23. This may be attributed to suboptimal 

hyperparameter combinations for the dataset. Overall, these results highlight the importance of selecting the 

appropriate image input size and learning rate to achieve optimal performance in object detection models 

using the ResNet-50 architecture with the SGD optimizer. 

Although Mask R-CNN is a well-established method, this study presents a novel application by 

integrating instance segmentation with targeted hyperparameter optimization tailored for A4C fetal heart 

ultrasound images. The combination of input resolution tuning, learning rate, and momentum on a dataset with 

ten anatomical classes represents a unique contribution, as previous studies typically limited segmentation to 

fewer structures or did not perform systematic model optimization. This approach addresses the complexity of 

fetal cardiac imaging and demonstrates improved class-wise recognition in a clinically relevant context. 
 

 

 
 

Figure 6. Results and analysis of model performance 
 

 

The Figure 7 illustrates the AP at an IoU threshold of 50 for each class across various ResNet-50 

models trained with the SGD optimizer. Each line in the graph represents a class, with AP values for each 

model plotted as points along that line. The analysis reveals that the class Ao demonstrates significant 

performance variation across models, with some models such as R50_sgd_19 and R50_sgd_20 achieving 

high AP values. Other classes, including LA, LV, and RV, also show noticeable variation in performance 

among the tested models. Models R50_sgd_19 and R50_sgd_20 exhibit more consistent performance across 

many classes compared to others. Certain classes like spine, TV, MV, PV, and AV frequently show low or 

even zero AP values in many models, indicating that detection for these classes is more challenging. Overall, 

models with larger input image sizes and lower learning rates appear to deliver better and more consistent 

results across various classes. The best-performing model in this evaluation is R50_sgd_19, which 

demonstrates the highest performance across most classes. Out of the 24 identified models, named from 
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R50_sgd_1 to R50_sgd_24, the research selected two models with optimal detection performance for classes 

such as Ao, LA, LV, RV, RA, TV, MV, PV, AV, and spine. The evaluation, based on mAP values, identified 

the first optimal model as R50_sgd_19, which achieved the highest mAP of 0.2749, although it failed to 

detect the AV class. The second model, R50_sgd_20, successfully detected all classes with a mAP of 0.2641. 

Both models demonstrated strong overall performance. Table 6 presents these two optimal models based on 

the results from Table 5. These models were selected due to their high mAP values and consistent 

performance across most fetal heart anatomical classes. 
 
 

 
 

Figure 7. Comparison of AP values between object classes of fetal heart images 
 

 

Table 6. Optimal parameters for Mask R-CNN models 
Method Model Parameters 

Mask R-CNN 
R50_sgd_19 Image size: 512×512, learning momentum: 0.7, learning rate: 0.01 

R50_sgd_20 Image Size: 512×512, learning momentum: 0.9, learning rate: 0.01 

 

 

The results of instance segmentation from the two optimal models are displayed in Figure 8. This 

figure shows the segmentation results for ten classes of fetal heart objects. These segmentation outputs are 

essential to evaluate the model’s ability to differentiate each anatomical structure accurately. Figure 8(a) 

shows the segmentation results for several anatomical structures in a medical image, likely an 

echocardiogram of the heart. The segmentation successfully identifies and labels several key parts of the 

image with high confidence levels, including: RV with a confidence of 0.995 LV with a confidence of 0.999 

AV with a confidence of 0.985 MV with a confidence of 0.975 RA with a confidence of 1.000 PV with a 

confidence of 0.972 LA with a confidence of 0.999 TV with a confidence of 0.970 Ao with a confidence of 

0.995 spine with a confidence of 0.997. This segmentation demonstrates that the model has very high 

accuracy in identifying and labeling various anatomical structures within the medical image. Each segment is 

clearly delineated, and the high confidence values suggest that this model is reliable for diagnostic purposes 

and further medical analysis. These results are highly favorable for medical applications, particularly in 

assisting physicians with the identification and analysis of critical parts of echocardiographic images.  

Figure 8(b) presents the segmentation results of several key anatomical structures in an echocardiographic 

image, with extremely high confidence levels. Detailed explanations for each identified structure are as 

follows. RV: this structure is identified with a confidence of 0.998, indicating that the model is highly 

confident in its identification. LV: similarly, the LV is identified with a very high confidence of 0.998.  

AV: this valve is identified with a confidence of 0.954. Although slightly lower than other structures, this 

value remains very high. MV: marked with a confidence of 0.993, indicating nearly perfect confidence in 

identifying this valve. RA: with a confidence of 0.999, the RA is identified with nearly perfect confidence. 

PV: this valve is identified with a confidence of 0.945, which remains within a high confidence range.  

TV: with a confidence of 0.988, the TV is segmented with very good accuracy. Ao: this structure is marked 

with a confidence of 0.998, indicating highly accurate identification. Spine: the spine is segmented with a 

confidence of 0.996, showing high confidence in the identification of this structure. Overall, this 
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segmentation demonstrates that the model excels in identifying various important anatomical structures in 

echocardiographic images. With nearly perfect confidence values for most structures, the model is highly 

reliable for diagnostic and further medical analysis. 
 

 

  

(a) (b) 
 

Figure 8. Instance segmentation results instance segmentation of fetal heart objects using model:  

(a) R50_sgd_19 and (b) R50_sgd_20 
 

 

3.5.  Comparative review with previous studies 

Unlike previous studies that focused solely on segmenting the four main heart chambers or 

performing object detection without segmentation, this study incorporates all anatomically and clinically 

relevant structures for comprehensive diagnosis. The inclusion of the spine, along with eight additional 

cardiac structures, enables a more complete interpretation of fetal cardiac conditions and supports early 

screening for abnormalities such as tetralogy of fallot, ventricular septal defects (VSD), and cardiac 

malposition. Therefore, the proposed model not only expands the number of anatomical classes identified but 

also enhances the clinical relevance of the segmentation results.  

This research develops an instance segmentation approach using the DL method with ResNet 

architecture, which is optimized through hyperparameter settings to produce more accurate fetal heart 

anatomy segmentation. In this study, a total of ten anatomical objects in the fetal heart were successfully 

segmented, namely: LA, RA, LV, RV, TV, PV, MV, AV, Ao, and spine. The addition of the spine in this 

segmentation provides additional useful information for medical practitioners in comprehensively identifying 

the four-chambered view of the heart, which is important in the diagnosis of fetal heart health. The results of 

this study show that instance segmentation with the ResNet architecture backbone is able to provide more 

comprehensive results that are capable of detection and segmentation with many objects in fetal heart 

anatomy. This approach has the potential to improve medical image analysis in the health sector, especially 

in detecting fetal heart disease more accurately through ultrasound images. This research is a continuation of 

previous studies, as can be seen from Table 7 comparison with previous research results. 
 

 

Table 7. Comparison of previous research with current research 
Researcher Method Segmented objects Anatomy coverage Disease coverage Segmentation type 

Sapitri et al. 

[20] 

Anatomical 

structure detection 

Detection object 

without segmentation 

Nine objects in the 

fetal heart image 

None Detection (without 

segmentation) 

Nurmaini et al. 
[29] 

Instance 
segmentation 

(ResNet) 

Fetal heart image 
object 

Four major 
chambers of the 

fetal heart image 

and heart disease 

Heart disease Segmentation 

This research Instance 

segmentation 

(ResNet + tuning 
hyperparameter) 

Ten anatomical objects 

(LV, RV, TV, PV, 

MV, AV, Ao, Spine) 

Nine objects of 

fetal heart and 

spine image 

Focus on normal 

structures to detect 

abnormalities 

Complete object 

segmentation 

 

 

This study shows significant improvements in fetal cardiac anatomy segmentation using the DL 

method based on the ResNet architecture, which has been optimized through hyperparameter settings. By 

implementing the segmentation instance, this study successfully identified ten major anatomical objects in 

the fetal heart, including the four main chambers, important valves, aorta, and spine. The addition of the 

spine in this segmentation provides more comprehensive information, which is beneficial in the identification 

of the complete four-chambered view of the heart, aiding in the diagnosis of fetal heart health. Although this 

study is superior in anatomical object coverage compared to previous studies (which only focused on four 

chambers or no segmentation at all), the results show that the mAP value achieved is still relatively low. This 

is due to the challenge of identifying more diverse classes of objects in the fetal heart image, as well as the 

high level of noise in the video. These conditions degrade the accuracy of the model in detecting and 

classifying objects accurately, which impacts the overall performance of the segmentation. In addition, the 
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noise factor in ultrasound images can complicate the segmentation process as it depends on the varying video 

quality. Compared to previous studies that have fewer object classes, this study shows limitations in 

accurately analyzing more objects under non-ideal video conditions. Nonetheless, this study still shows the 

potential to improve fetal heart image detection and segmentation in the future through improved 

preprocessing techniques and improved quality of the video data used. 

In addition to prior works focusing on image segmentation and detection, recent studies have 

explored alternative approaches to fetal cardiac analysis, such as digital twin modeling and entropy-based 

analysis of fetal heart rate variability (HRV). For instance, Lwin et al. [38] proposed a digital twin framework 

combined with entropy measures to enhance fetal monitoring systems, demonstrating how physiological signal 

analysis can complement image-based techniques. Similarly, Zin and Tin [39] applied Markov chain models to 

analyze HRV, highlighting the integration of AI with physiological data for diagnostic support. While these 

approaches differ in modality, they align with the broader goal of improving fetal cardiac assessment using AI, 

and this study complements them by advancing structural image-based segmentation. 
 

 

4. CONCLUSION 

This study successfully applied Mask R-CNN for sample segmentation on fetal heart ultrasound 

images, able to identify and label anatomical structures. The R50_sgd_19 and R50_sgd_20 models showed 

good performance, with mAP values of 0.2749 and 0.2641, respectively. These models accurately detected 

and labeled major cardiac structures including RV, LV, AV, MV, RA, PV, LA, TV, Ao, and spine with 

confidence values ranging from 0.970 to 1.000, demonstrating the robustness of the models. Systematic data 

preprocessing, annotation, hyperparameter optimization, and model training were critical to this success. The 

results provide a valuable tool for medical practitioners, enabling more precise diagnosis and contributing 

significantly to the assessment of fetal heart health. Furthermore, this research can serve as a foundation for 

the integration of AI-based diagnostic support in fetal cardiology. Future research can explore advanced 

architectures, dataset expansion, integration with other imaging modalities, real-time clinical applications, 

and user-friendly interfaces to further improve the utility and accuracy of the model. 
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