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 Traditional image steganography involves embedding secret information 

into a cover image, a process that requires modification of the carrier and 

potentially leaves detectable marks. This paper proposes a novel method of 

coverless image steganography based on generative models. Initially, a 

CycleGAN model is constructed and trained to learn the features of different 

image domains. Subsequently, an Autoencoder model is trained using two 

sets of images to achieve a precise one-to-one mapping. Once the models are 

trained, the autoencoder is used on both the sender and receiver sides to 

convert the cover image (also known as the stego image) into the secret 

image and vice versa. The CycleGAN model is then utilized to enhance the 

visual quality of the images generated by the autoencoder. Experimental 

results demonstrate that this method not only effectively secures secret 

information transmission but also improves efficiency and increases the 

capacity for information hiding compared to similar methods. 
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1. INTRODUCTION 

Steganography is the science and art of making the information invisible by using different 

concealing methods. Similar to cryptography, steganography tries to ensure the secrecy and safety of 

information, but unlike cryptography, steganography tries to hide the existence of this secret information 

[1]. The most well-known embedding algorithm is the least significant bit (LSB) algorithm. The idea of 

LSB is to encode the secret message into the LSB of a color channel in the cover image. Since the LSB 

algorithm manipulates the pixel independently of each other, it is vulnerable to steganalysis techniques and 

prone to detection [2]. 

Two crucial requirements of every traditional steganography system are the data and a carrier. A 

carrier is referred to the paper, image, video, or any multimedia that carries the secret data. The data is 

embedded into the carrier, and then transmitted to recipient. However, this method raises some issues, 

because the secret data is embedded into the cover, for instance by manipulating the pixels of the carrier 

image, attacker can detect the existence of a secret message in the image or any medium it is being 

transmitted with [1], [3]–[5]. 

Steganalysis, an emerging field of study parallel to steganography, is referred to the science of 

detecting the existence of hidden data in the cover file. The approaches utilized for steganalysis sometimes 

depend on the steganography algorithm(s) used to conceal the data [6]. In order to address the concerns with 

the conventional steganography, experts proposed coverless information hiding in 2014. Coverless 

https://creativecommons.org/licenses/by-sa/4.0/


Int J Artif Intell  ISSN: 2252-8938  

 

Translation-based image steganography system utilizing autoencoder and … (Thakwan Akram Jawad) 

3959 

information hiding is referred to the natural carrier, which is compelled by the secret data. By sharing the 

mapping between certain features of the carrier and the secret data, sender and receiver can communicate 

secret information without changing or manipulating the medium also known as the cover [5]. 

Generative adversarial networks (GAN) are a variation of deep convolutional neural network 

(CNNs) put forth by Almahairi et al. [7]. A GAN is made of two deep networks generator and discriminator 

compete against each other in a zero-sum game to produce a valid output in GAN architecture. The generator 

network is trained in a way to produce similar images to its input and fool the discriminator. The 

discriminator is trained to find the fake images effectively [8]. Generally, a GAN model is made of two chief 

components. Which are discriminator and generator. A new network named the steganalyzer, with the 

purpose of checking if the input has any concealed data in it or not, is used in some methods within the image 

steganography context [8]. 

CycleGAN, abbreviated from cycle-consistent generative adversarial networks, is a generative 

model employed in computer vision and image synthesis. It was devised to facilitate unsupervised learning 

for image-to-image translation, eliminating the need for paired training data [9]. In the CycleGAN 

framework, a generator is trained to produce images in one domain based on images from another domain. 

Since there is no reliance on paired information, numerous potential mappings could be inferred. To 

constrain the multitude of possible mappings, CycleGAN is commonly trained with a cycle-consistency 

constraint. This constraint ensures a robust connection across domains by mandating that the 

transformation of an image from the source domain to the target domain and back to the source should 

yield the original image [7]. 

In our research, we will draw inspiration from novel concepts presented in the studies conducted 

prior to this research, specifically adopting feature mapping technique. However, a significant departure in 

our proposed steganography system is its fully-coverless nature. When compared to traditional 

steganographic methods, our coverless steganography solution exhibits several advantages: 

‒ Imperceptibility: traditional methods often leave detectable traces, making them susceptible to 

steganalysis. Our method, however, produces images that are virtually indistinguishable from genuine 

images, significantly enhancing imperceptibility. 

‒ Higher data capacity: by not embedding data directly into the image pixels, our method circumvents the 

capacity limitations of traditional techniques, allowing for more substantial information to be concealed. 

‒ Efficiency: the use of autoencoders and CycleGAN allows for efficient data concealment and retrieval 

processes. This efficiency is critical for real-time applications and scenarios where computational 

resources may be limited. 

This paper is structured as follows: the second section provides a comprehensive review of prior 

research in the field, establishing the context for this study. The third section details our proposed method, 

outlining its design and implementation. In the fourth section, we evaluate the effectiveness of our approach 

through two carefully designed experimental scenarios. Finally, the fifth section concludes the paper, 

summarizing key findings and implications of this research. 

 

 

2. RELATED WORK 

GAN are variations of deep CNNs [10], [11] put forth by Goodfellow et al. [12]. A GAN is made of 

two deep networks generator and discriminator compete against each other in a zero-sum game to produce a 

valid image in GAN architecture. The generator network is trained in a way to produce similar images to its 

input and fool the discriminator, and the discriminator is trained to find the fake images effectively [13]. 

Generally, a GAN model is made of two chief components. Which are discriminator and generator. A new 

network named the steganalyzer, with the purpose of checking if the input has any concealed data or not, is 

used in some methods within the image steganography context [13]. There are different variations of GAN 

being used in steganography tasks. To name some, CycleGAN, conditional generative adversarial networks 

(CGAN) [14], deep convolutional generative adversarial networks (DCGAN), and Wasserstein generative 

adversarial networks (WGAN) [15]. 

Hu et al. [16] proposed the DCGAN architecture used for steganography without embedding 

(SWE). Their proposed method eliminates the embedding process by generating the carrier image based on 

the noise vector which secret information was mapped to. In this method another network called the extractor 

network is required to re-acquire the secret information from the carrier image. 

While some steganographic approaches utilize a single generative model, Li et al. [17] proposed a 

two-stage method with separate models (F and G) for cover image generation and secret image 

reconstruction. However, their work acknowledges challenges in reconstructing the secret image due to a 

lack of content information preserved during the initial cover image generation step by model F. To address 

this issue, the authors introduce a novel "content-consistency" extraction module within the cover image 

generation process. 
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Li et al. [18] incorporated a DCGAN architecture for the discriminator. In their study, they have 

built a method that transfers secret images between two domains. Their work proposes a two-stage generative 

model approach for secret image encryption. In the first stage, they embed the secret image within a public 

image from a different domain, resulting in a synthetic image. This synthetic image is then used as input for a 

generative model (F) to generate an encrypted image in another domain. 

Zhang et al. [19] proposed a generative reversible data hiding (GRDH) approach utilizing image 

translation. Their method involves two stages. First, an image generator creates a realistic image that serves 

as input to a CycleGAN model. CycleGAN performs image-to-image translation, resulting in a stego-image 

that conceals the secret message. Notably, both the secret message and the original image can be recovered 

independently. A trained message extractor retrieves the hidden message, while the inverse of the image 

translation process recovers the original image. 

Duan and Song et al. [13] introduced a novel coverless image information hiding method utilizing 

generative model database. They propose transmitting a newly generated image, independent from the secret 

image, that can be decoded back to the original secret image by the receiver using their generative model 

database. This method offers improved security by transmitting an uninformative image. They utilize WGAN 

model to achieve coverless image information hiding. Instead of directly transmitting the secret image, they 

train the WGAN on the secret image (replacing the usual random noise input). This WGAN can then 

generate a new, independent "meaning-normal" image that doesn't contain the secret information. This 

produced picture is transmitted to the receiver, which uses WGAN model to regernerate the original secret 

image. However, this method confronts scalability challenges. The current approach imposes storing and 

managing two separate WGAN models for each sender-receiver set. This can become bulky for large-scale 

deployments or scenarios with frequent communication partner changes. Additionally, the computational cost 

linked with training and maintaining these models could be a limiting issue. 

StarGAN has been introduced by Choi et al. [20], which is a GAN that has the ability to multi-

domain image transformation that can be used to achieve facial attribute manipulation within the cover 

image. In this network, the training process comprises both the generator network (G) and a discriminator 

network (D); the generator takes a target domain tag that represents the desired attributes and the input 

image. After that, a new image will be generated to incorporate these specified attributes. For the 

discriminator network, it has two functions where they differente between real and fake images in addition to 

recognizing the domain (attributes) associated with the input image. A combination of loss functions will be 

hold by StarGAN to achieve these goals, this includes adversarial, classification, and reconstruction losses. 

By employing an original form of GAN architecture, Shi et al. [21] deviates from existing 

techniques in their proposed method that consists of one generative network and two discriminative 

networks. The role of the generative network is to prioritizes the visual quality of the stego images, while the 

role of the iscriminative networks is to assess their suitability for information hiding. The authors declare 

considerable improvements in the speed of convergence, stability of the training, and the quality of the 

image. Also, they used an advanced steganalysis network within the discriminative structure; this enables 

better evaluation of the generated images' performance. In this work, three aspects have been prioritizes 

which are perceptibility, security, and diversity. To achieve a high-quality stego image, they used a WGAN 

instead of the commonly used DCGAN, which leads to faster training and superior visual quality. 

 

 

3. METHOD 

The proposed method involves designing two advanced artificial neural networks (ANNs) as core 

components of the system. The objective is to create a one-to-one mapping between two distinct image sets. 

Ideally, the model should perfectly transform an input image (A) into a completely different output image 

(B). This image B can belong to the same domain as image A or a different domain altogether. Crucially, 

image B should exhibit no discernible traces of the information originally contained within image A. To 

achieve this, the system incorporates two generative neural networks: 

‒ Autoencoder: trained using two sets of images to map them one-to-one. It is used on both the sender and 

receiver sides to convert the cover image (stego image) to the secret image and vice versa. 

‒ CycleGAN: enhances the visual quality of the images generated by the Autoencoder. The CycleGAN 

model is trained to learn the features of the images’ domains, ensuring high-quality image translation 

between domains. 

 

3.1.  Datasets 

The datasets employed for this study include images from the CelebA and WikiArt datasets. These 

datasets provide a diverse range of images necessary for training the generative models effectively.  

The CelebA dataset includes images of celebrities, while the WikiArt dataset encompasses various styles of 
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art [22], [23]. To evaluate the model's performance in a comprehensive way, both datasets are split into 

training and testing sets. 

 

3.2.  Architectures 

3.2.1.  Autoencoder 

The idea of designing the encoder is to reduce the spatial dimensions of the input image in a gradual 

way while expanding the depth of the feature maps and capturing basic image features. In the beginning of 

the structure, there are three layers, a Conv2D layer that uses 32 filters with rectified linear unit (ReLU) 

activation, a MaxPooling2D layer that uses pool size of 2×2, and a dense layer comprising 64 units with 

ReLU activation. After that, the process will be repeated with Conv2D layer of 64 filters, another layer of 

MaxPooling2D, and a dense layer that has 128 units. At the final stage, the encoder has a Conv2D layer that 

have 128 filters, a MaxPooling2D layer, and a dense layer that contains 256 units. All use ReLU activation to 

guarantee non-linearity and robust feature extraction. 

The function of the decoder is to refine the image from the encoded latent illustration, this done by 

reversing the dimensionality reduction. It starts with the dense layer that has 8×8×128 units, a 

Conv2DTranspose layer with 256 filters of size 3×3 and a stride of 2 and ReLU activation, and a dense layer 

with 64 units. Then, it continues with a Conv2DTranspose layer that has 28 filters and a stride of 2, followed 

by a dense layer that has 32 units. The final step have Conv2DTranspose layer that has 64 filters, a stride of 

2, and a concluding Conv2D output layer that has with 3 filters of size 3×3. It employs sigmoid activation to 

produce the final output image. 

 

3.2.2.  CycleGAN 

The architecture of the CycleGAN generator includes three main modules which are downsampling, 

residual blocks, and upsampling. The phase of downsampling starts with a Conv2D layer that has 64 filters, a 

4×4 kernel, and a stride of 2. To reduce the spatial dimensions by half, ReLU activation will be added. To 

further halve the dimensions, the Conv2D layer will be used. This layer has 128 filters while following the 

same kernel and stride to increase feature depth. To capture more complex features while continuing the 

spatial dimension reduction, a Conv2D layer with 256 filters, 4×4 kernel, and stride of 2 has been used. To 

maintain the network's identity mappings and training constancy, outstanding blocks will be used as their use 

is crucial. The six outstanding blocks comprising a Conv2D layer with 256 filters, a 3×3 kernel, and same 

padding that followed by ReLU activation. Another Conv2D layer that has 256 filters and same padding 

follows that the input and output summed to form the residual connection, promoting stable training [24]. 

The upsampling stage stars with a Conv2DTranspose layer that has 256 filters, a 4×4 kernel, and a 

stride of 2. It will be ctivated by ReLU, doubling the spatial dimensions, followed by a Conv2DTranspose 

layer that has 128 filters and the same kernel and stride. To further upsamples the dimensions, another 

Conv2DTranspose layer with 64 filters and similar settings. Finally, the output layer is a Conv2DTranspose 

layer with 3 filters, a 4×4 kernel, and a stride of 2. It will be followed by Sigmoid activation to constrain 

output pixel values between 0 and 1 [25], [26]. 

For the discriminator, it has been designed as a PatchGAN that focuses on local image patches 

rather than the entire image, maintaining high-frequency details and textures. It has multiple Conv2D layers 

with filters and strides of 2, each followed by LeakyReLU activations. It progressively reducing the spatial 

dimensions while capturing more complex features. The final layer outputs a single-channel feature map that 

represents the authenticity of each image patch, promoting detailed and realistic image generation [9], [27]. 

 

 

4. RESULTS AND DISCUSSION 

The functionality of our proposed method is evaluated through various performance metrics, including 

structural similarity index (SSIM) [28], mean squared error (MSE), and peak signal-to-noise ratio (PSNR).  

To comprehensively evaluate our proposed system, we have defined two distinct scenarios. These scenarios 

are designed to test the system's performance in different contexts and with different types of images. 

 

4.1.  Training CycleGAN 

We selected 50 images each from the CelebA and action painting style in the WikiArt dataset to 

train the CycleGAN model, aiming to represent two distinct visual domains and thus provide a robust test for 

our model's generalization capabilities. The results and visualizations include recorded training losses for 

both the generators and discriminators over the 500 epochs. The plot in Figure 1 illustrates the training 

dynamics, specifically the loss curves for both generators (Gen AtoB and Gen BtoA) as they learn to translate 

images from one domain to another. The CycleGAN model was trained for 500 epochs to learn the mappings 

between these two domains, capturing and translating the unique features and styles of each domain, as 
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shown in Figures 2, CelebA to WikiArt as shown in Figure 2(a), and WikiArt to CelebA as shown in  

Figure 2(b). This training enhances the visual imperceptibility of the generated images. 

 

 

 
 

Figure 1. Generators' training loss over epochs 

 

 

  
(a) (b) 

 

Figure 2. Examples of CycleGAN domain-to-domain translation after the model is trained of (a) CelebA to 

WikiArt and (b) WikiArt to CelebA 

 

 

4.2.  Scenario 1: same domain 

In this scenario, both the secret image and the stego image belong to the same domain, sharing 

similar characteristics such as style, content, and visual features. Evaluating the system under this condition 

helps us understand its performance when the images have a high degree of similarity. We selected  

20 images from the CelebA dataset, featuring both male and female subjects with diverse backgrounds, to 

test the system's ability to map and translate facial images. These images, with relatively simpler and more 

uniform visual features compared to artistic images, provide an appropriate test case to assess the system's 

efficacy in handling facial imagery. In the initial phase of our evaluation, we focused on the first scenario, 

where both the stego-image and the secret image originate from the same domain. This scenario is 

particularly significant as it allows us to assess the performance of our model under conditions where the 

features of the images are highly similar. 

The similarity in features between the stego-image and the secret image simplifies the learning 

process for our model, thereby serving as a baseline for evaluating its effectiveness. In this evaluation, we 

used 20 images from the CelebA dataset. These images featured both male and female subjects with varied 

backgrounds. We randomly selected 20 images and subsequently divided them into two distinct sets, labeled 

A and B, as illustrated in the Figure 3. This process ensures a balanced and representative sample, which is 
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essential for evaluation of our proposed method.  Figure 4 illustrates the autoencoder's training loss trajectory 

over 2000 epochs, reflecting the optimization process. Following this, Figure 5 evaluates the model's 

performance by showing original images in Figure 5(a), their generated counterparts in Figure 5(b), and the 

target secret images in Figure 5(c), highlighting the model's reconstruction accuracy. 
 

 

 
 

Figure 3. The images of two sets that will be mapped correspondingly 

 

 

 
 

Figure 4. The training loss over epochs during the training of the autoencoder on the CelebA dataset 
 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

Figure 5. Autoencoder model evaluation of (a) input: original image, (b) output: generated image, and  

(c) target: secret image 
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As shown in Table 1, the analysis of the CelebA-to-CelebA translation performance for the 

autoencoder model reveals noteworthy findings from the comparative assessment of SSIM, MSE, and PSNR 

metrics across different image sets. In the AtoB model, the results demonstrate consistently high SSIM 

values, peaking at 0.908185 for image set 4, indicating strong preservation of structural integrity during 

translation. Additionally, this model exhibits low MSE values, particularly notable in image set 4 with an 

MSE of 0.000360, and a corresponding PSNR of 34.434243, signifying minimal reconstruction error and 

high-quality output images. These results collectively highlight the robustness of the autoencoder model in 

maintaining image quality, while also suggesting areas for improvement in achieving consistent performance 

across different image sets. 

 

 
Table 1. Evaluation metrics for generated images in Figure 5 

Image set SSIM MSE PSNR 

Image set 1 0.859619 0.003551 24.496793 

Image set 2 0.825956 0.000952 30.212155 

Image set 3 0.866684 0.002285 26.411011 
Image set 4 0.908185 0.000360 34.434243 

Image set 5 0.864702 0.000943 30.256875 

Image set 6 0.855163 0.000631 32.002772 

Image set 7 0.759118 0.001630 27.877301 

Image set 8 0.904223 0.000509 32.932824 
Image set 9 0.895943 0.000760 31.191168 

Image set 10 0.863341 0.000718 31.439247 

 

 
4.3.  Scenario 2: different domains 

The secret image and the stego image come from different domains in this scenario to present a 

more challenging setup due to their dissimilar characteristics in style, content, and visual features. The 

evaluation od this system under these conditions helps to understand its robustness and versatility. Secret 

images from the CelebA dataset and stego images from the WikiArt dataset have been used to test the 

system's ability to map and translate facial images to artistic images. The objective was ensuring the facial 

features were preserving while maintaining the artistic integrity of the stego images. In the second phase of 

the evaluation, it has been focused on the second scenario, where the stego-image and the secret image have 

been originated from different domains. This scenario is crucial as it gives the ability to evaluate the 

performance of the model under conditions where the features of the images are highly different and 

unsimilar. It is important to mention that the difference in features between the stego-image and the secret 

image complicates the learning process for our model. 

As shown in Figure 6, twenty images were randomly selected for evaluation. These images have 

been selected from the WikiArt and CelebA datasets equally. The reason for choosing these images is to 

cover a diverse range of artistic styles and intricate visual and facial features to assess the ability of the 

system to translate and map images across different domains. In Figure 7, the autoencoder's training loss over 

epochs for both datasets, this highlights the optimization process and the model's convergence during 

training. While Figure 8 is used to evaluate the autoencoder's performance by showcasing the original images 

in Figure 8(a), then the generated images in Figure 8(b), and the target secret images in Figure 8(c), 

demonstrating the model's capacity for effective reconstruction and domain mapping.  

 

 

 
 

Figure 6. The images of two sets that will be mapped correspondingly 

 



Int J Artif Intell  ISSN: 2252-8938  

 

Translation-based image steganography system utilizing autoencoder and … (Thakwan Akram Jawad) 

3965 

 
 

Figure 7. The training loss over epochs during the training of the autoencoder on the WikiArt/CelebA datasets 

 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

Figure 8. Autoencoder model evaluation of (a) input: original image, (b) output: generated image, and  

(c) target: secret image 

 

 

In addition, Table 2 contributes a quantitative assessment of the autoencoder's performance. It 

presents evaluation metrics for the generated images displayed in Figure 8. These metrics confirm the 

effectiveness of the model to maintain high accuracy and quality in the reconstructed images. 

 

 

Table 2. Evaluation metrics for generated images in Figure 8 
Image set SSIM MSE PSNR 

Image set 1 0.596109 0.009241 20.342598 

Image set 2 0.649340 0.007551 21.219742 

Image set 3 0.493413 0.005901 22.290604 

Image set 4 0.697044 0.005046 22.970548 

Image set 5 0.628170 0.004263 23.703005 

Image set 6 0.719750 0.004531 23.437798 

Image set 7 0.620793 0.006865 21.633631 

Image set 8 0.673014 0.007311 21.360182 

Image set 9 0.707038 0.007211 21.419772 

Image set 10 0.476001 0.007411 21.301239 
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4.3.1. Applying CycleGAN 

As the previous results demonstrated, the autoencoder's performance on image pairs 1, 3, and 10 

wasn't good enough. Therefore, in this section, we are going to apply our trained CycleGAN to the images 

that were outputted from the autoencoder to enhance them. We will then compare these enhanced images 

both metrically and visually to their respective target images. Figure 9 evaluates the CycleGAN model, 

showcasing its capability to enhance the visual quality of the autoencoder's output. Figure 9(a) displays the 

original image, Figure 9(b) presents the improved output generated by the CycleGAN, and Figure 9(c) 

illustrates the target secret image, emphasizing the model's contribution to refining output quality. Table 3 

provides a comparative analysis of evaluation metrics for both the generated images from the autoencoder 

and the enhanced images produced by the CycleGAN. These metrics illustrate the improvements in visual 

quality and fidelity. 

 

 

   
(a) (b) (c) 

 

Figure 9. CycleGAN model evaluation of (a) input: original image, (b) output: generated image, and  

(c) target: secret image 

 

 

Table 3. Evaluation metrics for the generated images and enhanced images 
Image set Model SSIM MSE PSNR 

1 Autoencoder 0.596109 0.009241 20.342598  
CycleGAN 0.604278 0.009573 20.189400 

3 Autoencoder 0.493413 0.005901 22.290604  
CycleGAN 0.505235 0.005854 22.325549 

10 Autoencoder 0.476001 0.007411 21.301239  
CycleGAN 0.481077 0.007629 21.175290 

 

 

4.4.  Comparison of steganography techniques 

To evaluate the effectiveness of various steganographic techniques, we conducted a comparative 

analysis based on key factors: cover image size, secret image size, security, visual fidelity, and versatility. 

The cover/stego image size refers to the resolution of the image used for embedding the secret data in 

traditional steganographic methods and also represents the resolution of the transmitted image required to 

extract the hidden data. Secret image size denotes the resolution of the data being concealed within the cover 
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image. Security measures the resistance of the generated images against detection by steganalysis tools, 

ensuring that the hidden data remains imperceptible. Versatility assesses the model’s adaptability to different 

image domains, while visual fidelity reflects the quality and realism of the generated images. In Table 4, we 

provide a detailed comparison of our method with existing techniques. 

 

 

Table 4. Comparison between our proposed method and previous methods 
Method Technique Cover/stego 

image size 
Secret 

image size 
Security Visual 

fidelity 
Versatility 

Proposed method Autoencoder+CycleGAN 256×256×3 256×256×3 High Moderate Very high 

Rehman’s method [29] Encoder-decoder 32×32×3 32×32×1 Moderate High High 

Zhang’s method [30] GAN 256×256×3 256×256×1 Moderate High High 

 

 

4.5.  Limitations 

In this study, one significant limitation is the scarcity of established baseline models for 

comparative evaluation. Since this field is relatively nascent, there is a noticeable lack of standardized 

datasets and performance metrics that can serve as benchmarks for assessing the effectiveness of our 

model. This gap presents challenges in quantitatively evaluating our approach against a diverse array of 

methods. Moving forward, the establishment of standardized benchmarks and evaluation frameworks will 

be critical in facilitating more robust comparisons and fostering advancements across various models in 

this domain. Additionally, while the CycleGAN effectively enhances the visual quality of the generated 

images, it does not achieve complete enhancement, leaving some room for improvement in terms of 

image fidelity. Future work could explore optimizing the training process for the autoencoder and 

improving the CycleGAN's architecture to achieve higher levels of enhancement, thereby addressing 

these challenges. 

 

 

5. CONCLUSION 

This study demonstrates the feasibility of using generative models, particularly CycleGAN and 

autoencoders, for coverless image steganography, achieving significant advancements in security, data 

capacity, and visual quality. Unlike traditional methods that modify carrier images, our approach generates 

undetectable stego images. The integration of CycleGAN ensures high visual fidelity, while autoencoders 

enable effective data concealment and recovery. These findings highlight the robustness, efficiency, and 

applicability of the proposed method across various domains, paving the way for more secure and practical 

solutions in steganography. Future research will focus on overcoming limitations and further optimizing the 

method for real-world applications. 
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