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 Two critical factors that need to be studied in emotion recognition are the 

differences in electroencephalogram (EEG) signal patterns caused by 

participant characteristics and EEG signals with spatial information. These 

factors significantly affect the resulting accuracy. The model proposed in 

this study can consider these factors. This model consists of the modified 

weighted mean filter method for the basic EEG signal smoothing process, 

the differential entropy method for the feature extraction process, the relative 

difference method for the baseline reduction, the 3D cube method for feature 

representation, and the continuous capsule network method for the 

classification process. Based on testing on three public datasets, this hybrid 

method can overcome factors affecting emotion recognition accuracy. This 

statement is based on the accuracy produced by this model, which 

outperformed the accuracy validated in previous studies. 
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1. INTRODUCTION 

It is important to recognize emotional reactions in humans to understand human mental states and 

performance [1], [2]. Some emotion recognition approaches can be performed externally. However, internal 

recognition of emotions, primarily via electroencephalogram (EEG) signals, has several advantages, such as: 

i) having spatial information that represents human affective experiences [3], and ii) respond to early changes 

in human emotional reactions [4], [5]. Although various methods have been proposed to improve the 

performance of artificial intelligence (AI) models in recognizing emotions, interference in the EEG signal 

and loss of spatial information from the EEG signal can result in low model accuracy [6]. Therefore, 

examining several appropriate methods to produce optimal AI models to solve these two problems is 

essential. 

Generally, two essential aspects are considered in developing an emotion recognition model on EEG 

signals: participant and EEG signal characteristics [6]. Participant characteristics include personality traits, 

gender, culture, and intellectual abilities. This aspect produces different EEG signal pattern variances for each 

participant. If this EEG signal pattern variance is not addressed, it will impact low emotion recognition  
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accuracy [7]. To overcome this problem, Wirawan et al. [8] proposed a baseline reduction process using the 

relative difference method. The baseline reduction process reduces the experimental signal features with the 

baseline signal features [7]. The experimental signal is a signal that represents an emotional condition. 

Meanwhile, the baseline signal represents a neutral condition [9]. Ideally, neutral conditions have lower signal 

amplitude values than emotional conditions [10], [11]. However, the baseline signal does not represent a neutral 

condition because the baseline and experimental signals still have the same amplitude values [12]–[14]. The 

high amplitude of the baseline signal is caused by internal and external artefacts/interference [9], [15]–[17]. 

Wirawan et al. [18] have successfully developed and implemented the modified weighted mean 

filter method to optimize the baseline reduction process with the relative difference method. However, this 

model needs to consider the spatial characteristics of EEG signals [18]. Several researchers have studied the 

aspects of EEG signal characteristics from the feature extraction process, feature representation, and 

classification. In the feature extraction process, the differential entropy method can represent spatial 

information and is stable in emotion recognition compared to other features [7], [19]–[21]. In the feature 

representation process, the 3D cube method can maintain spatial information between channels and between 

theta, alpha, beta, and gamma frequencies [22]. In terms of classification, several researchers have studied the 

multi-class support vector machine [23], graph regularized extreme learning machine [24], convolution 

neural network [25], [26], and the combination of long short-term memory with convolution neural  

network [27]. However, of the several classification methods studied, the capsule network method has been 

proven to represent spatial information in the classification process [22]. Wirawan et al. [22] proposed a 

continuous capsule network method to preserve spatial information from EEG signals for classification. 

However, the noise in EEG signals in this model has yet to be overcome. 

The proposed problem-solving approach for the first problem is to apply the modified weighted 

mean filter method to remove interference in the baseline signal and apply the relative difference method to 

eliminate interference in the experimental signal. For the second problem, this research proposes the 

differential entropy method to extract baseline and experimental signal features, the 3D cube method to 

represent experimental signal features, and the continuous capsule network method for emotion 

classification. This hybrid method is expected to improve the performance of emotion recognition models on 

EEG signals. The model was tested with three emotion datasets, such as DEAP, DREAMER, and AMIGOS, 

to measure the performance of the proposed model. These three datasets have different characteristics 

regarding the amount of data, number of channels, and recording scenarios. To produce an optimal model for 

recognizing emotions via EEG signals. 

 

 

2. METHOD 

Based on the studies, the researchers [18], [22] propose a model consisting of several methods, such 

as the modified weighted mean filter method for removing baseline EEG signal artefacts, the differential 

entropy method for feature extraction, the relative difference for baseline reduction, the 3D cube method for 

feature representation, and the continuous capsule network method for the emotion classification process. 

This experiment will be conducted on three public datasets. The flow diagram related to the research 

procedures that will be implemented is in Figure 1. Based on Figure 1, the research procedure can be 

described in the subsection as follows. 

 

 

 
 

Figure 1. Research flow diagram 
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2.1.  Collection of datasets 

The datasets used in this research are DEAP, DREAMER, and AMIGOS [12]–[14]. These three 

datasets use different EEG recording tools, recording durations, and recording scenarios. These differences in 

characteristics will be instrumental in testing the reliability of the model being developed. 

 

2.2.  Segmentation 

The segmentation process separates the baseline signal and the trial signal. The baseline signal is an 

EEG signal that represents the participant's neutral condition. The trial signal is an EEG signal that represents 

the participant's emotional reaction. In the DEAP dataset, the first three seconds are the baseline signals, and 

the fourth to sixty-third seconds are the experimental signals. In DREAMER and AMIGOS, the first five 

seconds are the baseline signal, and the following seconds are the trial signal [12]–[14]. Every second of 

EEG signal data on DEAP, DREAMER, and AMIGOS consists of a 128 Hz sampling rate. Figure 2 is an 

illustration of segmentation in the AMIGOS dataset. Segmentation is performed on all channels. The DEAP 

dataset contains 32 channels, while the DREAMER and AMIGOS datasets contain 14 [12]–[14]. 

 

 

 
 

Figure 2. The EEG signal segmentation process for AF3 and AF4 channels on the AMIGOS dataset 

 

 

2.3.  Removing artifacts 

The modified weighted mean filter method removes artefacts by smoothing the baseline signal. 

However, before that, the baseline signal data was normalized using the Z-score normalization method  

[5], [28]. This process aims to produce weight values from a baseline signal that is typically distributed  

(0<x<1) [25]. This weight value will be used in the modified weighted mean filter method (1). 

 

𝑧𝑗 = (
∑ 𝑤𝑗+𝑖𝑥𝑗+𝑖

𝑛
𝑖=−𝑛

(2𝑛+1) ∑ 𝑊𝑗+𝑖
𝑛
𝑖=−𝑛

) (1) 

 

The value j=n, n+1, n+2…., m+2n, n is the window length, while the value m is the amount of data. 

∑ 𝑤𝑗+𝑖
𝑛
𝑖=−𝑛  is a process to normalize the weight values to meet the requirements ∑ 𝑤𝑗 = 1 [29]. 

 

2.4.  Decomposition 

Decomposition aims to separate four frequency bands in the baseline and trial signals. This process 

uses the Butterworth filter method (3rd order), where the EEG signal frequency filtering process is based on 

the low-pass and high-pass range (bandpass filter). The decomposition process was carried out for all 

channels for baseline and trial signals [7]. 

 

2.5.  Feature extraction 

The feature extraction process is carried out to obtain relevant EEG signal features. Each frequency 

band performs it every second (128 Hz sampling rate) for baseline and trial signals. This research uses the 

differential entropy method (2). 
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ℎ𝑖(𝑋) =
1

2
log(2𝜋𝑒𝛿2

𝑖(𝑋)) (2) 

 

Where e is Euler's constant, δ2
i is the ith variance index, X is the theta, alpha, beta, or gamma frequency 

band, and hi is the differential entropy value for the EEG signal at the ith index. 

 

2.6.  Baseline reduction 

This process aims to produce feature values on trial signals that can characterize participants' 

emotional reactions to classify [7], [30]. This study uses the relative difference method to reduce the trial 

signal features with the baseline signal features [8], [31]. As an initial stage, the baseline signal's average 

feature value for each frequency band was calculated (3).  

 

𝐵𝑎𝑠𝑒𝑀𝑒𝑎𝑛(𝑋) =  
∑ 𝐵𝑎𝑠𝑒𝑀𝑒𝑎𝑛𝑘(𝑋)𝑁

𝑘=1

𝑁
 (3) 

 

𝐵𝑎𝑠𝑒𝑀𝑒𝑎𝑛𝑘(𝑋) is the differential entropy feature value of frequency band X at the kth index for the baseline 

signal. 𝐵𝑎𝑠𝑒𝑀𝑒𝑎𝑛(𝑋) is the average differential entropy feature value for frequency band X in the baseline 

signal. The value k=1, 2,.., N, where N defines the number of differential entropy feature values for each 

experiment, channel, and participant from the baseline signal [8]. The mean value obtained is then used for 

the baseline reduction process for the trial signal (4). 

 

𝐹𝑖𝑛𝑎𝑙𝑗(𝑋) =
𝐸𝑥𝑝𝑒𝑟𝑗(𝑋)

𝐵𝑎𝑠𝑒𝑀𝑒𝑎𝑛(𝑋)
 (4) 

 

Where 𝐸𝑥𝑝𝑒𝑟𝑗(𝑋) is the feature value of frequency band j (X) represents the baseline reduction value of 

frequency band X at the jth index for the EEG experimental signal. Value j=1, 2, .., M, where M is the 

number of feature values for each experiment, channel, and participant in the trial signal. 

 

2.7.  Feature representation 

After the baseline reduction process, the trial signal feature values are represented using the 3D cube 

method. The 3D cube is based on the international system 10-20 standard for channel placement on the scalp. 

The international system standard 10-20 maps spatial information between channels by representing trial 

signal features into a 9×9 matrix. The size of this representation is based on the maximum number of EEG 

channels placed on the head. This representation aims to represent spatial information between adjacent 

channels. Figure 3 represents differential entropy features mapped into a 9×9 matrix [7]. This representation 

is based on each frequency band, where red, yellow, green, and blue represent gamma, beta, alpha, and theta 

frequencies [7]. The DEAP and DREAMER datasets produce 2400 and 3728 3D cubes for each participant. 

Furthermore, each participant generated 6192 3D cubes for long experiments on the AMIGOS dataset and 

1394 3D cubes for short experiments. 

 

 

 
 

Figure 3. Feature representation for each frequency band using a 3D cube 

 

 

2.7.  Classification 

The continuous capsule network method represents spatial information in the classification process. 

The architecture of the continuous capsule network method is shown in Figure 4 [22]. The continuous 
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capsule network architecture in Figure 4 is divided into three parts: continuous convolution, primary capsule, 

and emotion capsule. 

 

 

 
 

Figure 4. Continuous capsule network architecture [22] 

 

 

2.7.1. Continuous convolution 

At this stage, this process is carried out four times to produce four feature maps. The feature maps will 

be created in the 1st convolution, 2nd convolution, 3rd convolution, and 4th convolution with sizes of 9×9×64, 

9×9×128, 9×9×256, and 9×9×64, respectively. The filters used are 2×2×4 with 64 for 1st convolution, 2×2×4 

with 128 for 2nd convolution, 2×2×4 with 256 for 3rd convolution, and 1×1×4 with 64 for 4th convolution. 

Furthermore, the stride value in each convolution is 1. In addition, the activation for each convolution is 

rectified linear unit (ReLU). In the continuous convolution approach, the padding used is the SAME and does 

not use pooling, so the dimensions of the size of the feature maps produced in all convolutions remain the same; 

only the depth of the feature map changes. This process aims to maintain the spatial information of all EEG 

channels according to the position in the first data input [7]. The number of parameters generated in the 1st 

convolution, the 2nd convolution, the 3rd convolution, and the 4th convolution are 1,088 (64×(2×2×4)+1), 32.896 

(128×(2×2×64)+1), 131.328 (256×(2×2×128)+1), and 16.448 (64×(1×1×256)+1). 

 

2.7.2. Primary capsule 

At this stage, the feature map generated from the 4th convolution is separated into eight blocks, each 

block with a size 9×9×8. Next, each block is reshaped into a layer of 8×1 capsules (ui) so that one block will 

produce 81 capsules [22]. The primary capsule represents the number of capsules at the lower level i (ui) with 

a size of 1×8, so there are 648 capsule layers generated from the eight blocks. 

 

2.7.3. Emotion capsule 

The affine transformation and dynamic routing processes are carried out at this stage. First, the 

emotion capsule process begins by initializing j=1 and i=1. The variable j represents the number of emotion 

classes to be recognized (vj), while the variable i represents the number of capsule data (𝑢𝑖). When the 

variables i and j are 1, the capsule data 𝑢1 will be the first input data in the emotion capsule process and 

related to the 1st output class (v1). The following process of the emotion capsule is an affine transformation. 

However, before this process is carried out, the initial initialization process of the weight matrix 𝑊𝑖,𝑗 is 

carried out first. The affine transformation process will produce û𝑗,𝑖  (vector). After 𝑢̂𝑗,𝑖 is obtained, the 

routing initialization process (r=0) is carried out and continued with the initialization of the value bi,j=0. The 

r value determines how many dynamic routing processes are carried out. The dynamic routing process is 

carried out by default thrice [22]. The dynamic routing process consists of calculating the coupling 

coefficient ci,j, weighted sum (sj), activating squashing (vj), and the updated value of bi,j. The bi,j value 

determines the coupling coefficient ci,j value. After the value of ci,j is obtained, the weighted sum process is 

carried out to produce the vector value sj. The value of sj obtained is further activated with the squashing 

function to make the vector value vj. After the value of the vector vj is received, the routing value (r) is 
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checked. The dynamic routing process is repeated if the value of r <3. This process begins with updating the 

value of bi,j, then calculating the weighted sum (sj) and the squashing activation process (vj). The final value 

of vj in the 3rd routing is then processed to determine the value of Norm ||vj|| and L2 Regularization. 

Determining the value of ||vj|| (Norm) is the end of the emotion capsule process for the first capsule data (𝑢1) 

in the 1st epoch. 

Furthermore, for the emotion capsule process on the following capsule data (𝑢i), the batch value 

checking process is carried out first; if the batch value is a multiple of 2, then the weight value update process 

𝑊𝑖,𝑗 is carried out. The weight update process uses the RMSProp method with momentum =0.09. After 

checking the batch value, the next step is to check the value of variable i. If the value of variable i is less than 

648 (i <648), then the increment process (i++) of variable i is carried out. This increment process determines 

the following capsule data (𝑢i) to be processed in the emotion capsule. After that, the affine transformation 

and dynamic routing processes are executed again. This process is repeated until the 648 th capsule data. 

When the 648th capsule data has finished executing, the next step is to check the value of variable j. If 

variable j is less than 4 (j <4), the value increment process of variable j is carried out (j++). This increment 

process determines the class vj that will be processed next in the emotion capsule. This process will stop 

when 648 data capsules (𝑢𝑖) have been trained for all emotion classes (j =4). Figure 5 only describes the 

emotion capsule flow for 648 data capsules (𝑢𝑖) in 4 classes (vj) in 1st epoch [30], [32], [33]. The four classes 

output, namely: high arousal positive valence (HAPV), high arousal negative valence (HANV), low arousal 

negative valence (LANV), and low arousal positive valence (LAPV). 

 

 

 
 

Figure 5. Flowchart emotion capsule 

 

 

2.9.  Evaluation method  

This study uses the k-fold cross-validation evaluation method (k=10) to evaluate the proposed 

model. This model will measure the accuracy, precision, recall, and F1 score values for the three public 

datasets studied: DEAP, DREAMER, and AMIGOS. This value is used as the basis for measuring the 

performance of the proposed model. 

 

 

3. RESULTS AND DISCUSSION 

The hybrid model can produce high accuracy on three public datasets based on the evaluation 

method. This model is also superior to several emotion recognition models in previous studies. Figure 6 
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presents the proposed model's accuracy, precision, recall, and F1 score values for recognizing four emotion 

classes from each participant on the DEAP dataset. 
 

 

 
 

Figure 6. Accuracy, precision, recall, and F1 score graphs for recognizing four emotion classes on the  

DEAP dataset 
 

 

Based on Figure 6, several participants with ID 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 16, 17, 18, 20, 

21, 23, 26, 27, 28, 30, 31, and 32 managed to achieve accuracy, precision, recall, and F1 score of 100%. In 

contrast, the lowest accuracy, precision, recall, and F1 were achieved by participant ID 22 at 98.29%, 

98.20%, 98.31%, and 98.24%. Overall, the average accuracy, precision, recall, and F1 scores achieved were 

99.91%, 99.92%, 99.92%, and 99.91%, respectively. In addition, standard deviation values for accuracy, 

precision, recall, and F1 are 0.32, 0.33, 0.31, and 0.32, respectively. So, it can be stated that the distribution 

of accuracy, precision, recall, and F1 score of each participant is closer to the average value compared to the 

model proposed in [18], [22]. Furthermore, Figure 7 presents the proposed model's accuracy, precision, 

recall, and F1 score for each participant on the DREAMER dataset. 
 

 

 
 

Figure 7. Accuracy, precision, recall, and F1 score graphs for recognizing four emotion classes on the 

DREAMER dataset 
 

 

Based on Figure 7, participants with ID 12 achieved accuracy, recall, and F1 scores of 99.03%, 

98.93%, and 98.97%, respectively, while participants with ID 01 achieved the highest precision at 99.07%. 

On the other hand, the lowest accuracy and precision were achieved by participant ID 20 at 92.55% and 

92.99%, respectively. In comparison, the lowest recall and F1 scores were achieved by participant ID 13 at 

89.43% and 91.55%, respectively. Although none achieved 100% accuracy, overall, the average accuracy, 

precision, recall, and F1 were achieved at 96.98%, 96.82%, 95.89%, and 96.28%, respectively. Based on the 
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standard deviation values for accuracy, precision, recall, and F1 score were achieved at 1.53, 1.62, 2.32, and 

1.97, respectively. So, it can be stated that the distribution of accuracy, precision, recall, and F1 score of each 

participant is quite close to the average value compared to the model proposed in [18], [22]. 

Finally, in Figure 8, 13 participants with ID 1, 2, 3, 6, 7, 9, 19, 20, 25, 26, 28, 31, and 34 achieved 

accuracies, precision, recall, and F1 score of 100% each. Furthermore, 19 other participants produced an 

average accuracy, precision, recall, and F1 score above 99%. Overall, the average data for accuracy, 

precision, recall, and F1 score were 99.94%, 99.93%, 99.93%, and 99.93%. In addition, the standard 

deviation values for accuracy, precision, recall, and F1 score are 0.10, 0.11, 0.13, and 0.12, respectively. So, 

it can be stated that the distribution of accuracy, precision, recall, and F1 score from each participant is closer 

to the average value compared to the model proposed in [18], [22]. Furthermore, to measure the success of 

the implementation of the proposed model, the average accuracy values in this experiment are compared with 

the average accuracy values from several previous studies, especially for the recognition of four emotion 

classes, as in Table 1. 
 

 

 
 

Figure 8. Accuracy, precision, recall, and F1 score graphs for recognizing four emotion classes on the 

AMIGOS dataset 
 

 

Table 1. Comparison of the average accuracy of the four emotion classes in this study with several  

previous studies 
Method DEAP (%) DREAMER (%) AMIGOS (%) 

Feature extraction: angle plot, classification: multi-class support vector machine [23] 81.67 - - 

Feature extraction: differential entropy, classification: graph regularized extreme 
learning machine [24] 

69.67 - - 

Feature extraction: pearson correlation coefficient, classification: convolution neural 
network [26] 

73.1   

Feature extraction: power spectral density, feature representation: multidimensional 
feature image, classification: LSTM + CNN [27] 

75.21   

Feature extraction and classification: CNN, baseline reduction: difference. Feature 
representation: 3D cube [25] 

93.53 - 95.95 

Smoothing: MWMF, extraction feature: differential entropy, representation features: 
3D cube, baseline reduction: relative difference, classification: CNN [18] 

97.14 89.71 99.59 

Extraction feature: differential entropy, baseline reduction: difference, representation 
features: 3D cube, classification: continuous capsule network [22] 

91.35 94.23 96.20 

Smoothing: modified weighted mean filter. Extraction feature: differential entropy, 
Baseline reduction: relative difference, feature representation: 3D cube, classification: 

continuous capsule network (purposed model) 

99.91 ± 0.32 96.98 ± 1.53 99.94 ± 1.10 

 

 

Although several feature extraction methods and classification methods based on machine learning 

and deep learning have been applied in previous studies, the accuracy of emotion recognition has not reached 

optimal (below 85%) [23], [24], [26], [27]. The variation of the trial signal patterns produced causes this 

problem. So, the classification method cannot recognize the pattern formed. To overcome this problem,  

Zhao et al. [25] used the difference method to study the baseline reduction approach. The reduced trial signal 

feature values can produce more representative signal patterns so that the EEG signal pattern can be recognized 

better. However, of several baseline reduction methods, the relative difference method is superior to the 

difference method [8]. Wirawan et al. [18] has successfully applied the relative difference method optimized 

with the modified weighted mean filter method. However, the CNN method used in this study cannot consider 
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the characteristics of the EEG signal. Wirawan et al. [22] use of the continuous capsule network method has 

been proven to consider the characteristics of the EEG signal. However, Wirawan et al. [22] did not apply the 

relative difference and modified weighted mean filter methods. Based on this study, the proposed model 

combines the models from [18], [22] to improve emotion recognition accuracy. Based on experiments 

conducted on three public datasets, the proposed model in this study yields higher accuracy than the models 

in previous studies in recognizing four classes of emotions. Therefore, further application research can use 

this model to evaluate students' understanding involving emotional reactions from students during the 

learning process [34], [35]. In addition to emotion recognition, this model can also be used in different 

domains, such as detecting epilepsy [36], [37], and motor imagery [38]. 

However, based on the tests conducted on the DREAMER dataset, the model proposed in this study 

produces slightly lower accuracy values than the other two secondary datasets, such as DEAP and AMIGOS. 

This problem is caused by the amplitude value of the EEG signal in the DREAMER dataset being above 

average. Figures 9 and 10 show visualizations of the baseline signals from several participants on DEAP and 

AMIGOS datasets. 
 

 

 
 

Figure 9. The smoothing process using the MWMF method on the baseline signal from the second participant 

in the AMIGOS dataset 
 

 

 
 

Figure 10. The smoothing process using the MWMF method on the baseline signal from the eighth 

participant in the DEAP dataset 
 

 

After removing its artefacts using the modified weighted mean filter method, the amplitude of the 

baseline signal in the DEAP and AMIGOS datasets ranges ±150 µV. In contrast, the amplitude of the 
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baseline signal in the DREAMER dataset has a range of ±1,600 µV. Figure 11 presents a visualization of the 

baseline signal in the tenth participant before and after smoothing on the DREAMER dataset. 

However, ideally, the EEG wave in participants in normal conditions is 50-100 µV [39], [40]. Based 

on the experiments, it can be stated that the amplitude of the baseline signal in the DREAMER dataset still 

contains artefacts, even though the modified weighted mean filter method has been applied. These artefacts 

cause the accuracy of emotion recognition in the DREAMER dataset to be slightly lower than in the DEAP 

and AMIGOS datasets. 
 

 

 
 

Figure 11. The smoothing process using the MWMF method on the baseline signal from the tenth participant 

in the DREAMER dataset 
 

 

4. CONCLUSION 

Two critical factors to consider in emotion recognition are differences in EEG signal patterns caused 

by participant characteristics and EEG signals having spatial information. These two factors significantly 

affect the resulting accuracy. The proposed model in this study can consider these factors. This model 

consists of the modified weighted mean filter method for the EEG baseline signal smoothing process, the 

differential entropy method for the feature extraction process, the relative difference method for baseline 

reduction, the 3D cube method for feature representation, and the continuous capsule network method for the 

classification process. Applying the modified weighted mean filter and relative difference methods can 

overcome differences in trial signal patterns. Meanwhile, the differential entropy, 3D cubes, and continuous 

capsule network methods can consider spatial information from the trial signal. Based on testing on three 

public datasets, these methods can improve the emotion recognition model than the model proposed in 

previous studies. However, based on experiments conducted on three public datasets, it can be stated that the 

amplitude of the baseline signal in the DREAMER dataset still contains artefacts, even though the modified 

weighted mean filter method has been applied. This artefact causes the accuracy of emotion recognition in 

the DREAMER dataset to be slightly lower than in the DEAP and AMIGOS datasets. Therefore, the future 

challenge is to study the appropriate weight value in the modified weighted mean filter method for the 

amplitude of the baseline EEG signal above standard and to study the technique of removing artefacts for 

experimental EEG signals. 
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