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 Artificial intelligence (AI) is transforming agriculture by offering innovative 

solutions to persistent challenges. This systematic literature review explores 

the most studied AI applications in agriculture, emphasizing crop 

management, agronomic decision-making, early detection of diseases and 

pests, and climate change adaptation. Using the preferred reporting items for 

systematic reviews and meta-analyses (PRISMA) methodology, 700 

publications were retrieved from databases such as Scopus, ScienceDirect, 

and IEEE Xplore, with 104 relevant articles selected after applying strict 

inclusion and exclusion criteria. The findings underscore the importance of 

machine learning and image processing in tailoring agronomic practices to 

specific plot conditions and microclimates. These tools enable early 

identification and control of plant diseases and pests, reducing crop losses 

and dependence on chemicals. Nonetheless, challenges remain, particularly 

regarding accessibility for smallholder farmers, high implementation costs, 

and limited data infrastructure. While AI offers significant potential to 

enhance agricultural productivity, sustainability, and resilience, addressing 

these limitations is crucial. A balanced, inclusive approach is essential to 

ensure AI’s benefits are widely distributed and contribute to long-term food 

security and environmental sustainability. 
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1. INTRODUCTION  

Agriculture has evolved through technological advances, new farming practices, and tools to 

improve food production and resource management [1]–[3]. It began as subsistence agriculture [4], where 

communities relied on hunting, gathering, and early domestication of plants and animals [5]. The 

development of farming techniques and primitive tools boosted food production and storage, enabling 

permanent settlements and the rise of early agricultural civilizations [6], [7]. This process led to today’s 

precision agriculture era [8]. 

The agricultural revolution around 10,000 B.C. marked a pivotal shift with the introduction of 

advanced cultivation and domestication techniques, such as crop rotation and selective breeding [9], [10], 

significantly boosting food production and enabling population growth. Over the centuries, agricultural 

innovation persisted [11], with milestones like crop rotation in the middle ages and the 18th-century 

revolution marked by technologies such as iron plowing [12], [13] and sowing selected seeds [14]. In the 20th 

century, the green revolution introduced high-yielding crop varieties and widespread use of fertilizers and 

pesticides [13], which greatly increased production but also raised concerns about environmental impact and 
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sustainability [13]–[16]. Looking ahead, agriculture must address rising demands. The Food and Agriculture 

Organization (FAO) projects the global population will exceed 9 billion by 2050, requiring a 60–70% 

increase in agricultural output [17]. In this context, innovation becomes critical. According to the World 

Bank, agricultural innovation and technology are essential for poverty reduction in developing regions [18], 

where nearly 80% of the extreme poor live in rural areas and rely on agriculture for their livelihoods. 

Therefore, sustainable technological advances in agriculture are not only vital for food security but also for 

socioeconomic development and environmental preservation. Today, we are in the midst of a transition 

towards precision agriculture and the application of information and communication technologies (ICT) in 

farm management [19], [20]. Technologies like sensors, drones, geographic information systems (GIS), and 

data analysis optimize resources and efficiency [21], [22]. Artificial intelligence (AI) and machine learning 

are increasingly applied in decision making [23] and in the early detection of diseases and pests [24], [25]. 

The use of AI in agriculture has grown significantly in recent years [26], [27], transforming crop 

management, decision-making, and production challenges. The integration of information technology, data 

analytics, and machine learning has enabled diverse AI applications [28]–[30] aimed at improving efficiency, 

productivity, and sustainability [31]. These applications include early detection of crop diseases [32], [33] 

monitoring of climatic conditions, and optimization of irrigation and fertilizer use [34]. AI also supports 

automation through robots and drones [35]–[37] and enhances decision-making with real-time data analysis [38]. 

This systematic review analyzes the most researched AI applications in agriculture, focusing on 

efficiency, decision making, sustainability, production quality, and ethical-economic challenges. It also 

explores how AI is transforming modern agricultural practices. The article is structured in five  

sections: i) introduction presents AI’s transformative role, ii) methodology explains the selection of 104 

studies using preferred reporting items for systematic reviews and meta-analyses (PRISMA), iii) results 

highlight applications such as irrigation and pest detection, iv) discussion examines benefits and 

implementation barriers, and v) conclusion underscores the need for equitable, sustainable AI adoption in 

the agricultural sector. 

 

 

2. METHODOLOGY 

This paper follows a structured approach to collect and analyze information. First, the PRISMA 

methodology was applied [39] to identify the most relevant articles. Second, bibliometric analysis was used 

[40] to detect common terms influencing the study of AI-based digital applications in agriculture. Lastly,  

key statistical factors and methods were reviewed in relation to bibliometric findings. According to PRISMA, 

the systematic review is structured into: i) type of study, ii) research questions, iii) search strategy, and  

iv) inclusion and exclusion criteria. 

 

2.1.  Type of study 

A systematic review of the literature was used to prepare this article [41]. This process allows for 

the collection of relevant evidence on a given topic that. In addition to meeting the established eligibility 

criteria, provides answers to the research questions posed [42]. 

 

2.2.  Research questions 

Five questions were developed to cover the objectives and to identify relevant characteristics to 

answer the following research questions: 

RQ1. What are the most researched AI applications in the agricultural sector based on published studies? 

RQ2. What is the role of AI in the early detection and control of plant diseases and crop pests? 

RQ3. How has AI influenced the customization of agricultural practices and adaptation to different climatic 

and soil conditions? 

RQ4. How has AI influenced agricultural decision making, such as crop management, irrigation scheduling 

and fertilizer application? 

 

2.3.  Search strategy 

This systematic review employed various strategies, terms, and resources to identify relevant 

studies on AI applications in agriculture [43]. Table 1 presents the search equations and terms used.   

In order to answer the research questions posed, articles were collected from the main databases such as: 

Scopus, IEEE Xplore, ScienceDirect, IOPscience, EBSCOhost, Taylor & Francis. A total of 700 articles 

were collected, using inclusion and exclusion criteria, which allowed the identification of 104 relevant 

articles, as shown in Figure 1. 
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Table 1. Search equations 
Database Equations 

Scopus "artificial intelligence" AND "AI" AND "agriculture" AND "cultivation"; "artificial 

intelligence" AND "AI" AND "agriculture" 

ScienceDirect, IEEE Xplore, 

IOPscience 

"artificial intelligence" AND ("smart farming" OR "intelligent agriculture" OR 

"intelligent farming") 

EBSCOhost, Taylor & Francis ("artificial intelligence" OR "AI") AND ("smart farming" OR "intelligent agriculture" 
OR "intelligent farming") 

 

 

 
 

Figure 1. Selection methodology diagram 
 
 

2.4.  Inclusion and exclusion criteria 

For the systematic review study, the following inclusion and exclusion criteria were applied, as 

shown in Table 2. These were established to ensure that the selected studies were relevant and up to date. 

Their application helped maintain the quality and consistency of the review.  
 

 

Table 2. Inclusion and exclusion criteria 
Inclusion Exclusion 

Studies investigating the most researched applications of AI 
in agriculture. 

Studies that focus solely on the description of AI technologies 
without analyzing their application in agriculture. 

Studies published in the last 8 years to ensure that the 

information is up to date. 

Studies that focus only on the description of AI technologies 

without analyzing their application in agriculture. 

Studies in languages relevant to your research. Studies that do not provide sufficient detailed information on 
their methods and results. 

Studies addressing different areas of AI application in 

agriculture, such as crop management, disease detection, 

and resource optimization 

Duplicate studies found in multiple databases. 

 
 

3. RESULTS 

We analyzed 700 articles found in the database related to the research topic, of which 7 duplicate 

articles were rejected or did not contribute to the same research topic. After reviewing the articles,  

693 articles were selected, 589 articles were excluded according to the exclusion criteria and did not contribute 

to answer the research question. We obtained 104 articles for systematic review as shown in Figure 2. 

Bibliographic analysis allows the extraction of documents by identifying co-occurring words to 

detect patterns related to authors’ work [40]. Bibliometrics measures scientific activity publications, citations, 

and collaborations and helps identify trends in a research field [44]. VOSviewer [45] is a tool used to analyze 

and visualize co-authorship, citation, and keyword networks [46] enabling graphical representations of 

scientific relationships. Based on this, visualization maps were generated as shown in Figure 3. 

Figure 4 presents a word cloud generated from the analysis of the articles systematized in this 

review, offering a perspective on the most frequent themes and concepts in the field of study. Among the 

most prominent words are "agriculture," "machine learning," "deep learning," and "prediction". Figure 5 

shows a tree map from a bibliometric analysis illustrating the most recurrent keywords in AI and agriculture 

research. The most frequent terms are "artificial intelligence" (8%), "deep learning" (5%), and both 

"agriculture" and "machine learning" (4% each). This visualization highlights the predominant themes and 

reflects current research focus areas in the application of AI to agriculture. 
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Figure 2. PRISMA diagram methodology 
 

 

 
 

Figure 3. Network visualization of Scopus documents based on 163 bibliometric analyses 
 

 

 
 

Figure 4. Word cloud 
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Figure 5. Tree map 
 

 

Figure 6 presents the classification of the 104 articles analyzed, categorized according to the 

continent and the database in which they were published. The graph reveals that the largest amount of 

research on the application of AI in agriculture comes from the Asian continent. In addition, it is observed 

that these investigations are mainly concentrated in the Scopus database. The Figure 7 illustrates the number 

of articles published per year, broken down according to the source database: Scopus, IEEE Xplore, 

EBSCOhost, IOPscience, and ScienceDirect. In particular, it is noted that, in the year 2022, ScienceDirect 

registered a significantly high number of articles in relation to the search criteria used. 
 

 

 
 

Figure 6. Articles by database and continent 
 

 

 
 

Figure 7. Articles by year and database 
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4. DISCUSSION 

In this systematic review of the scientific literature, we analyze the most researched AI applications 

in agriculture, identify the most used models and algorithms, as well as their influence in different fields of 

agriculture, in order to answer the proposed questions. 
 

4.1.  Answer to research questions 

4.1.1. RQ1: what are the most researched AI applications in the agricultural sector based on published studies? 

Figure 8 shows the articles related to this topic, highlighting the most researched AI applications: 

"Disease and pest detection" with 32 articles, "Irrigation optimization" with 19 articles, and "Crop selection 

and breeding" with 17 articles. These areas represent the main focus of AI research in agriculture.  

They reflect the growing interest in improving crop health, resource management and genetic advances 

through AI technologies. 
 

 

 
 

Figure 8. Articles by AI applications 
 

 

From Table 3 it can be seen that AI-based applications are transforming various aspects of 

agriculture, from the detection of plant health problems, with the use of machine learning algorithms to 

identify and predict plant diseases and pests. These applications enable a faster and more accurate response to 

production optimization and resource management. AI applications are becoming more intelligent over time, 

thanks to machine learning, which allows them to further improve production operations. 
 

 

Table 3. AI Applications used in the agricultural sector 
Application of AI in 

agriculture 

Description Articles 

Disease and pest 

detection 

Use of machine learning algorithms to identify and predict plant diseases and pests, 

enabling a faster and more accurate response 

[47]‒[78] 

Irrigation optimization Use of sensors and algorithms to determine the optimal timing and amount of 

irrigation, based on real-time data of soil and weather conditions 

[79]‒[97] 

Fertilization 
management 

AI application to recommend the amount and type of fertilizers to be used, 
considering soil composition and specific crop needs 

[98]‒[105] 

Crop classification and 

harvesting 

Implementation of computer vision algorithms for sorting and selecting ripe crops 

for harvesting, reducing waste and optimizing yields 

[106]‒[117] 

Climate forecasting and 

management 

Use of historical and real-time climate data together with AI models to predict 

weather patterns, enabling informed decision making in agricultural management. 

[118]‒[123] 

Control of agricultural 

robots and drones 

AI used to guide and control robots and drones in agricultural tasks such as 

planting, crop monitoring, and pesticide application 

[124]‒[132] 

Crop selection and 

breeding 

Application of machine learning techniques to analyze genetic and phenotypic data 

and predict desirable crop traits, accelerating the breeding process. 

[133]‒[149] 

 
 

Figure 9 shows studies that apply the above techniques and algorithms in specific agricultural 

contexts. These examples illustrate how different AI approaches have been used to address various 

challenges in agriculture. Table 4 groups the main applications of AI in agriculture according to the AI 

technique used as applied to agriculture. This table provides key examples of how different AI techniques 

and algorithms have been applied in agriculture. Among the techniques can be identified: supervised machine 
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learning, deep learning, sensor networks, machine learning, fuzzy logic, unsupervised machine learning, and 

artificial neural networks. 
 
 

 
 

Figure 9. Applications by AI model and technique 
 

 

Table 4. AI applications used in the agricultural sector 
Application of AI in agriculture AI technique Articles 

Disease and pest detection Supervised machine learning [49], [51], [53], [54], [56]‒[59], [70]‒[72], [74]‒[76] 

Deep learning [47], [52], [55], [60]‒[69], [77] 

Sensor networks [73], [78] 

Fuzzy logic [48] 

Irrigation optimization Supervised machine learning [85], [88], [91], [93], [94] 
Sensor networks [84], [89], [92], [97] 

Deep learning [79], [80], [82] 

Fuzzy logic [83], [86], [87] 

Machine learning [81] 

Artificial neural networks [90] 
Crop selection and breeding Supervised machine learning [134], [136], [137], [139]‒[141], [143], [144], [148] 

Machine learning [133], [135], [147] 

Deep learning [142], [146] 

Unsupervised machine learning [145] 

Fuzzy logic [138] 
Crop classification and 

harvesting 

Supervised machine learning [107], [110], [111], [115], [116] 

Deep learning [108], [109], [112] 

Machine learning [106], [113], [114] 

Unsupervised machine learning [117] 
Control of agricultural robots 

and drones 

Sensor networks [124], [125], [127], [128] 

Unsupervised machine learning [130], [131] 

Supervised machine learning [126], [129] 

Deep learning [132] 

Fertilization management Supervised machine learning [99], [102], [105] 
Sensor networks [103], [104] 

Machine learning [100], [101] 

Deep learning [98] 

Climate forecasting and 

management 

Supervised machine learning [118] 

Artificial neural networks [121] 
Unsupervised machine learning [120] 

Fuzzy logic [123] 

Sensor networks [119] 

 

 

Figure 10 analyzes the types of AI techniques used in agriculture. "Supervised machine learning" 

leads with 39 articles, enabling plant disease detection, crop classification, and weed identification through 

image analysis [150]. "Deep learning" follows with 24 articles, using recurrent neural networks (RNN) and 

generative adversarial networks (GAN) to forecast crop yields from climatic data and generate synthetic 

images for training disease detection models. Table 5 and Figure 11 show the models or algorithms used in 

AI applications in the agricultural sector. Among the most prominent are: convolutional neural networks 

(CNN), support vector machines (SVM), linear regression (LR), and random forest (RF). 
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Figure 10. Articles on AI techniques and their application in agriculture 
 

 

Table 5. AI model algorithm used in the agricultural sector 
Model-algorithm Application of AI in agriculture Articles 

CNN Disease and pest detection [47], [49], [54], [55], [59]‒[64], [66], [67], [69], [71], [77] 

Crop classification and harvesting [108]‒[112], [116] 
Crop selection and breeding [133], [140], [143] 

Fertilization management [99], [102] 

Control of agricultural robots and drones [129] 

SVM Crop selection and breeding [146], [148] 

Irrigation optimization [85], [94] 
Disease and pest detection [58] 

LR Crop classification and harvesting [113] 

Disease and pest detection [75] 

Fertilization management [100] 

Irrigation optimization [88] 
Crop selection and breeding [147] 

RF Crop selection and breeding [136], [141] 

Climate forecasting and management [118] 

Irrigation optimization [91] 

 
 

 
 

Figure 11. Articles by application and AI algorithm 
 

 

4.1.2. RQ2. What is the role of AI in the early detection and control of plant diseases and crop pests? 

Figure 12 shows the articles analyzed for the role of AI in the early detection and control of plant 

and crop diseases. Such studies that apply AI in the early detection and control of plant diseases and crop 

pests. These examples illustrate how AI has revolutionized the ability of farmers to identify and manage plant 

health problems more efficiently. 
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Figure 12. Articles by relevance in the detection of diseases and pests 
 

 

Table 6 analyzes the most researched AI applications for detecting and controlling diseases and 

pests in agriculture. For early detection, image analysis of leaves and crops helps identify disease patterns, 

while sensors monitor environmental changes indicating plant health issues. For control, AI enables precise 

treatment application, predictive models to forecast outbreaks, sensor-based alerts, and algorithms to 

anticipate disease and pest spread and implement preventive actions. 
 

 

Table 6. Articles analyzed according to AI applications in the detection and control of diseases and pests 
Role of AI in detection and control AI applications Articles 

Control of diseases and pests IoT and sensors [50], [78] 

Predictive models [68], [112] 

Early detection of diseases and pests Image analysis (classification or segmentation) [47]‒[49], [51], [53]‒[63], [65]‒[67], 

[69], [70], [72], [77] 

IoT and sensors [73], [74] 

 

 

4.1.3. RQ3. How has AI influenced the customization of farming practices and adaptation to different 

climatic and soil conditions? 

AI offers great opportunities to improve farming practices, the present graph of Figure 13 shows 

studies that apply AI in customizing farming practices and adapting to changing conditions. These studies 

illustrate how AI has enabled farmers to adapt their strategies to specific environments and circumstances to 

optimize production and sustainability. Table 7 groups how AI has influenced the customization of 

agricultural practices and adaptation to different climatic and soil conditions. 
 

 

 
 

Figure 13. Articles on the influence of AI on the customization of agricultural practices and adaptation to 

climatic conditions 
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Table 7. Articles by influence on the customization of agricultural practices and adaptation to different 

climatic and soil conditions 
AI influence category AI applications Articles 

Adaptation to changing 

conditions 

Climate and pest forecasting [47]‒[52], [54]‒[60], [62]‒[65], [67]‒[70], [72], [74], [75], [77], 

[78], [111] 

Climate change [121] 

Soil variability [81], [84], [94], [98], [118]‒[120] 

Customization of 
agricultural practices 

Management recommendations [61], [82], [83], [85], [88], [99], [100], [101], [104], [107], [110], 
[113], [116], [117], [122], [125], [127], [130], [133], [135]‒[137], 

[139], [141], [146], [148], [151] 

Planting and harvest planning [53], [79], [87], [89]‒[91], [93], [96], [97], [114], [132], [138] 

Precision agricultura [66], [73], [80], [86], [92], [95], [102], [103], [106], [108], [109], 

[112], [115], [124], [126], [128], [129], [131], [134], [140], [142], 
[147], [149] 

 

 

4.1.4. RQ4. How has AI influenced agricultural decision making, such as crop management, irrigation 

scheduling and fertilizer application? 

Figure 14 shows studies that address AI applications in crop management, irrigation scheduling and 

fertilizer application. These articles illustrate how AI has influenced agricultural decision making to improve 

efficiency and sustainability. Table 8 summarizes AI's impact on agricultural decision-making, especially in 

crop management. It highlights yield prediction using climate and soil data with machine learning, irrigation 

optimization through sensor analysis, and real-time fertilizer adjustments based on soil nutrients. AI also 

recommends fertilizer types and amounts by analyzing soil and crop characteristics, enhancing precision and 

efficiency in managing essential aspects of crop production. 

 

 

 
 

Figure 14. Articles on the influence of AI in agricultural decision making 

 

 

Table 8. Articles grouped by the influence of artificial AI in agricultural decision making 
Decision-making category AI applications Articles 

Crop management Crop recommendation [88], [108]‒[110], [114], [116], [119], [131], [133], [139]‒[142], 

[147]‒[149] 
Crop yield prediction [94], [95], [106], [113], [115], [117], [134]‒[136], [138], [146] 

Pest and disease management [47]‒[51], [53]‒[70], [72]‒[75], [77], [78], [111], [112] 

Fertilizer application Fertilization monitoring [98] 

Fertilizer recommendation [99]‒[104] 

Irrigation scheduling Forecast-based irrigation [80], [121], [122], [130] 
Irrigation optimization [79], [81]‒[87], [89], [90], [92], [97], [107], [118], [120], [127], 

[128], [132], [137], [151] 
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4.2.  Challenges and limitation 

Although AI offers significant benefits in agriculture, its implementation faces challenges, 

especially in developing regions. The effectiveness of AI models can be limited by variable field conditions 

and poor technological infrastructure, including lack of internet access and specialized equipment  

[152], [153]. In addition, reliance on large data volumes is problematic where infrastructure cannot support 

efficient data management. High implementation costs also limit access for smallholder farmers, increasing 

inequality. The lack of training in AI tools further hinders adoption, highlighting the need for education and 

support programs. Cultural resistance and preference for traditional methods are additional barriers. 

Addressing these issues is essential to ensure AI becomes a practical and inclusive tool. Current research 

must focus on adapting AI solutions to local conditions, as many are designed for broad markets and may not 

suit specific microclimates or soils. Further studies on AI’s potential to support long-term agricultural 

sustainability particularly in biodiversity and soil health are also critical. Moreover, AI can assist in climate 

change adaptation, especially in vulnerable regions [154]. These research areas are key to maximizing AI’s 

positive impact and advancing global agricultural sustainability. 
 

4.3.  Future directions 

Future directions in AI for agriculture should prioritize accessibility and adaptability across diverse 

environments. Research must focus on models that function with limited data and in challenging conditions, 

ensuring ease of use for smallholder farmers. Integrating AI with traditional farming practices can support 

adoption while respecting local customs. Additionally, further study is needed on AI’s role in long-term 

sustainability and the inclusion of small-scale producers-areas still underexplored. Advancing these lines of 

inquiry will help maximize AI’s potential, ensuring equitable, effective, and sustainable benefits for all 

agricultural communities. 
 

 

5. CONCLUSION 

The systematic literature review on AI applications in agriculture highlights how these technologies 

are transforming the industry. AI has improved efficiency, sustainability, and productivity in key areas such 

as crop improvement, irrigation, and pest and disease detection. It has revolutionized decision-making by 

enabling the customization of agricultural practices based on soil, climate, and crop conditions, resulting in 

better resource use and reduced phytosanitary risks. Significant impacts are evident in crop management, 

especially in pest and disease control and crop recommendation using historical and soil data. AI also enables 

early detection and control of diseases and pests through image analysis, IoT, and sensors, allowing for quick 

and accurate responses. Moreover, AI supports climate change adaptation by analyzing climatic data and 

predictive models, helping farmers minimize negative effects. However, challenges remain regarding ethical, 

economic, and privacy concerns, which must be addressed to ensure equitable access and responsible use.  

In summary, the systematic review underscores that AI has triggered a profound change in the way food 

production is grown and managed. The opportunities for improving efficiency, sustainability and resilience in 

agriculture are abundant and continue to evolve as AI advances and becomes even more integrated into the 

agricultural industry. 
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