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 Motor is commonly used in industrial applications. Although motors are 

frequently found to have bearing problems, this causes a serious safety risk 

to industrial production. Traditionally, fault diagnostics methods often 
required only signal processing techniques and are ineffective. To overcome 

this problem, deep learning (DL) has been recently developed rapidly and 

achieved remarkable results in fault diagnosis. The intelligent fault diagnosis 

and classification of rolling bearing faults based on ensemble empirical 
mode decomposition (EEMD) and batch normalization (BN), principal 

component analysis (PCA) based stacked bidirectional-gated recurrent unit 

(Bi-GRU) neural network, is proposed in this paper. BN is introduced to 

improve the fast convergence of gated recurrent unit (GRU). EEMD is 
applied to eliminate the noise interference from the vibrational signal, and 

then important features are selected using the correlation coefficient value. 

Next, PCA is utilized for dimensionality reduction to retain only the 

essential. Finally, the BN based stacked Bi-GRU model is developed to 
classify faults based on extracted features. The proposed model correctly 

classifies the different types of faults in real operating conditions and also 

compared with existing techniques. 
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1. INTRODUCTION 

Machine fault diagnosis is essential for detecting and classifying failures in rotating equipment, 

which are especially prone to defects like bearing, gear, and stator faults [1], [2]. These faults often generate 

unique vibration patterns that can indicate the machine’s health status. Condition-based monitoring (CBM) 

has become a preferred maintenance strategy due to its ability to detect problems early, minimize downtime, 

and reduce maintenance costs [3]. Researchers have increasingly turned to artificial intelligence (AI) and 

expert systems to enhance the reliability and accuracy of such monitoring techniques. However, signal noise 

remains a major obstacle, complicating fault detection efforts [4], [5]. 

Traditional techniques like fast Fourier transform (FFT), envelope analysis, and high-frequency 

resonance methods have been widely used [6]–[8], though their effectiveness is often limited in complex, 

non-linear environments [9]. Recent methods, including wavelet transforms and empirical mode 
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decomposition (EMD), offer improvements but still face challenges related to basis function selection [10]. 

Ensemble empirical mode decomposition (EEMD) addresses these shortcomings by reducing mode aliasing, 

thereby enhancing diagnostic accuracy in noisy conditions [10], [11]. When combined with deep learning 

(DL) approaches such as recurrent neural network (RNN), long short-term memory (LSTM), and gated 

recurrent unit (GRU), which are well-suited for time-series analysis, the overall diagnostic performance 

improves significantly [12], [13]. GRU, in particular, offers computational advantages, and batch 

normalization (BN) helps speed up network training [14]. This innovation has significantly improved the 

performance of neural networks in various domains, including fault classification in rotating machinery. 

Thirukovalluru et al. [15] employed an autoencoder for fault prediction, achieving good accuracy. Chen and 

Li [16] applied statistical bearing signals to a sparse autoencoder, combining it with a deep belief network for 

fault classification. Neural networks have also proven effective in addressing complex sequential data, with 

LSTM networks being used to calculate the remaining useful life (RUL) of machines and identify fault 

probabilities [17], [18]. Yu et al. [19] further demonstrated that LSTM models could achieve fault diagnosis 

accuracy up to 99% by automatically extracting dynamic information from raw data. In addition,  

Chen et al. [20] applied convolutional neural networks (CNN) to extract fault features from raw data, 

followed by LSTM for fault identification. Huang et al. [21] utilized EMD for noise reduction and a 

convolutional recurrent neural network (CRNN) for classifying rolling bearing faults. The research in [22], 

[23] employed EEMD to extract energy entropy as input features, later using support vector machines (SVM) 

for fault classification. Hinchi and Tkiouat [24] developed a convolutional long short-term memory 

(CLSTM) neural network, using CNN for feature extraction and LSTM for predicting RUL. Peng et al. [25] 

proposed a fault diagnosis method based on a bidirectional-gated recurrent unit (Bi-GRU), which efficiently 

captures dynamic information from time-series vibration data. Similarly, Zhiwei [26] designed a  

one-dimensional convolutional (1DCNN)-GRU model to handle sequential data for fault diagnosis.  

Wang et al. [27] proposed a Bi-GRU model that eliminates the need for pre-processing and achieves superior 

results in fault classification. 

In this work, a Bi-GRU neural networks is proposed to diagnose the faults. The model is proposed 

to classify different types of faults in rotating machinery under varying operational conditions. The aim of 

this work are as follows. First, the vibration signal is transformed into both the time and frequency domains, 

and EEMD is applied to obtain intrinsic mode functions (IMFs). Correlation coefficients are used to select 

important features based on their significance and principal component analysis (PCA) is used for features 

extraction. Second, a Bi-GRU network is utilized to learn these features, with BN employed to enhance the 

model's training speed and accuracy. Finally, the developed model is compared with other machine learning 

techniques, demonstrating its superior performance in fault classification. This research proposed a highly 

efficient fault diagnosis framework that addresses key limitations in conventional methods. By integrating 

EEMD, correlation coefficient-based feature selection, and Bi-GRU with BN, the developed model achieves 

improved fault classification accuracy and faster training times, making it a valuable tool for industrial 

applications. The innovative aspects of this work lie in its ability to non-stationary signals, providing a robust 

solution for real-world fault diagnosis. 

 

 

2. PROPOSED METHODOLOGY 

In this research, an optimized fault detection method for rolling bearings in rotating machines was 

developed using a BN-integrated stacked Bi-GRU neural network model. Initially, vibration signals were 

obtained from bearings under normal and faulty conditions at various operating speeds. These signals were 

first converted into time and frequency domains for analysis. To remove noise and decompose the signals, 

EEMD was applied, resulting in multiple IMFs. To ensure that only the most relevant and noise-free features 

were selected for classification, the correlation coefficients between the IMFs and the raw vibration signals 

were calculated. This allowed for the selection of the best IMFs for fault diagnosis. Next, PCA is applied for 

dimensionality reduction, preserving only the most significant features from the IMF data corresponding to 

five distinct fault conditions. The extracted features were then input into a stacked Bi-GRU model, which 

was enhanced by the incorporation of BN to accelerate convergence and improve the learning process. The 

architecture was trained using several hyperparameters, including the Adam optimizer, mean squared error as 

the loss function, a batch size of 50, a dropout rate of 0.2, 50 epochs, and a learning rate of 0.01. The model 

effectively handled sequential data and exploited bidirectional dependencies for more accurate fault 

classification. To evaluate its performance, the model was trained, tested, and validated with a bearing 

dataset. Results were assessed using a confusion matrix, revealing high accuracy in classifying various 

bearing conditions. Additionally, receiver operating characteristic (ROC) curves were used to evaluate the 

model's performance across different thresholds, confirming its effectiveness in fault detection. 

The vibration signals from the fan-end (FE) and drive-end (DE) bearings, collected from a data 

repository at http://engineering.case.edu/bearingdatacenter, represent normal and faulty conditions at varying 
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speeds of 1730, 1750, 1772, and 1797 rpm as shown in Table 1. These signals are observed to contain high 

levels of stationarity and noise, posing significant challenges in fault identification using conventional feature 

extraction techniques. As shown in the methodology at Figure 1, EEMD was employed for both noise 

removal and the extraction of IMFs without mode mixing. The IMFs with low non-stationarity and high 

correlation with the raw signals were selected as features. These filtered features were then fed sequentially 

into a stacked Bi-GRU model for classifying bearing conditions. The raw vibration data from FE and DE 

bearings under different conditions and speeds were analyzed in both time and frequency domains. 

Frequency spectrum analysis is a common technique to identify bearing defect frequency components by 

applying the FFT. In this work, the original vibration signals were converted into the frequency-amplitude 

domain, and EEMD was applied to decompose the signals into several IMFs (IMF 1 to 14) and residuals. 

Each IMF showed different frequency components, with high-frequency content shifting to low-frequency 

content during decomposition. Noise removal improved at higher decomposition levels, and by IMF 14, 

frequency components were well isolated. 

 

 

Table 1. Rolling bearing state 
Bearing state (Approx motor speed (rpm)=1730, 1750, 1772, 1797 

No. Fault diameter (inches) Fault location 

1 - Normal condition (NC) (Class 0) 

2 0.007 Inner race fault (IRF007) (Class 1) 

3 0.021 Inner race fault (IRF021) (Class 2) 

4 0.007 Outer race fault (ORF007) (Class 3) 

5 0.007 Outer race fault @ (6:00)a (ORF007@6) (Class 4) 

6 0.014 Outer race fault @ (12:00)a (ORF014@12) (Class 5) 

 

 

 
 

Figure 1. Combinational framework for classification of bearing faults 

 

 

2.1.  Feature selection 

Any classification model performs best when trained on significant features while avoiding noise. 

Though EEMD effectively decomposes signals, it increases input data. To address this, correlation 

coefficients between the decomposed IMFs and raw signals are calculated to select the best denoised and 

highly correlated IMFs. The application of EEMD and feature selection using correlation coefficient finally 

has given a set of 8 IMF features each of sample length 15,000 for six bearing conditions [8×6×15000]. 

 

2.2.  Feature extraction and dimensionality reduction 

PCA was performed on the initial feature space of [8×6×15000] in order to reduce the dimension 

and also to further remove the data redundancy. All the selected IMFs have been reduced along two principal 

components since they captured most of the variance in the data and the resulted data size is of [2×6×15000] 

for each of the bearing condition. The reduced feature vectors for all six conditions are fed as input for 

training the neural network. 

 

2.3.  Fault diagnosis based on batch normalization stacked bidirectional-gated recurrent unit 

The fault diagnosis algorithm is divided into two sections. The first is to capture the dynamic 

information from raw data and the second is to develop a DL classifier model for classifying the various 

types of bearing faults under different conditions. The framework of the proposed algorithm is shown in 

Figure 2. The following steps are given:  

i) Collect the sensors data. Then, the data is preprocessed and scaled (ranges from 0 to 1).  

ii) Application of EEMD on vibrational signal which analyses in time-frequency domain. 

iii) Selection of features is done by correlation coefficient.  
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iv) Reduction of high dimension feature space into low dimension using PCA. 

v) Split the prepared dataset into train, validation and test data  

vi) BN is used to speed up training, stabilize the learning process, and potentially improve the 

generalization of the neural network 

vii) Train and develop the BN based stacked Bi-GRU. 

viii) The performance of the proposed algorithm is confirmed by accuracy, model loss, confusion matrix, 

and ROC area under the curve (AUC) curve. 

 

 

 
 

Figure 2. Framework of proposed algorithm 

 

 

2.4.  Stacked bidirectional-gated recurrent unit model for classification of bearing conditions 

The stacked Bi-GRU model [27], composed of two GRU layers in sequence, leverages information 

from both time directions to classify bearing conditions. Increasing the number of Bi-GRU layers 

theoretically enhances feature extraction and improves fault classification accuracy. However, adding 

multiple GRU layers also increases training time and risks overfitting. To maintain effective processing, the 

argument ‘return_sequences’ is set to ‘True’, ensuring the output of each GRU layer is reshaped into a 3D 

array and passed to the next layer. In this work, four different types of multi-layered, BN based stacked  

Bi-GRU models were trained to classify the conditions of roller bearings, with their performances compared 

to one another. The bearing dataset was splitted into training, testing, and validation sets. During each epoch, 

the model was trained using the training dataset and automatically validated with 2% of the trained data to 

prevent overfitting and improve parameter selection. The hyperparameters used for training are as follows: 

Adam optimizer, mean squared error loss function, batch size of 50, dropout rate of 0.2, 50 epochs, and a 

learning rate of 0.01. The entire framework is developed and trained using the Python programming 

language, with Keras and TensorFlow 1.0 libraries for implementation. 

 

 

3. RESULTS AND DISCUSSION 

In recent years, researchers have looked at different methods for diagnosing faults in rotating 

machines. They often use techniques like wavelet transform and EMD, including a variation called EEMD. 

However, these methods struggle with noise and mode mixing, which can make them less effective in  

real-world situations. Traditional machine learning methods also rely on manually selecting features, which 

can lead to poor performance if the features are not chosen correctly. This study introduces a new method 
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that uses EEMD to remove noise and a stacked Bi-GRU neural network with BN for better feature selection 

and classification. We found that EEMD greatly reduces noise in vibration signals, improving the quality of 

data for classification. By using correlation coefficients, we selected the most important features from these 

signals. The BN-based Bi-GRU model achieved high accuracy in identifying different types of bearing faults. 

It also trained faster and performed better than traditional methods like CNN and LSTM. However, there are 

some limitations, such as the dataset being collected under controlled conditions, which may not represent 

real-world scenarios. Future research should focus on improving feature selection to address these issues. 

Table 2 compares the testing accuracy of various DL models, showing that LSTM, Bi-LSTM, GRU, 

and Bi-GRU achieved moderate accuracy (82.92 to 86.80%), while the proposed BN-based stacked Bi-GRU 

network outperformed all others with a perfect 100% accuracy. The key findings demonstrate that applying 

EEMD to preprocess vibration signals effectively reduces noise and enhances the quality of input data for 

classification. The proposed method resulted in a significantly higher proportion of important features being 

selected through the correlation coefficient from the decomposed signals, compared to traditional approaches. 

The BN-based Bi-GRU model also exhibited faster convergence and superior fault classification accuracy 

compared to existing methods such as CNN, LSTM, and SVM, making it particularly suitable for real-time 

industrial applications. 

 

 

Table 2. Accuracy of classification models 
Models Testing accuracy (%) 

LSTM 84.90 

Bi-LSTM 86.80 

GRU 82.92 

Bi-GRU network 83 

BN-PCA based stacked Bi-GRU network (proposed) 100 

 

 

The classification accuracy of the BN-based stacked Bi-GRU model was compared with other 

machine learning and DL models from the literature [28]–[31]. Table 3 shows that the proposed model 

outperformed existing methods, achieving superior results compared to the 1D-CNN-LSTM (97.69%), SVM 

(56.2%), random forest (55.5%), RNN (60.1%), XGBoost (94%), neural network (55.5%), Attention LSTM 

(84.73%), and LSTM (91.79) models. Additionally, the ROC curve, a key evaluation metric, was used to 

assess the model’s fault classification performance. Figure 3 indicates a strong true positive rate, with AUC 

values for each fault class ranging from 0.82 to 0.93, confirming the model's reliability for bearing condition 

classification using raw vibration data. 

This study examined a comprehensive fault diagnosis model using the proposed stacked Bi-GRU 

architecture with EEMD for feature selection. However, further research may be needed to validate its 

effectiveness, particularly regarding varying real-world industrial conditions and the presence of additional 

noise sources. While the EEMD and correlation coefficient methods were beneficial for selecting relevant 

features, the increased number of input signals may lead to higher computational demands, which future 

research should address by optimizing feature selection further. Our study demonstrates that the BN-PCA based 

stacked Bi-GRU model is more resilient than traditional fault detection methods for bearing diagnosis in 

rotating machines. Future studies may investigate hybrid models that combine DL with expert knowledge-based 

systems and explore feasible methods for producing more computationally efficient algorithms that maintain 

high classification accuracy while minimizing training time, particularly in real-time applications where data is 

continuously streamed. Figure 4 shows the confusion matrix of the proposed model, which correctly classifies 

the different fault conditions of roller bearings. The testing results, displayed in Figure 5, shows the enhanced 

performance of the stacked Bi-GRU model in classifying bearing conditions using process data. 

 

 

Table 3. Comparison of classification accuracy 
Methods Testing accuracy (%) 

RNN [29] 60.1 

SVM [30] 56.2 

XGBoost [31] 94 

Random forest [29] 55.5 

Neural network [29] 85 

Attention LSTM [28] 84.73 

1D-CNN-LSTM [28] 97.69 

LSTM [30] 91.79 

BN-PCA based stacked Bi-GRU (proposed) 100 
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Figure 3. ROC curves of proposed model 

 

 

 
 

Figure 4. Confusion matrix of proposed model 

 

 

 
 

Figure 5. Testing accuracy of proposed model 
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4. CONCLUSION 

Rolling bearing failures are common faults in rotating machines. In this paper, a BN-PCA-based 

stacked Bi-GRU model is developed. To handle non-stationary signals, EEMD is employed as a powerful 

tool to decompose vibrational signals into multiple IMFs. The correlation coefficient technique is then 

applied to select features from these IMFs. BN is used to accelerate model training and ensure fast 

convergence, and PCA is used for feature extraction. The proposed model accurately classifies different 

bearing fault conditions under various motor running speeds and has also been compared with existing 

methods. Recent observations indicate that the application of EEMD significantly reduces noise and 

enhances feature selection in the fault diagnosis of bearings. Our findings provide conclusive evidence that 

this approach is associated with faster convergence and superior classification accuracy, not only compared 

to existing techniques but also in the context of real-time monitoring and fault diagnosis in industrial 

environments. This work describes the importance of integrating advanced signal processing and DL 

methods for effective fault detection. Future work can extend this approach for implementation in real-time 

fault diagnosis. 
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