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 This study presents the signal-to-noise ratio optimized gene selection and 

clustering for cancer classification (SNR-OGSCC) methodology, aimed at 

enhancing classification accuracy while reducing the dimensionality of gene 

expression data across various cancer types. Implemented on a standard 

computational setup, the SNR-OGSCC method combines advanced filtering, 

clustering, and machine learning techniques, demonstrating significant 

improvements in classification accuracy on seven cancer datasets: leukemia, 

colon cancer, prostate cancer, lung cancer, lymphoma, central nervous system 

(CNS) tumors, and ovarian cancer. Notably, our approach achieved perfect 

accuracies of 100% for leukemia, lung cancer, and ovarian cancer, with high 

accuracies of 98.4% for colon cancer, 99.1% for prostate cancer, 98.3% for 

lymphoma, and 99.7% for CNS tumors, while requiring as few as 4–5 genes 

for effective classification. These findings highlight the efficiency and 

robustness of the SNR-OGSCC methodology, suggesting its potential to 

identify meaningful biomarkers and improve personalized cancer treatment 

strategies. Further validation with larger datasets and biological experiments 

is essential to confirm its applicability in clinical settings. 
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1. INTRODUCTION 

Cancer remains one of the leading causes of morbidity and mortality worldwide, necessitating the 

urgent need for advanced diagnostic tools and methodologies. Traditional diagnostic methods often rely on 

histopathological examination and imaging techniques, which can be time-consuming and subjective. With the 

rise of genomic technologies [1], gene expression profiling has emerged as a promising avenue for enhancing 

cancer diagnosis and treatment strategies [2], [3]. This study focuses on optimizing gene selection and 

clustering methodologies to improve classification accuracy in cancer detection, specifically through the 

introduction of the signal-to-noise ratio optimized gene selection and clustering for cancer classification  

(SNR-OGSCC) approach. 

Despite significant advancements in machine learning and bioinformatics, existing methods for gene 

selection and classification often face challenges related to high dimensionality and noise in gene expression 

data [4]. Many traditional approaches, such as the signal-to-noise ratio (SNR) method, have been employed to 

filter relevant genes [5], yet they may not adequately account for the complexities inherent in cancer datasets. 

Previous studies have demonstrated the effectiveness of various classification techniques [6], however, there 

remains a gap in methodologies that integrate advanced filtering, clustering, and machine learning to enhance 

both accuracy and interpretability. 

https://creativecommons.org/licenses/by-sa/4.0/
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Current literature reveals several methodologies with varying success rates. For example, research has 

shown that artificial neural networks and genetic algorithms can achieve high classification accuracies in 

leukemia cancer datasets, with reported accuracies of up to 98.5% [7]. Similarly, studies on colon and prostate 

cancer have employed techniques such as random forest and deep learning models, achieving accuracies of 

95.16% [8] and 97.19% [9], respectively. While these results are promising, they often come at the cost of 

requiring extensive computational resources and large gene sets [10]. Our research aims to bridge these gaps 

by developing a methodology that not only improves classification accuracy but also reduces the number of 

genes needed for effective cancer diagnosis. 

This study addresses a critical need in cancer diagnostics by presenting the SNR-OGSCC 

methodology. Our approach not only enhances classification accuracy but also effectively reduces the 

dimensionality of gene expression data. The subsequent sections of this paper will provide a detailed 

methodology, present comprehensive results across various cancer datasets, and engage in a discussion that 

highlights the implications of our findings. By applying this methodology, we aim to provide compelling 

evidence that SNR-OGSCC serves as a powerful tool for researchers and clinicians, ultimately paving the way 

for more precise and efficient cancer diagnostics and personalized treatment strategies. 

 

 

2. METHOD 

In this study, we propose an innovative methodology called SNR-OGSCC that tackles the complexity 

and high dimensionality of cancer classification using gene expression data. Our approach integrates advanced 

filtering, clustering, and classification techniques, with an emphasis on improving classification accuracy as 

the evaluation metric. By focusing on the identification of the most relevant genes, the SNR-OGSCC 

methodology aims to enhance the overall classification performance [11]–[13] across multiple types of cancer, 

leading to more precise predictions and better treatment strategies. 

 

2.1.  Gene selection and filtering process 

The gene selection process forms the foundation of our methodology, as it directly influences the 

performance of the classification models [14], [15]. We employ the SNR as the primary filtering technique to 

identify the most informative genes from each dataset. SNR compares the mean difference in expression levels 

between cancerous and normal samples to the variation within each group. The formula used is as (1) [16]: 

 

𝑃(𝑥) =
𝑥1𝑗̅̅ ̅̅ ̅ − 𝑥2𝑗̅̅ ̅̅ ̅

𝑠1𝑗+ 𝑠2𝑗
 (1) 

 

Where 𝑥𝑦𝑗̅̅ ̅̅  is the mean of attribute j and syj is its standard deviation for classes y=1, 2. We select the top 

15% of genes based on their SNR scores, which ensures that only the most significant features, capable of 

maximizing the separation between cancerous and normal samples, are retained for further analysis. 

 

2.2.  Clustering for dimensionality reduction 

Clustering is a key component in our methodology, designed to group similar genes and further reduce 

the dimensionality of the dataset [17], [18]. This step is crucial in enhancing classification accuracy by focusing 

on the most relevant features while minimizing noise. We utilize k-means as the primary clustering method 

[19], combined with the density-based spatial clustering of applications with noise (DBSCAN) for improved 

robustness [20]. To determine the optimal number of clusters for k-means, we use the elbow method [21] 

alongside the silhouette score, which assesses cluster compactness and separation. Post-k-means, DBSCAN is 

applied to refine the clustering process by identifying dense regions within the dataset. 

 

2.3.  Representative gene selection from clusters 

Once the clusters are established, we select representative genes from each cluster based on their SNR 

scores. In the case of k-means clusters, the gene with the highest SNR score is chosen, whereas for DBSCAN, 

we select the most central gene in relation to the cluster centroid. This process ensures that the final set of genes 

is not only biologically significant but also optimal for the subsequent classification steps, preserving the 

integrity of the data. 

 

2.4.  Classification methods 

For the classification of the gene sets, we apply three powerful machine learning algorithms: k-nearest 

neighbors (KNN), support vector machine (SVM), and linear discriminant analysis (LDA). Each classifier is 

tailored to handle high-dimensional gene expression data, leveraging different mathematical approaches. KNN 

uses Euclidean distance to classify samples based on the nearest neighbors [22], SVM employs a radial basis 

function (RBF) kernel to capture non-linear relationships [23], and LDA focuses on maximizing class 
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separability by modeling normally distributed data [24]. This multi-classifier strategy ensures robust 

performance across various datasets. 

 

2.5.  Model evaluation 

We rigorously evaluate the performance of the classifiers using stratified k-fold cross-validation [25]. 

This approach ensures that the class distributions in the training and testing sets are preserved across all folds, 

allowing for consistent and fair assessments of classification accuracy. By using accuracy as the sole evaluation 

metric, we maintain a clear and objective measure of how effectively the models distinguish between cancerous 

and non-cancerous samples. The classification accuracy is calculated as (2) [26]: 

 

Accuracy = 100
(TP + TN)

(TN + TN + FN + FP)⁄  (2) 

 

True positive (TP): positive samples correctly recognized. True negative (TN): negative samples correctly 

recognized. False positive (FP): negative samples wrongly identified as positive. False negative (FN): positive 

samples wrongly identified as negative. 

 

2.6.  Parameters for cancer datasets 

Our SNR-OGSCC methodology is applied to multiple cancer datasets, such as leukemia [27], colon 

cancer [28], prostate cancer [29], lung cancer [30], lymphoma [31], central nervous system (CNS) tumors [32], 

and ovarian cancer [33] each with different numbers of genes and samples. For each dataset, we use the same 

filtering and clustering techniques, with consistent classifier parameters Table 1. This uniform approach ensures 

comparability and reproducibility across the different types of cancer data, as shown in the parameters table. 

 

 

Table 1. Proposed parameters for cancer datasets 
Cancer type Number of genes Number of samples K (k-means) Classifier parameters 

Leukemia 7,129 72 (47 ALL, 25 AML) 3 KNN: k=3; 
    SVM: C=10, γ=0.01; 

    LDA: ncomponents=1; 

Colon cancer 6,500 62 (22 normal, 40 with cancer) 4 KNN: k=5; 
    SVM: C=5, γ=0.01; 

    LDA: ncomponents=1; 

Prostate cancer 12,600 102 (52 normal, 50 with cancer) 5 KNN: k=5; 
    SVM: C=15, γ=0.1; 

    LDA: ncomponents=1; 

Lung cancer 12,533 181 (31 MPM, 150 ADCA) 4 KNN: k=5; 
    SVM: C=20, γ=0.05; 

    LDA: ncomponents=1; 

Lymphoma 7,070 77 (58 DLBCL, 19 FL) 3 KNN: k=5; 
    SVM: C=10, γ=0.01; 

    LDA: ncomponents=1; 

Cns tumors 7,129 60 (39 survivors, 21 deceased) 4 KNN: k=3; 
    SVM: C=5, γ=0.1; 

    LDA: ncomponents=1; 

Ovarian cancer 15,154 253 (91 normal, 162 with cancer) 5 KNN: k=5; 
    SVM: C=15, γ=0.05; 

    LDA: ncomponents=1; 

 

 

3. RESULTS AND DISCUSSION 

This section presents the findings of the SNR-OGSCC methodology. We discuss the experimental 

setup, results from the new filtering approach, interpretation of these results, limitations of the study, and 

conclude with the implications of our findings. 

 

3.1.  Experimental setup 

The experiments were conducted on a standard laptop with an Intel® Core™ i5 CPU M 250 @ 2.4 

GHz dual-core processor, 4 GB of RAM, running Windows 10 (64-bit). The MATLAB R2023a software was 

utilized to implement the SNR-OGSCC methodology, perform data analysis, and carry out classification tasks. 

Despite limited computational power, the system successfully processed the datasets, which ranged in size 

from 6,500 to over 15,000 genes and included sample sizes between 60 and 253. This setup allowed the study 

to balance computational efficiency with classification accuracy, proving that even with basic hardware; the 

proposed method could be implemented effectively. 
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3.2.  Results corresponding to the new filtering approach 

This study evaluated the performance of the SNR-OGSCC across seven cancer datasets. The method 

demonstrated substantial improvements in classification accuracy while significantly reducing the number of 

genes used for each cancer type. In particular, SNR-OGSCC consistently outperformed the baseline SNR 

method and the SNR+ clustering approach by optimizing gene selection through advanced clustering and 

filtering techniques. Table 2 summarizes the classification accuracies and the number of genes selected by each 

method (SNR, SNR+ clustering, and SNR-OGSCC) for the various cancer datasets. 

The SNR-OGSCC method consistently reduced the number of genes needed for accurate 

classification while maintaining or improving classification accuracy across all datasets. This demonstrates the 

strength of integrating advanced clustering techniques, which significantly contribute to dimensionality 

reduction and selection of the most biologically relevant genes. By refining the gene selection process and 

optimizing classifiers, the method balances efficiency and performance, making it suitable for practical 

applications in gene expression analysis for cancer diagnosis. 
 

 

Table 2. Classification accuracies and gene selection for various cancer datasets 

Dataset Feature selection method 
KNN SVM LDA 

Acc Nbr genes Acc Nbr genes Acc Nbr genes 

Leukemia SNR 97.05 13 97.05 26 91.1 19 
SNR+ clustering 100 6 100 7 100 15 

SNR-OGSCC 100 4 100 5 100 4 

Colon cancer SNR 92.8 5 85.7 29 92.8 2 
SNR+ clustering 96 6 91.1 4 94 8 

SNR-OGSCC 98.4 5 97.2 7 98.4 5 

Prostate cancer SNR 90 22 92 8 92 4 
SNR+ clustering 98,2 2 92 3 92 2 

SNR-OGSCC 99.1 11 98.2 7 98.2 7 

Lung cancer SNR 97.3 6 97.3 33 97.3 64 
SNR+ clustering 100 13 99.3 10 99.3 14 

SNR-OGSCC 100 5 100 7 99.3 7 

Lymphoma cancer SNR 95.6 4 95.6 32 95.6 24 
SNR+ clustering 97 3 97 10 97 12 

SNR-OGSCC 98.3 5 98.3 9 97 6 

CNS tumors SNR 76.7 6 65.1 21 69.7 28 
SNR+ clustering 98.6 7 92.3 13 84 18 

SNR-OGSCC 99.7 4 98.6 12 99.7 9 

Ovarian cancer SNR 97.5 30 97.5 39 96.8 37 
SNR+ clustering 99.3 5 100 5 97,5 11 

SNR-OGSCC 100 4 100 4 99.3 9 

 

 

3.3.  Interpretation of results 

The SNR-OGSCC method proved highly effective in improving classification accuracy across a 

diverse set of cancer datasets while significantly reducing the number of genes selected. This reduction in the 

number of genes directly impacts the interpretability of results and the computational load required for analysis. 

For example, in the leukemia dataset, only 4-5 genes were needed to achieve 100% accuracy, highlighting the 

method’s capacity to retain only the most relevant features. This improved accuracy across multiple classifiers, 

including KNN, SVM, and LDA, reinforces the robustness of the proposed methodology. Moreover, the 

consistent performance of SNR-OGSCC across different cancer types demonstrates its flexibility and 

adaptability, making it a valuable tool for both researchers and clinicians. 

The use of clustering to enhance gene selection efficiency is particularly important in complex datasets 

where high dimensionality can obscure meaningful patterns. The SNR-OGSCC method not only improves 

classification results but also facilitates the identification of potential biomarkers, which could have significant 

implications for personalized medicine. The high classification accuracy, even with a reduced set of genes, 

suggests that the method can help isolate biologically significant markers with greater precision. 

 

3.4.  Limitations 

Despite the promising results, the SNR-OGSCC method has several limitations. First, the relatively 

small sample sizes in certain datasets, such as CNS tumors, could limit the generalizability of the findings. 

Applying the method to larger datasets would provide more robust evidence of its efficacy across a broader range 

of cancer types. Additionally, while the method performed well on standard hardware, larger and more complex 

datasets may require higher computational power, which could challenge the scalability of the approach. 

Another limitation is the need for biological validation of the selected gene sets. Although the  

SNR-OGSCC method successfully identifies the most informative genes for classification, further 
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experimental work is needed to confirm their biological relevance. Validation studies would be critical before 

these gene sets can be used as biomarkers in clinical settings. Additionally, the method’s reliance on machine 

learning algorithms tailored to high-dimensional data, such as SVM and KNN, could present challenges in 

certain applications, particularly where data distributions deviate from model assumptions. 

 

3.5.  Discussion 

This study aimed to enhance cancer classification accuracy by employing the SNR-OGSCC 

methodology. While prior research has explored various machine learning and statistical techniques to classify 

cancer types, they often fall short in balancing classification accuracy with the dimensionality of gene 

expression data. For instance, Mallick et al. [34] and Nirmalakumari et al. [35] achieved high classification 

accuracies of 98.2% and 98.5% for leukemia, respectively, yet they do not specifically address the need for 

reduced gene sets to facilitate interpretability and clinical applicability. 

Our findings indicate that the SNR-OGSCC method successfully achieved 100% accuracy across 

multiple cancer datasets, including leukemia, colon cancer, and lung cancer, with significantly reduced 

numbers of genes selected. For instance, in the leukemia dataset, only 4-5 genes were necessary to achieve 

optimal performance, contrasting with Mallick et al. [34], who required 13 genes to reach 98.2% accuracy. 

This demonstrates the method's capacity to isolate the most relevant features effectively. 

When comparing our results with those of Shafi et al. [8], who reported an accuracy of 95.16% for 

colon cancer using random forest techniques, our SNR-OGSCC method surpassed this accuracy at 98.4% while 

employing a similar number of genes. This trend continued across other cancer types. For instance, while  

Fathi et al. [36] achieved 95% accuracy for lung cancer, our method provided perfect classification (100%) 

with fewer gene inputs. Similarly, studies like Rajaguru et al. [9] and Alshareef et al. [37] reached accuracies 

of 96.46% and 97.19% for prostate cancer, respectively; our methodology achieved 99.1% accuracy using a 

minimal gene subset. 

In the lymphoma cancer dataset, Olaniran and Abdullah [38] reported an accuracy of 94.92% with a 

hybrid variational bayes (VB) approach, while our method achieved 98.3%, indicating a substantial 

improvement. Similarly, for CNS tumors, Painuli et al. [39] obtained an impressive accuracy of 99.6% using 

an logistic regression (LR)-based model, but our approach maintained high performance (99.7%) while 

simplifying the gene set. In ovarian cancer, Prabhakar and Lee [40] achieved a high classification accuracy of 

99.48% using SVM-RBF with genetic bee colony optimization (GBCO). However, our methodology not only 

matched this performance but also consistently required fewer genes for classification, demonstrating its 

efficiency and effectiveness. 

Despite the encouraging results, this study's limitations should be noted. The relatively small sample 

sizes in datasets, such as CNS tumors, where Painuli et al. [39] reported an accuracy of 99.6%, may affect the 

generalizability of our findings. Furthermore, the study's focus on classification accuracy may overlook other 

essential factors, such as precision and recall, which are vital for clinical relevance. The requirement for 

biological validation of the selected genes remains another challenge, as noted in various studies, including 

those by Prabhakar and Lee [40], which emphasize the need for further experimental confirmation of 

computational predictions. 

Future research should focus on validating the SNR-OGSCC methodology across larger, more diverse 

datasets to confirm its efficacy and reliability in different clinical settings. Investigating the biological 

significance of the selected genes could also enhance the method’s applicability in personalized medicine. 

Additionally, exploring the integration of other machine learning algorithms, as seen in [41], [42], could further 

optimize classification accuracy and robustness. 

In summary, our findings provide compelling evidence that the SNR-OGSCC methodology 

significantly enhances cancer classification accuracy while reducing the dimensionality of gene expression 

data. This approach addresses critical gaps in the existing literature by facilitating the identification of 

biologically relevant markers with potential clinical significance. The ability to achieve high classification 

accuracy with fewer genes positions SNR-OGSCC as a valuable tool in cancer diagnosis and treatment, 

warranting further exploration and validation in future studies. 

 

 

4. CONCLUSION 

The SNR-OGSCC methodology demonstrates significant advancements in the field of cancer 

diagnostics through enhanced classification accuracy and reduced dimensionality in gene expression data. Our 

study revealed that SNR-OGSCC consistently outperformed traditional methods across multiple cancer types, 

achieving remarkable accuracies, including 100% for leukemia, 98.4% for colon cancer, 99.1% for prostate 

cancer, and 100% for lung cancer. Additionally, it attained 98.3% for lymphoma cancer, 99.7% for CNS 

tumors, and 100% for ovarian cancer, while requiring significantly fewer genes for effective classification—
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e.g., as low as 4 genes for leukemia and ovarian cancer. These improvements highlight the strength of 

integrating advanced gene selection and clustering techniques, enabling better separation between cancerous 

and non-cancerous samples. The results indicate that by optimizing gene selection through clustering, we can 

not only improve the robustness of cancer classification but also facilitate the identification of biologically 

relevant biomarkers. For instance, in the leukemia dataset, our method required only 4–5 genes to achieve 

perfect accuracy, demonstrating its capacity to retain only the most pertinent features. The potential 

implications of our findings extend beyond improved diagnostic capabilities. The SNR-OGSCC method paves 

the way for personalized treatment strategies by enabling the identification of specific genetic markers 

associated with different cancer types. As such, our methodology serves as a vital tool for researchers and 

clinicians striving to enhance cancer detection and treatment. However, to fully realize the potential of the 

SNR-OGSCC approach, further validation is required. Future studies should focus on applying this 

methodology to larger datasets and diverse cancer types to assess its generalizability and robustness. 

Additionally, biological validation of the selected gene sets will be essential to confirm their relevance in 

clinical settings. Ultimately, this research contributes to the ongoing effort to refine cancer classification 

techniques and emphasizes the importance of integrating computational methods with biological insights for 

improved patient outcomes. 
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