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 Ensuring the sustainability of global food production requires efficient plant 

disease detection, challenge conventional methods struggle to address 

promptly. This study explores advanced techniques, including convolutional 

neural networks (CNNs) and transfer learning models (ResNet and VGG), to 

improve plant disease identification accuracy. Using a plant disease dataset 

with 65 classes of healthy and diseased leaves, the research evaluates these 

models' effectiveness in automating disease recognition. Preprocessing 

techniques, such as size normalization and data augmentation, are employed 

to enhance model reliability, and the dataset is divided into training, testing, 

and validation sets. The CNN model achieved accuracies of 95.45 and 

94.52% for 128×128 and 256×256 image sizes, respectively. ResNet50 

proved the best performer, reaching 98.38 and 98.63% accuracy, while 

VGG16 achieved 97.99 and 98.34%. These results highlight ResNet50's 

superior ability to capture intricate features, making it a robust tool for 

precision agriculture. This research provides practical solutions for early and 

accurate disease identification, helping to improve crop management and 

food security. 
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1. INTRODUCTION 

Plant pests and diseases pose significant threats to global food security, with up to 40% of crop 

production lost annually due to these factors [1]. The Food and Agriculture Organization (FAO) reports that 

up to 40% of global crop production is lost annually due to weeds, pests, and diseases, and these losses could 

worsen without proper pest and disease management [2]. Within the agricultural sector, one major factor 

contributing to economic losses is plant disease, recognized as a risk due to its challenging early detection 

and identification. As it affects crop yield, the sustainability of the agro-economic sector is jeopardized, 

ultimately posing a threat to the food security of a given region. Early disease detection is crucial for farmers 

to control the spread and impact on crop yield. Prevention and treatment methods vary based on crop types 

and susceptibility to specific diseases [3]. Analyzing disease characteristics, symptoms, and severity is 

essential for addressing fundamental questions in plant stress biology. Timely disease analysis information 

enables rapid management decisions, enhancing the overall operation and health of plantations. Traditionally, 

plant diseases are identified through visual symptom interpretation and subsequent laboratory assessments 

[4]. However, these methods require expertise in plant pathology and considerable time for diagnosis. 

https://creativecommons.org/licenses/by-sa/4.0/
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Recognizing these limitations, modern technologies such as machine vision and remote sensing have been 

developed to detect and identify plant diseases, offering improved reliability, precision, and accuracy. 

Advancements in image analysis, particularly through data learning techniques like convolutional neural 

networks (CNNs), have revolutionized disease identification. Numerous studies have been conducted on the 

automatic identification of plant diseases, paving the way for the development of automatic imaging 

techniques for plant disease diagnosis, classification, plant recognition, fruit counting, and weed detection. 

These technologies have the potential to assist farmers in adopting better farming techniques, implementing 

good agricultural practices, and ultimately enhancing food security [5]. 

CNNs are widely used in various fields due to their ability to automatically extract essential features 

from data [6]. This feature extraction capability is crucial in tasks like image recognition, where CNNs can 

learn hierarchical local and global features without the need for manual feature extraction [7]. Additionally, 

CNNs are known for their adaptability in extracting raw signal features, leading to high classification 

accuracy [8]. ResNet50 and VGG16 are specific architectures within the realm of CNNs that offer distinct 

advantages. ResNet50 can achieve impressive depths of up to 152 layers while maintaining lower complexity 

compared to VGGnets [9]. On the other hand, VGG16, known for its fine-grained convolution operation, 

excels in classification problems [10]. Moreover, CNNs, including ResNet50 and VGG16, have been 

successfully utilized in various applications such as image recognition, anomaly detection, and even in fields 

like finance for exchange rate forecasting [11]. These networks have shown superior performance in tasks 

like image classification and segmentation, with models like VGG16 being used as feature extractors in 

conjunction with other architectures for tasks like fatigue crack initiation site detection [12]. 

Various studies have delved into advanced approaches for plant disease detection through CNNs, 

Kumar et al. [13] proposed a deep learning-based image recognition system, exploring faster R-CNN, R-CNN, 

and SSD architectures. The resulting system efficiently detected diverse diseases, boasting a validation accuracy 

of 94.6%. Similarly, Islam [14] utilized a CNN model, achieving a 94.29% accuracy in detecting plant diseases, 

particularly benefiting cultivators in enhancing crop production. Sharma et al. [15] investigated image 

segmentation for CNN models, outperforming full-image models, and achieving 98.6% accuracy on unseen 

data. Ferentinos [16] developed CNN models, attaining an impressive 99.53% success rate in plant disease 

detection and diagnosis. Agarwal et al. [17] proposed an efficient CNN model for tomato crop disease 

identification, surpassing traditional methods with a notable 98.4% accuracy. Baranwal et al. [18] showcased 

CNN effectiveness, achieving 98.54% accuracy in apple leaves disease detection. Sagar and Jacob [19] 

explored transfer learning, achieving 98.2% accuracy in classifying and detecting diseases across 38 different 

classes. Chen et al. [20] demonstrated deep transfer learning's robustness, reaching a minimum validation 

accuracy of 91.83%. Studies also evaluated different deep architectures for plant leaves disease detection. 

Optimal results were obtained using the GoogleNet architecture, with ResNet50 and ResNet101 performing 

exceptionally well. Barbedo [21] investigated the impact of dataset size and variety on deep learning and 

transfer learning for plant disease classification, emphasizing their crucial role in model effectiveness. Lastly, 

Fan et al. [22] proposed a feature-fusion method for identifying apple tree diseased leaves, achieving a 

recognition accuracy of 99.83% after data augmentation. These studies collectively highlight the diverse 

applications and successes of CNNs in advancing plant disease detection. 

Previous research has explored the development of a low-cost smart irrigation system integrating 

internet of things (IoT) technology and fuzzy logic, demonstrating its effectiveness in optimizing water usage 

for agricultural applications [23]. The integration of IoT and fuzzy logic in irrigation represents an advanced 

approach that enhances efficiency and sustainability in water management. Furthermore, historical weather 

data has been leveraged to forecast reference crop evapotranspiration, enabling precise estimation of water 

requirements at different growth stages through neural networks, particularly long short-term memory 

(LSTM) techniques within recurrent neural networks (RNN) [24]. Additionally, investigations into the 

impact of compost application in salt-affected soils within automated greenhouse irrigation systems have 

provided valuable insights into soil salinity management and its implications for plant growth. By comparing 

various irrigation methods and monitoring physico-chemical parameters, these studies have underscored the 

potential of compost in mitigating the adverse effects of salinity on agricultural productivity [25].  

Building upon these advancements in precision agriculture, recent research has extended the scope 

of intelligent agricultural systems towards plant disease detection using deep learning techniques. Inspired by 

these developments, this study focuses on exploring, analyzing, and comparing CNN models for plant 

disease detection, with an emphasis on transfer learning techniques utilizing ResNet and VGG architectures. 

The proposed approach seeks to enhance disease identification accuracy by systematically evaluating the 

performance of these models. 

This paper is structured as follows: section 2 describes the materials and methods employed in this 

research, detailing the proposed disease detection framework and providing a comparative analysis of the 
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selected models. Section 3 presents the results obtained from systematic experimentation. Finally, section 4 

concludes the study with a summary of key findings and future research directions. 

 

 

2. MATERIALS AND METHOD 

In the proposed approach illustrated in Figure 1, a plant leaf disease database (details in Table 1) is 

utilized. The process begins by renaming the images in the database so that each image corresponds to its 

respective class name. Next, the images undergo size normalization and augmentation techniques to enhance 

the dataset. The augmented dataset is then split into training, validation, and test sets. The training and 

validation sets are used to train and validate three models: CNN, ResNet50, and VGG16. After training, the 

models are evaluated using the test set. The results are compared to assess the performance of each model in 

classifying plant leaf diseases. This method provides a structured and thorough analysis of the models' 

effectiveness.  

 

 

 
 

Figure 1. Proposed approach for imagery-based plant disease detection: comparison between CNNs, VGG16, 

and ResNet50 

 

 

Table 1 summarizes the dataset used in this approach, showing the distribution of plant species, 

disease classes, and the number of images in each category. The total number of images in the dataset is 

62,577 images. It includes a variety of plant species, such as wheat, corn, rice and potato, with both healthy 

and diseased samples. The dataset covers various disease conditions, like wheat rust, corn leaf blight,  

rice blast, and potato blight, providing a diverse and comprehensive basis for training and evaluating the 

classification models.  

 

2.1.  Data pre-processing 

The aim of image pre-processing is to prevent the extraction of characteristic parameters against the 

influence of background, leaf size and shape, light conditions, and camera variations in disease diagnosis 

[26]. In the data pre-processing step, each image in the dataset undergoes a series of essential 

transformations. The first step involves class labeling, where each image is assigned to a specific class 

corresponding to the plant species and health condition it represents. The image labeling is structured such 

that each image is named as "class_name+(i)," providing a clear identifier for both the class and the image 

index. Subsequently, image height and width normalization are applied to ensure uniformity across the 

dataset. Images are resized to two distinct dimensions, 128×128 and 256×256 pixels. This choice allows for 

the exploration of model performance with inputs of varying sizes, providing insights into the network's 

ability to adapt to different resolutions. Such an approach helps assess the model's robustness and 

generalization across a range of input dimensions, contributing to a more comprehensive understanding of its 

capabilities. To further enhance model generalization and robustness, data augmentation techniques are 

implemented. These include rotation (rotation_range=30), width shift (width_shift_range=0.2), height shift 

(height_shift_range=0.2), zoom, horizontal flip (horizontal_flip=True), and vertical flip. These 

augmentations introduce variability into the training set, effectively expanding its diversity and improving the 

model's ability to handle different orientations, shifts, and scales during training. Additionally, a rescaling 
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factor of 1/255 is applied to normalize pixel values. This step ensures that the input data falls within a 

suitable range for optimal model performance, preventing potential numerical instability. After the 

comprehensive pre-processing steps, the dataset is divided into training, validation, and test subsets, with an 

80-10-10 split, respectively. This partitioning strategy allows for proper evaluation of the model's 

performance on unseen data, aiding in the assessment of its ability to generalize beyond the training set. The 

resulting data processing pipeline contributes to the creation of a well-prepared dataset, optimizing the 

performance of CNNs for accurate plant disease identification. 

 

 

Table 1. Dataset distribution: species, classes and number of images 
Species Classes Nbr. of 

images 
Species Classes Nbr. of 

images 

Alstonia Scholaris Diseased 254 Peach Bacterial spot 2297 

Healthy 179 Healthy 360 

Apple Apple scab 630 Pepper bell Bacterial spot 997 
Black rot 621 Healthy 1,478 

Cedar apple rust 275 Pomegranate Diseased 272 

Healthy 1,645 Healthy 287 
Arjun Diseased 232 Pongamia 

Pinnata 

Diseased 276 

Healthy 220 Healthy 322 

Blueberry Healthy 1,502 Potato Early blight 1,000 
Cherry Cherry (including sour) healthy 1,052 Healthy 152 

Cherry (including sour) powdery 
mildew 

854 Late blight 1,000 

Chinar Diseased 120 Healthy 371 

Healthy 103 Rice Brown spot 613 
Corn Cercospora leaf spot gray leaf spot 513 Healthy 1,488 

Common rust 1,192 Leaf blast 977 

Gray leaf spot 513 Neck blast 1,000 
Healthy 1,162 Soybean Healthy 5,090 

Northern leaf blight 985 Squash Powdery mildew 1,853 

Guava Diseased 142 Strawberry Healthy 456 

Healthy 277 Leaf scorch 1,109 

Grape Esca (black measles) 1,383 Tomato Bacterial spot 2,127 

Healthy 423 Early blight 1,000 
Leaf blight (isariopsis leaf spot) 889 Healthy 1,591 

Jamun Diseased 345 Late blight 1,909 

Healthy 279 Leaf mold 952 
Jatropha Diseased 124 Septoria leaf spot 1771 

Healthy 133 Spider mites Two spotted spider 

mite 

1676 

Lemon Diseased 77 Target spot 1404 

Healthy 159 Mosaic virus 373 

Mango Diseased 265 Yellow leaf curl virus 3209 
Healthy 170 Wheat Brown rust 902 

Orange Huanglongbing (citrus greening) 5507 Healthy 1116 

   Yellow rust 924 

 

 

2.2.  Convolutional neural networks 

The CNN stands as a pioneering architecture in the realm of computer vision and image processing. 

Renowned for its ability to automatically learn hierarchical representations, CNNs have become instrumental 

in diverse applications, including plant disease detection. The convolutional layers of a CNN are adept at 

capturing intricate patterns within plant leaf images, allowing the model to discern subtle visual cues 

indicative of various diseases as shown in Figure 2. By learning and extracting features hierarchically, CNNs 

provide a powerful tool for automated identification of plant health issues, contributing significantly to 

precision agriculture and sustainable crop management. Within our plant disease detection framework, the 

CNN model serves as a foundational pillar. Employing a sequential structure, this model harnesses the power 

of convolutional layers with (3, 3) filters and rectified linear unit (ReLU) activation, facilitating the 

extraction of nuanced features from plant leaf images. We applied a stride of (1, 1) in all convolutional 

layers. Striding refers to the step size taken by the filter as it moves across the input image. A stride of 1 

ensures that the filter moves one pixel at a time, maximizing the spatial coverage of the image. The padding 

technique used is 'same' padding. This ensures that the output dimensions of the convolutional layers match 

the input dimensions by adding zeros to the borders of the input. It prevents the image from shrinking after 

each convolution operation, maintaining resolution. Augmented by batch normalization and max-pooling 

layers, the CNN model excels in hierarchical pattern recognition. Further refinement includes a global 
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average pooling layer for spatial reduction and dense layers with 1,024 units and ReLU activation for robust 

feature representation. Employing dropout with a 0.3 rate mitigates overfitting, culminating in a final dense 

layer with SoftMax activation for precise multi-class classification. Optimized through the Adam optimizer 

with a learning rate of 0.0001, the CNN model stands as a crucial component in our pursuit of automated 

plant disease identification.  

 

 

 
 

Figure 2. CNN basic architecture 

 

 

2.3.  Residual network 

ResNet [9] represents a groundbreaking advancement in deep learning, specifically designed to 

address challenges associated with training very deep neural networks. ResNet's unique feature, the 

introduction of residual connections Figure 3, enables the model to skip certain layers during training, 

facilitating the learning of more nuanced representations. In the context of plant disease detection, ResNet's 

ability to handle deep architectures proves pivotal. The model excels in capturing subtle and complex 

patterns within plant images, allowing for accurate disease identification. The resilience of ResNet is 

particularly beneficial when dealing with the diverse and intricate visual manifestations of plant diseases. In 

our exploration of automating plant disease detection, ResNet model emerges as a pivotal player. Built upon 

a pre-trained ResNet50 base, this architecture embraces residual learning principles, facilitating the training 

of deep neural networks. Global average pooling, coupled with dense layers featuring 1,024 units and ReLU 

activation, ensures effective feature extraction. With a dropout rate of 0.5 strategically implemented, the 

ResNet model guards against overfitting. The final dense layer, endowed with SoftMax activation, enables 

the classification of plant leaves into diverse disease categories. Fine-tuning of upper layers, coupled with the 

Adam optimizer set at a learning rate of 0.0001, empowers the ResNet model to dynamically adapt to the 

intricacies of our plant dataset, rendering it indispensable in our pursuit of accurate disease identification.  

 

 

 
 

Figure 3. ResNet50 basic architecture 

 

 

2.4.  Visual geometry group16 

Developed by the VGG at Oxford University, VGG16 [27] is a deep CNN. Its architecture 

incorporates a small 3×3 convolution filter to enhance accuracy. With 16 convolution layers Figure 4, 

VGG16 undergoes extensive training on the ImageNet dataset [28], demonstrating superior accuracy when 

utilized for training models with a limited number of images. The model features a total of 5 2×2  
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Max pooling layers and concludes with 3 fully connected layers. In the realm of agriculture, VGG's ability to 

systematically learn hierarchical features from images of plant leaves proves invaluable. By comprehensively 

understanding the visual characteristics associated with various diseases, the VGG model contributes 

significantly to the automated identification and classification of plant health issues. Its versatility and 

robustness make it a valuable asset in the pursuit of sustainable and technology-driven agriculture practices. 

VGG model, rooted in the VGG16 architecture, stands as a cornerstone in our comprehensive study of plant 

disease detection. Distinguished by convolutional layers with (3, 3) filters and global average pooling, this 

model excels in capturing intricate patterns within plant leaf images. Dense layers, incorporating 1,024 units 

and ReLU activation, amplify the model's capability for effective feature representation. A dropout rate of 

0.5 is strategically applied for regularization, ensuring generalization. The final dense layer, characterized by 

SoftMax activation, facilitates multi-class classification with precision. Fine-tuning involves all layers of the 

pre-trained VGG16 base, and optimization is achieved through the Adam optimizer with a learning rate of 

0.0001. The VGG model encapsulates a profound understanding of plant diseases, contributing significantly 

to our research in automating plant disease identification.  

 

 

 
 

Figure 4. VGG16 basic architecture 

 

 

Our methodology involves the meticulous design and implementation of three distinct deep learning 

models-CNNs, ResNet, and VGG tailored for the precise task of plant disease detection. The models' 

architectures were carefully configured with consideration given to specific parameters, ensuring optimal 

performance and robustness Table 2. These models, armed with carefully selected parameters, underwent 

systematic training and validation on the PlantVillage dataset, allowing for a comprehensive assessment of 

their efficacy in automating plant disease detection.  

 

 

Table 2. CNN, ResNet, and VGG architectures 
Model CNN ResNet VGG 

Base architecture Sequential ResNet50 base (pre-trained) VGG16 base (pre-trained) 

Conv layers Conv (32, (3, 3), ReLU), BN, MaxPool 

Conv (64, (3, 3), ReLU), BN, MaxPool 
Conv (128, (3, 3), ReLU), BN, MaxPool 

 - 

Pooling MaxPool GlobalAvg GlobalAvg 

Dense layers (1024, ReLU) (1024, ReLU) (1024, ReLU) 
Dropout 0.3 0.5 0.5 

Output activation Dense (65, SoftMax) Dense (65, SoftMax) Dense (65, SoftMax) 

Fine-tuning No Yes (Upper layers) Yes (All layers) 
Optimizer Adam Adam Adam 

Learning rate 0.0001 0.0001 0.0001 

Loss function categorical_crossentropy categorical_crossentropy categorical_crossentropy 

 

 

3. RESULTS AND DISCUSSION 

This section presents the outcomes of training and evaluating three models-CNN, ResNet50, and 

VGG16-on plant disease classification tasks using image sizes of 128×128 and 256×256 pixels. The models 
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were trained over 50 epochs, with performance metrics including training and validation losses, as well as 

accuracies, carefully monitored. Comparative analyses between the models and their ability to handle 

different image resolutions provide insights into their strengths and limitations for precision agriculture 

applications. The following subsections detail the performance trends and key findings for each model. 

The training process for the CNN with an input size of 128×128 demonstrated promising outcomes 

across 50 epochs, as depicted in Figure 5. In the initial epoch, the model registered a loss of 1.8445 and an 

accuracy of 51.01%, gradually improving over subsequent epochs. As training advanced, the loss 

consistently decreased, culminating in 0.1154 by the final epoch, accompanied by a steady rise in accuracy to 

95.45%. The validation set mirrored this pattern, with the loss decreasing from 1.1245 to 0.2897, and the 

accuracy improving from 68.38 to 89.33%. Noteworthy mean values for this training include mean training 

loss ≈ 0.1746 and mean training accuracy ≈ 90.04%, while the validation set exhibited mean validation loss ≈ 

0.2695 and mean validation accuracy ≈ 89.03%. These values underscore the effectiveness of the CNN 

architecture in detecting and classifying plant diseases, showcasing its practical applicability in precision 

agriculture. Likewise, the CNN model with an input size of 256×256 displayed robust performance over  

50 epochs, as illustrated in Figure 6. The initial epoch recorded a loss of 1.8425 and an accuracy of 50.49%, 

steadily improving throughout the training process. By the final epoch, the loss remarkably decreased to 

0.1408, accompanied by an accuracy increase to 94.52%. The validation set exhibited a parallel trend, with 

the loss decreasing from 1.1509 to 0.1433 and the accuracy improving from 67.08 to 94.04%. Notable mean 

values for this configuration include mean training loss ≈ 0.0503 and mean training accuracy ≈ 97.56%, 

while the validation set demonstrated mean validation loss ≈ 0.1227 and mean validation accuracy ≈ 95.31%. 

The validation accuracy reaching 94.04% emphasizes the positive impact of a larger image size on the CNN 

model's performance in plant disease detection and classification.  

 

 

 
 

Figure 5. CNN model loss and accuracy for 128×128 images 

 

 

 
 

Figure 6. CNN model loss and accuracy for 256×256 images 
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The ResNet50 model, configured with an image size of 128×128 pixels, exhibited robust 

performance across multiple training epochs, as illustrated in Figure 7. Commencing with an initial loss of 

0.628 and an accuracy of 82.08%, the validation metrics were recorded at a loss of 0.7212 and an accuracy of 

81.05%. Demonstrating continuous improvement, the model reached a loss of 0.0366 and an accuracy of 

98.38%, with validation metrics showing similar positive trends. Noteworthy mean values for this 

configuration include mean training loss ≈ 0.0654 and mean training accuracy ≈ 97.06%, while the validation 

set displayed mean validation loss ≈ 0.1172 and mean validation accuracy ≈ 95.69%. These results 

underscore the ResNet50 model's efficacy in capturing intricate features for plant disease detection and 

classification, positioning it as a promising tool for precision agriculture. Upon testing the ResNet50 model 

with an increased image size of 256×256 pixels, Figure 8 depicted notable performance improvements. 

Starting with a loss of 0.5537 and an accuracy of 84.09%, the model consistently progressed to achieve an 

accuracy of 98.63%. The validation metrics supported this positive trend, culminating in a final accuracy of 

96.53%. Noteworthy mean values for the larger image size configuration include mean training loss ≈ 0.0482 

and mean training accuracy ≈ 98.28%, while the validation set exhibited mean validation loss ≈ 0.1291 and 

mean validation accuracy ≈ 95.84%. The consistent improvement observed suggests that the ResNet model, 

with its larger image size, enhances its capability to discern complex patterns in plant images, making it a 

potential solution for real-world applications in precision agriculture.  
 

 

 
 

Figure 7. ResNet50 model loss and accuracy for 128×128 images 
 

 

 
 

Figure 8. ResNet50 model loss and accuracy for 256×256 images 
 

 

The VGG16 model, trained on a 128×128 pixels image size, exhibited consistent improvement 

throughout the training epochs, as depicted in Figure 9. Commencing with an initial loss of 1.4928 and an 

accuracy of 57.98%, the model steadily progressed to an accuracy of 97.99%, with the training loss 

decreasing to 0.0492. The validation metrics mirrored this positive trend, concluding with a final accuracy of 

96.53%. Notable mean values for this configuration include mean training loss ≈ 0.0804 and mean training 

accuracy ≈ 97.11%, while the validation set displayed mean validation loss ≈ 0.1507 and mean validation 

accuracy ≈ 94.49%. These results highlight the effectiveness of the deep architecture of the VGG16 model in 
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capturing complex patterns in plant images, making it a valuable asset for plant disease detection and 

classification tasks. Upon testing the VGG16 model with an increased image size of 256×256 pixels, 

consistent improvement was observed, indicating effective learning and convergence, as illustrated in  

Figure 10. The initial loss was 1.5284, with an accuracy of 58.12%, steadily improving to 98.34%. The 

training loss decreased to 0.0403, and the validation metrics followed a similar positive trend, culminating in 

a final accuracy of 95.99%. Noteworthy mean values for the larger image size configuration include mean 

training loss ≈ 0.0788 and mean training accuracy ≈ 95.44%, while the validation set exhibited mean 

validation loss ≈ 0.1292 and mean validation accuracy ≈ 95.55%. These findings reinforce the capability of 

the VGG model, with its deep architecture, to capture intricate features in plant images, positioning it as a 

valuable tool for plant disease detection and classification tasks. The gradual decrease in both training and 

validation losses suggests robust learning and generalization capabilities, indicating good performance on 

both seen and unseen data. 
 

 

 
 

Figure 9. VGG16 model loss and accuracy for 128×128 images 
 

 

 
 

Figure 10. VGG16 model loss and accuracy for 256×256 images 
 
 

In the landscape of plant disease detection and classification, CNN, VGG16, and ResNet50 models 

each bring distinctive strengths to the Table 3. The CNN model demonstrates proficiency, achieving 

commendable accuracies of 95.45 and 94.52% for image sizes of 128×128 and 256×256 pixels, respectively. 

VGG16, known for its deep architecture, consistently delivers high accuracy, reaching 97.99 and 98.34% at 

the same image sizes. However, ResNet50 emerges as a frontrunner, showcasing unparalleled performance 

with accuracy rates of 98.38 and 98.63% for 128×128 and 256×256 image sizes, respectively. Notably, 

ResNet50 achieves the lowest final losses, underscoring its capability to capture intricate features effectively. 

While all three models demonstrate efficacy, ResNet50's exceptional accuracy, low loss, and adaptability to 

varying image sizes make it a compelling choice for plant disease detection and classification tasks, 

positioning it as a potential cornerstone for precision agriculture applications. The choice between these 

models ultimately hinges on specific requirements, computational resources, and the nuanced demands of the 

target application. 
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Table 3. Performance comparison of CNN, ResNet50, and VGG16 models on plant disease detection across 

128×128 and 256×256 image sizes 
Model Image 

size 

Final 

training 
loss 

Final  

training 
accuracy (%) 

Final 

validation 
loss 

Final 

validation 
accuracy (%) 

Mean 

training 
loss 

Mean  

training 
accuracy (%) 

Mean 

validation 
loss 

Mean 

validation 
accuracy (%) 

CNN 128×128 0.1154 95.45 0.2897 89.33 0.1746 90.04 0.2695 89.03 

CNN 256×256 0.1408 94.52 0.1433 94.04 0.0503 97.56 0.1227 95.31 

ResNet50 128×128 0.0366 98.38 0.1172 95.69 0.0654 97.06 0.1172 95.69 
ResNet50 256×256 0.0482 98.63 0.1291 96.53 0.0482 98.28 0.1291 95.84 

VGG16 128×128 0.0492 97.99 0.1507 94.49 0.0804 97.11 0.1507 94.49 

VGG16 256×256 0.0403 98.34 0.1292 95.55 0.0788 95.44 0.1292 95.55 

 

 

In Northern Morocco, Belattar et al. [29] explored models for detecting mint plant diseases and found 

that DenseNet201 was the most effective, achieving 94.12% accuracy. While this performance is slightly 

lower than the hybrid approach, it still highlights DenseNet201’s strength in tackling diseases affecting 

specific plants, such as mint, within a localized agricultural context. In Indonesia, Aufar and Kaloka [30] 

implemented MobileNetV2 for classifying coffee leaf diseases and achieved an accuracy of 99.93%. 

MobileNetV2’s lightweight design is particularly suited for deployment on mobile devices, making it a 

viable option for field applications. The study also reported high accuracy with other architectures such as 

DenseNet169 (99.74%) and ResNet50 (99.41%). The choice of model depends on specific requirements. 

ResNet50 and hybrid models offer top-tier accuracy, making them strong candidates for environments that 

prioritize precision over computational cost. In contrast, EfficientNetB0 and MobileNetV2, while slightly 

less accurate, present advantages in terms of computational efficiency and portability, making them suitable 

for real-world deployment. DenseNet201, while not the highest performer, is a viable option for specialized 

crops such as mint in Northern Morocco, providing an essential solution for local agricultural challenges.  

 

 

4. CONCLUSION 

In conclusion, the comprehensive evaluation of the CNN, ResNet50, and VGG16 models in the 

realm of plant leaf disease detection and classification provides meaningful insights into their respective 

performances. The VGG16 model, particularly when trained on an increased image size of 256×256 pixels, 

not only demonstrated consistent improvement but also achieved an impressive final accuracy of 98.34%. 

This underscores the model's efficacy in capturing intricate features within plant images, positioning it as a 

highly valuable tool for precise plant disease detection. The ResNet50 model exhibited robust performance 

across multiple training epochs, reaching a remarkable accuracy of 98.63% when tested with an image size of 

256×256 pixels. These results underscore the model's ability to discern complex patterns, making it a 

promising solution for real-world applications in precision agriculture. The CNN architecture, especially with 

an input size of 256×256 pixels, showcased notable efficacy, with a final accuracy of 94.52%. This reinforces 

the positive impact of a larger image size on the CNN model's performance in plant disease detection and 

classification. These values, such as the final accuracies of VGG16 98.34%, ResNet50 98.63%, and CNN 

94.52%, provide tangible evidence of the models' capabilities. These findings contribute significantly to 

advancing the field of automated plant disease diagnosis, emphasizing the potential for deploying these 

models in real-world precision agriculture scenarios While the results of this study are promising, it is 

important to consider the potential impact of uncertain conditions that may arise in real-world agricultural 

environments. Factors such as varying weather conditions, soil types, and unexpected pest infestations can 

introduce uncertainties that may affect the performance of the models. Future research could explore the 

robustness of these models under such uncertain conditions, possibly by incorporating data augmentation 

techniques, domain adaptation methods, or ensemble learning approaches. By addressing these challenges, 

future studies can enhance the reliability and applicability of deep learning models in diverse and dynamic 

agricultural settings. 
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