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 Understanding how patient demographics and shared experiences impact 

interactions is essential for strengthening pa/tient support networks and 

optimizing health outcomes as personalized healthcare becomes more and 

more important. To this end, this study explores the patient-patient 

interactions (PPIs) graph as a network and applies selected network analysis 

approaches to examine the PPIs network of accutane drug. Two main 

research questions are addressed by gaining deeper insight at the hidden 

patterns of reactivity and connectivity among interchanging nodes. There 

was a negative response to the first research question, which asked if 

patients react to others that have similar gender and/or age profiles in a 

consistent way. Patients tended to interact with people of different genders 

and ages, indicating a high degree of heterogeneity in the network. Negative 

responses were likewise given to the second research question, which asked 

if communities inside the network could identify patients based on gender or 

age profile. Network analysis approaches for community detection failed to 

distinguish between groups with similar demographic characteristics. Rather, 

groups seemed to emerge based on other factors, like similarity in patient 

opinions. The results imply that gender and age do not have a major 

influence on community membership. Future research will concentrate on 

applying more sophisticated graph mining techniques to expand these 

approaches to cover more and larger PPIs networks. 
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1. INTRODUCTION 

A new heterogeneous network embedding technique called self-data heterogeneous information 

network embedding (SDHINE), which incorporates patient-patient interactions (PPIs) data into drug 

embeddings and is applicable to various kinds of adverse drug reaction (ADR) prediction tasks, was 

described by Baofang et al. [1]. The authors first designed various meta-path-based proximities to calculate 

drug similarities, particularly target propagation meta-path-based proximity based on PPI network, and then 

built a semi-supervised stacking deep neural network model that is jointly improved by the defined meta-path 

proximities in order to integrate mixed drug information and learn drug representations. The efficacy of the 

SDHINE model is proven by comprehensive evaluations on three ADR prediction tasks using three modern 
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network embedding techniques. Additionally, by mapping the drug representations into 2D simpler space, the 

authors compared the drug representations in terms of drug discrimination. The results demonstrated that the 

proposed technique performed better than the comparative methods. Zhao et al. [2] used the network 

embedding technique known as Mashup in their research to extract important and informative drug features 

from a number of drug heterogeneous networks that represented various pharmacological features. In order to 

extract side effect features, a network was also constructed for side effects. These functions are capable of 

gathering crucial data at the network level on drugs and their adverse side effects. Each pair of drug and side 

effect was represented by combining aspects of the drug and the adverse effect. Moreover, they were input 

into the random forest (RF) network model, a prediction model created by the RF algorithm. Following 

several rounds of tests, the average Matthews correlation coefficients for the balanced and unbalanced 

datasets were found to be 0.640 and 0.641, respectively, according to the experimental results evaluating the 

RF network model. Compared to earlier models using other machine learning algorithms, the RF network 

model performed better. 

A new approach to predicting possible drug side effects was established in the research work 

described in [3]. This approach is based on more complete information about drugs that integrates the drug’s 

forms of effect on proteins of interest. A certified heterogeneous information network is used to model 

several sorts of drug information. Using two bias random walk methods to extract drug sequences and train a 

skip-gram model to learn drug embedding, the authors presented a verified heterogeneous information 

network embedding framework for learning drug embedding and predicting drug side effects. By contrasting 

the outcomes of the experiments with the most advanced techniques, the proposed method’s performance 

was proved. Moreover, a case study’s outcomes validate the hypothesis that drugs effects on targeted proteins 

are beneficial for side effect predicting. Yang and Zhao [4] developed a systematic method that uses online 

health communities (MedHelp) and pharmaceutical repositories (PharmGKB and SIDER) to identify 

repositioning drugs through heterogeneous network analysis. The authors created a heterogeneous health 

network comprising drugs, diseases and ADRs by using ADRs as the intermediary. They also created  

path-based heterogeneous network mining techniques for drug repositioning.  

Additionally, they looked into how the effectiveness of drug repositioning is impacted by the 

information sources. The outcomes of the experiment shown that merging PharmKGB and MedHelp offered 

479 repositioning drugs more than the number of repositioning drugs discovered through other approaches. 

Furthermore, PubMed data aided 31% of the 479 repositioning drugs that were discovered. A new 

computational methodology known as graph attention-based convolutional learning for CircRNA-disease 

prediction (GATCL2CD) was presented in [5] in order to predict unidentified circRNA-disease associations 

(CDAs). Gaussian interactive profile kernel (GIP) similarity and semantic similarity for illnesses, circRNA 

sequence similarity and function similarity, and GIPs for circRNAs were first computed by the authors. They 

then joined them together to create a heterogeneous graph. After that, the feature convolution machine 

learning model GATCL2CD was developed. It generated various aggregated representations of features that 

related to the nodes in the heterogeneous graph with the assistance of a multi-head dynamic attention 

approach. A single-layer convolutional neural network employing filter kernels of various sizes was then 

used to extract better higher-order attributes from each node’s stacked attribute representations. In the end, a 

multi-layer perceptron neural network was shown as an effective classifier to predict possible CDAs, and a 

pairwise element-wise product operation was established to identify the interactions of higher-order attribute 

representations. Solid experimental findings on three distinct datasets using 5-fold cross-validation shown 

that GATCL2CD outperformed five new approaches. Additionally, case studies proved that GATCL2CD is a 

good tool for discovering possible circRNAs linked to diseases. PrimeKG, a multimodal knowledge graph for 

precision drug analysis, was proposed by the authors in [6]. PrimeKG significantly expanded previous efforts 

in disease- associated knowledge graphs by integrating 20 outstanding resources that characterize 17,080 

diseases with 4,050,249 relationships representing ten major biological scales: disease-associated protein 

perturbations, biological processes and pathways, anatomical and phenotypic scales, and an extensive list of 

approved drugs with their therapeutic effect. PrimeKG can facilitate AI investigations of how 

pharmaceuticals affect disease-associated networks since it has an extensive number of “indications,” 

“contradictions,” and “off-label use” drug-disease edges that are unavailable in other knowledge graphs. 

 

 

2. METHOD 

2.1.  Patient-patient interactions graph (network) 

In the research conducted for this paper, patients and caregivers submitted textual patient reviews, 

which were published online in HTML format (at www.druglib.com), with a primary focus on the drug side 

effects section. Because it offers comprehensive, organized and up-to-date drug information including side 

effects, effectiveness and individual responses from patients, data from www.druglib.com was utilized. 

Because it frequently originates from clinical investigations and authorized organizations the data is reliable 
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where this is crucial for assuring the accuracy and practicality of analyses in research in medicine. With 

respect to patient’s privacy, approaches like the integrated health profile (IHP) proposed by [7] can be 

adopted. IHP is a decentralized and impermeable platform for safely storing and exchanging medical records 

that makes use of smart contracts and blockchain technologies. Every patient’s IHP card, which contains all 

medical records like reports, prescriptions and bills, is assigned with a unique identifier. Medical practitioner 

can scan the QR code on the IHP card to start a two-phase authentication procedure that asks the patient to 

enter a one-time password (OTP). By limiting access to certain shared records, this authentication protects 

patient privacy and guarantees safe and monitored data access. Salah et al. [8] used their framework to 

extract the necessary data about nodes, links, and required labels in order to create the associated  

PPIs graph. The high-level structure of these dissatisfactions could be graphically visualized by using 

sentiment analysis techniques to extract (PPIs) graphs. This allowed for a more complete comprehension of 

the information hidden in a large quantity of these written representations for the corresponding patients’ 

reviews. The principle behind this approach is to use a graph to visualize the interactions’ structure, with 

patients participating as nodes and interactions as links. Based on the text similarity of nodes, links are 

created. SentiWordNet 3.0 sentiment lexicon is used to classify nodes based on the patient’s attitude toward a 

certain drug, whether it be positive or negative. Next, attitudes are used to classify the graph linkages as 

either in favor of or against drug use. If the two patients have the same attitude that is, a negative attitude 

regarding severe side effects or a positive attitude regarding moderate side effects the relationship is deemed 

supportive; if not, it is deemed opposing. The consequent graphs show drugs as the subject of a disagreement 

between two opposing groups. The PPIs graph extraction methodology is illustrated in Figure 1. 

 
 

 
 

Figure 1. PPIs graph extraction framework 
 

 

Accutane (isotretinoin), one of the drugs from our DrugLib patient reviews dataset, is used to 

generate PPIs graphs. The resulting graph is presented in Figure 2. Figure 2 shows a designated node for each 

patient, labeled with the patient’s age (the number between parentheses) and gender (F: female, M: male). 

From the patient’s perspective on the drug under consideration, a green node indicates a patient with a 

positive attitude (moderate side effect) and a red node indicates a patient with a negative attitude (severe side 

effect). When two linked nodes represent two patients, the thickness of the link between them reflects how 

similar their semantic material is. This is calculated by summing up all the phrases (words) in both reviews 

that have non-zero weights for term frequency-inverse document frequency (TF-IDF) and appear to be about 

the same issue. The links with green colors indicate people who endorse or are in approval, while the links 

with red colors indicate those who are against. 
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Figure 2. PPIs graph for accutane drug (isotretinoin) produced from druglib.com patients reviews 
 

 

The authors will use the information mentioned earlier to demonstrate how PPIs graphs can be used 

to facilitate various levels of analysis. PPIs graphs can be used, in more detail, to examine: i) if patients 

consistently responded to those who did fit the same gender or age profile and ii) if the PPIs graph (network) 

“community” reflect a gender or age profile. The core objective of the research work presented in this paper 

is to identify the structural properties and highlight some of the features of the graphs, such as how patients 

are likely to rank the side effects of drugs, how patients interact in their reviews, and which patients are more 

influential, by applying network analysis techniques to the graphs see the examples on combining sentiment 

analysis and networks analysis presented in studies [9]−[17]. To the best of the author’s knowledge, no 

earlier research has made an attempt to characterize and analyze patient reviews in this way with a 

concentration on side effects in the context of a certain drug. The research described here aims to analyze the 

latent graph structures that are existent in graphs of PPIs in relation to the interactions between the individual 

patients. Is it possible to use applicable techniques from the field of network analysis to represent and analyze 

PPIs as graphs (conceptualized as networks)? More precisely, what network analysis metrics and methods 

should be applied to draw attention to the structural characteristics of these kinds of graphs? 

The authors will explain an approach for analyzing PPIs graphs using network metrics and 

community detection algorithms in the section that follows. This approach is based on a pilot study. The 

importance of this research is based on the fact that by examining existing patterns of connections and 

involvement between the exchanging nodes (patients), network measurements and community detection 

computational methods can be used to anticipate outcomes. 

 

2.2.  PPIs graph analysis 

This section explains how to effectively make use of (PPIs) graphs for supporting different types of 

analysis, as they are constructed using the (PPIs) graph extraction framework. PPIs graphs can be used in 

particular to: i) investigate whether patients consistently responded to other patients who had a similar gender 

or age profile; and ii) investigate whether the gender or age profile of the “community” inside the PPIs graph 

(network) is indicated. The first, it focuses on (PPIs) graphs and discusses the nature of the arguments 

between the two parties about an associated drug. The second deals with recognition of communities within 

(PPIs) graphs and the possible interpretations of these communities’ characteristics. Since the theory of 

network analysis is the foundation of both types of investigations [18], (PPIs) graphs can be interpreted as 

networks. Clustering coefficient concept is recommended for the first type of analysis (assortativity can also 

be used [18]). Different network community detection computational methods can be successfully applied for 

the second type of analysis, as will be covered in more detail later in this section. With respect to the intended 

(PPIs) graph, the following exemplar questions were taken into consideration in order to demonstrate the 

usefulness of the graph in the context of the two types of analysis mentioned in section 2.3: 

Q1: Are patients consistently responding to patients belonging to a similar gender and/or age profile? 

Q2: Are communities found in the (PPIs) network able to identify, at least roughly, a patient’s age or gender? 

 

The visualization was produced using Gephi at https://gephi.org/ 
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2.3.  The accutane (isotretinoin) network 

With 35 nodes representing each patient who participated in the drug reviewing and 86 edges 

representing patient interactions, the accutane drug’s (PPIs) network (undirected graph) was constructed. 

Figure 3 shows the network’s degree distribution, while Table 1 provides information on the accutane 

(isotretinoin) nodes. Highly connected nodes are fewer in number than poorly connected nodes, as is to be 

expected. From a network analysis perspective, it makes sense to investigate if a network’s degree 

distribution fits a power-law distribution. The accutane network’s degree distribution is right-skewed and 

roughly follows a power-law distribution, as shown by the histogram of degree distributions in Figure 3. 

Scale-free networks are defined as networks having degree distributions that follow a power law [18]. 

A subset of nodes from a graph connected by a path is referred to as a weakly connected component 

in graph theory terminology. Therefore, the process must locate every weekly connected component of the 

network in order to obtain the list of nodes that are part of the same cluster or group of overlapping clusters. 

This process is carried out as a depth-first search, which investigates a graph in its entire form, digging as far 

as possible into each of its branches before backtracking. With V representing the number of vertices or 

nodes and E representing the number of edges in the graph, its time complexity is O (∣V∣+∣E∣). The nodes and 

edges for each weakly connected component are acquired by visiting every vertex in the graph [19]. 

Reconstructed clusters consist only of connected components that have more than one node. A connected 

component in static graphs is the largest possible set of vertices connected by graph edges. In simpler terms, 

if there is a path in the graph connecting two vertices, u and v, in the component, then it exists. Strongly and 

weakly linked components can be used to expand the concept of directed graphs in two different ways: either 

there is a directed path from u to v and one from v to u, or only one of those paths exists [20]. 

 

 

 
 

Figure 3. The accutane (isotretinoin) graph average weighted degree: 1.691 

 

 

Table 1. The accutane (isotretinoin) nodes information 
Graph elements Statistical summary 

Nodes 35 

Edges 86 

Average degree 4.914 

Average weighted degree 1.691 
Network diameter 4 

Graph density 0.145 

modularity 0.638 

Average clustering coefficient 0.867 

Average path length 1.398 
◼ Moderate side-effects 84.88% 

◼ Severe side-effects 15.12% 

Connected components 6 

Compnent-1 34.29% 

Compnent-2 25.71% 
Compnent-3 20% 

Compnent-4 8.57% 

Compnent-5 5.71% 

Compnent-6 5.71% 
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2.4.  Analysis of accutane network 

In this research, PPIs graphs are examined using two forms of network analysis. To answer research 

question Q1, the clustering coefficient is first used. Second, betweenness centrality is used for community 

structures detection for answering research question Q2. 

 

2.4.1. Clustering coefficient 

A measure of how much nodes in a graph tend to cluster together is called a clustering coefficient in 

the context of graph theory. It measures the degree of cohesion in a node’s neighborhood within a network. It 

is classified into two categories: local values, which quantify the cohesion surrounding a particular node, and 

global values, which quantify the clusters within the network as a whole. It should be underlined that only 

single-edge graphs can use both of the clustering coefficient’s formulations. Additionally, many edges are not 

taken into consideration in the majority of measurements in real-world networks. They only take into account 

basic graphs free of loops and multiple edges as a result. For weighted graphs, the clustering coefficient can 

also be derived [21]−[23]. The ratio of edges neighboring nodes to all potential edges between them is known 

as the clustering coefficient. An average measurement of node clustering in a network is given by the global 

clustering coefficient. Stronger node tendency to form densely connected clusters is indicated by higher 

clustering coefficients. Prior studies have demonstrated that networks with random and scale-free 

characteristics typically have poor clustering coefficients. On the other hand, networks with larger clustering 

coefficients have proven to exhibit a higher level of correlation [24]. 

The probability that any two randomly selected neighbors of a vertex v, of degree at least 2, are 

linked together is known as the clustering coefficient of v. If d(v) represents the number of neighbors of v, 

then the calculation is (
𝑑(𝑣)

2
)=number of triangles containing v divided by number of potential edges 

between its neighbors. The average of this value for all vertices of degree at least 2 in the graph may then be 

used to define the clustering coefficient of the entire graph [25]. Figure 4 shows the accutane (isotretinoin) 

graph clustering coefficient metric report (clustering coefficient distribution): parameters: network 

interpretation: undirected, results:average clustering coefficient: 0.867, total triangles: 130, the average 

clustering coefficient is the mean value of individual coefficients. 

 

 

 
 

Figure 4. The accutane (isotretinoin) graph clustering coefficient metric report 

 

 

2.4.2. Community structures detection 

In social network analysis, the betweenness centrality index is crucial, although it is expensive to 

calculate. The least time-consuming methods available now take O(n2) space and O(n3) time, where n is the 

number of nodes in the network. The increasing demand for centrality measures on sparse, large-scale 

networks has led to the introduction of new betweenness algorithms in [26]. For unweighted and weighted 

networks, respectively, they take up O(n+m) space and execute in O(nm) and O(nm+n2 log n) time 

complexity, where m is the number of links. This significantly broadens the variety of networks for which 

centrality analysis is practical, as demonstrated by experimental data. Centrality indices formed on graph 

vertices are a crucial tool for social network analysis. They are intended to represent the importance of nodes 

tangled in a social structure and are used to rank the nodes based on where they are in the network. Various 



                ISSN: 2252-8938 

Int J Artif Intell, Vol. 14, No. 3, June 2025: 1752-1762 

1758 

centrality indices, such as those that measure a node’s average distance from other nodes or the ratio of 

shortest paths that a node lies on, are based on the shortest paths that link pairs of nodes.  

An assessment of these indices is a fundamental component of many network-analytic research [26]. 

A network node’s importance is measured by betweenness centrality [24], [27], which is based on shortest 

paths and reflects nodes’ contributions to structural stability, social influence, and information diffusion. 

betweenness centrality is frequently used across various domains, including influence evaluation, community 

discovery, and social network analysis. The Brande’s algorithm [26] is the most effective algorithm for 

calculating betweenness centrality quickly. It is based on the observation that the betweenness centrality 

value of a node v is equal to the total of all the fractions of shortest paths from other node pairs (st) that pass 

through node v. Using this formula as a starting point, the Brande’s algorithm discovers the shortest paths 

between each node v and every other node, documenting the frequency and number of each node along the 

shortest paths. The betweenness centrality values of each node, starting with the leaf nodes and ending at the 

root node, are then summed up based on the information gathered. When calculating the betweenness 

centrality of every node in an unweighted graph, the Brande’s algorithm needs O(nm) time complexity, 

where n is the number of nodes in the network and m is the number of edges. The Brande’s algorithm 

operates with an O(nm+n2logn) time complexity for weighted graphs. Large-scale networks still find these 

time complexity to be prohibitive, consequently a reliable and effective betweenness centrality 

approximation algorithm is necessary. LetG=(V,E) be a graph. G can be either directed or undirected, and the 

edge weights must be non-negative. n=|V|, m=|E| and the number of shortest paths from node s to node t is 

represented by σst, while the number of shortest paths that pass via node v is represented by σst(v). The 

betweenness centrality or BC value of a node v∈V in a graph G=(V,E) as shown in (1): 

 

𝐵𝐶(𝑣) = ∑
𝜎𝑠𝑡(𝑣)

𝜎𝑠𝑡
𝑠≠𝑡≠𝑣
𝑠,𝑡∈𝑉

 (1) 

 

Based on the Brande’s algorithm’s pair dependency, we can derive as shown in (2): 

 

𝛿𝑠𝑡(𝑣) =
𝜎𝑠𝑡(𝑣)

𝜎𝑠𝑡
 𝑎𝑛𝑑 𝛿𝑠∗(𝑣) =  ∑ 𝛿𝑠𝑡(𝑣)𝑡≠𝑣

𝑡∈𝑉
= ∑

𝜎𝑠𝑣

𝜎𝑠𝑤
𝑣∈𝑟𝑠(𝑤) ∙ (1 + 𝛿𝑠∗(𝑤)) (2) 

 

Where the set of all antecedents of node w is denoted by rs(w), we may recalculate the new betweenness 

centrality formula using (1) and (2) as shown in (3): 

 

𝐵𝐶(𝑣) = ∑ 𝛿𝑠∗(𝑣)𝑠≠𝑣
𝑠∈𝑉

 (3) 

 

 

3. RESULTS AND DISCUSSION 

The detailed summary of the numerical results of network analysis processes conducted on the 

accutane drug’s PPIs network are presented in Table 2. This PPIs network contained 35 nodes representing the 

patients who participated in the drug reviewing and 86 edges representing patient interactions or semantic 

relationships between reviews made by those patients. Node attributes include node-ID, gender and age. We 

may gain deeper insight about the network’s behavior and structure by examining the recorded findings of 

several important metrics that were provided. Each node (patient) in the PPIs network was represented by a row 

in the table. Label provided additional information about each node, including its unique identifier (node-ID), 

age and gender (for example, F(23) indicates a female node aged 23, and M(21) indicates a male node aged 21), 

degree (number of connections), weighted degree (strength of connections), betweenness centrality (a measure 

of node influence over information flow), and clustering coefficient (a measure of neighborhood network 

density). In addition, the component number (identifying the connected subnetwork to which the node belongs) 

and the number of triangles (groups of three connected nodes) were provided by the table.  

The number of direct connections, or edges, that a node has with other nodes is counted by the 

degree metric. Higher degree nodes interact with other nodes in the network more frequently. Figure 5 shows 

the accutane (isotretinoin) graph distance report (betweenness centrality distribution). With a total degree of 

172 and an average degree of 4.914 for all nodes, each node has roughly 5 connections on average. With an 

average of 1.691 and a total weighted degree of 59.192, it appears that the strength of the links varies. The 

two nodes with the highest degree in the table, nodes 1 and 3 F(23) and F(28), have 10 direct connections in 

the network, indicating that they are at the center of the network and interact with 10 other nodes. In contrast, 

Nodes 17 (F(24)) and a few others have only 1 degree, indicating minimal interaction. Weighted degree 
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enhances the degree measure by incorporating each connection’s weight or strength instead of basically its 

count. Weights can be used to reflect a connection’s importance, frequency, or intensity. For instance,  

node 10 (F(34)) has the largest weighted degree of 3.65 indicating that there are a lot of connections, but they 

are also stronger than those of other nodes. Although having a raw degree of 10, node 1 (F(23)) has a 

weighted degree of 3.49, indicating that its connections are not all that strong.  
 

 

Table 2. The accutane (isotretinoin) summary of the numerical results 

Node-ID Label Degree 
Weighted 

degree 

Betweeness 

centrality 

Component 

number 

Clustering 

coefficient 
Triangles 

1 F(23) 10 3.49 3.61 1 0.76 34 

2 F(30) 6 1.51 0.00 1 1.00 15 

3 F(28) 10 3.12 6.46 1 0.69 31 
4 F(53) 3 1.13 0.00 2 1.00 3 

5 M(21) 8 2.69 0.42 1 0.93 26 

6 M(36) 5 2.08 0.00 3 1.00 10 

7 F(43) 3 1.13 0.00 2 1.00 3 
8 F(38) 6 1.56 1.00 3 0.80 12 

9 F(38) 3 1.45 0.00 2 1.00 3 

10 F(34) 9 3.65 1.10 1 0.86 31 

11 F(29) 5 1.31 0.76 1 0.80 8 

12 M(30) 2 0.83 0.00 4 1.00 1 
13 F(36) 5 2.03 0.00 3 1.00 10 

14 F(37) 9 3.25 1.10 1 0.86 31 

15 M(18) 4 1.63 1.67 2 0.83 5 

16 F(15) 8 1.91 3.28 1 0.71 20 

17 F(24) 1 0.15 0.00 2 0.00 0 
18 F(37) 1 0.16 0.00 5 0.00 0 

19 M(21) 4 1.54 7.00 2 0.50 3 

20 M(15) 6 1.23 16.00 2 0.40 6 

21 F(32) 9 3.24 1.75 1 0.81 29 
22 F(37) 1 0.16 0.00 5 0.00 0 

23 F(21) 6 2.05 1.00 3 0.80 12 

24 F(25) 3 0.91 0.00 3 1.00 3 

26 F(37) 2 0.90 0.00 4 1.00 1 

27 F(29) 5 1.84 0.00 3 1.00 10 
28 M(30) 2 0.61 0.00 4 1.00 1 

29 M(22) 4 1.47 1.67 2 0.83 5 

30 M(31) 8 2.62 0.42 1 0.93 26 

31 F(15) 4 1.56 1.67 2 0.83 5 

33 F(19) 3 0.82 0.00 1 1.00 3 
34 F(23) 1 0.71 0.00 6 0.00 0 

35 F(24) 1 0.71 0.00 6 0.00 0 

36 F(25) 9 3.65 1.10 1 0.86 31 

37 F(30) 6 2.06 1.00 3 0.80 12 
 Total 172 59.192 51.000   26.005 390 
 Average 4.914 1.691 1.457   0.743 11.143 

 

 

 
 

Figure 5. The accutane graph distance report (betweenness centrality distribution): parameters: network 

interpretation: undirected, results: diameter: 4, radius: 1, average path length: 1.3984375 
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The network has a total degree of 172 and a total weighted degree of 59.192. This implies the total 

connection strength for all of the nodes. With an average degree of 4.914, every node in the network interacts 

with roughly five other nodes on average. The clusters or sub-networks to which the nodes belong, or parts of 

the larger network, are referred to by their component numbers. Connectivity exists between nodes within the 

same component, but disconnectivity occurs between nodes located in separate components. It is evident that 

the network is not entirely connected because it consists of multiple disconnected components (numbered 

from 1 through 6). Although there are isolated nodes (like node 17 with component number 2), there are also 

large components like 2 and 3. For instance, node 1 and additional nodes like node 2 are part of component 1, 

indicating that together they constitute a coherent subnetwork. Node 12 is a member of component 4, which 

means it is a separate isolated cluster. Triangles, which are composed of three connected nodes, represent the 

number of triangle relationships that a node is a member of. Strong community structure is indicated by high 

triangle numbers. Node 1 is involved in 34 triangles, indicating a high number of three-way interactions. 

Nodes 17 and a few other nodes, on the other hand, do not form any triangles, highlighting their isolation or 

lack of community interaction. There are 390 triangles in total, and each node has an average of  

11.143 triangles, indicating that nodes typically belong to small connected groupings that represent 

community-like interaction. 

Betweenness centrality quantifies a node’s importance for establishing interactions by calculating 

how far it is along the shortest paths connecting other nodes. A high betweenness centrality value indicates 

that the node serves as a network bridge within the network. The average betweenness centrality is 1.457, 

meaning that nodes have a moderate impact on establishing connections between other nodes. The total 

betweenness centrality is 51. As an illustration, node 3 (F(28)) has a considerable betweenness centrality of 

6.46, reflecting its significance in connecting together the network’s elsewhere separated sections. With a 

betweenness centrality of 16.00, node 20 (M(15)) has the highest betweenness and is therefore very 

important to the information flow across the network’s communication structure. On the other hand, a large 

number of nodes have a betweenness centrality of 0, indicating that they are not central or act as outsiders. 

The clustering coefficient indicates the degree of local cohesiveness or cliquishness (producing a complete 

clique) by calculating the degree to which a node’s neighbors are connected to one another. A cohesive 

community is indicated by a high clustering coefficient value. A clustering coefficient of 0.00 (as seen in 

node 17) indicates that the node’s neighbors do not form any triangles, while a clustering coefficient of 1.00 

(as in node 2) implies that all local neighbors are fully connected and contributing to a tightly bound (highly 

connected) cluster. The network’s average clustering coefficient of 0.743 indicates that nodes are fairly 

clustered with many tightly connected groups and a high tendency for local clustering. 
 

 

4. CONCLUSION 

This paper presents a study on the conceptualization of PPIs graph as a network and analyzing this 

network by means of selected network analysis approaches through the exploration of the hidden patterns of 

reactivity and connectivity among interchanging nodes. The PPIs network of Accutane drug was selected. 

The process of the analysis of this PPIs network was explained in detail and thus the objective for this study 

was addressed. It can be observed from the foregoing that: i) research question (Q1: Are patients consistently 

responding to patients belonging to a similar gender and/or age profile?) was answered negatively because 

the network exhibited high degrees of heterogeneity with respect to gender and/or age profile with different 

values. This emphasized a disagreement between gender and age profile. Patients tend therefore to interact 

with patients with different gender and/or age profile. ii) research question (Q2: Are communities found in 

the (PPIs) network able to identify, at least roughly, a patient’s age or gender?) was answered negatively 

because none of the considered community detection approaches was able to detect communities, within the 

network, of members having the same gender or the same age profile. Some communities (e.g., component 1) 

contained nodes (patients) from different age and gender profiles. Other components (like 4 and 5) are much 

smaller and could represent more homogenous groups considering age or gender. Thus it was concluded that, 

the community structure (identified by component numbers) contain nodes with high clustering coefficients 

seemed not to be highly correlated with age or gender. These communities may be formed based on other 

factors like similarity between patients’ reviews lexical contents or sentiments, rather than gender or 

demographic characteristics, i.e., age or gender was not a dominant factor in determining membership in 

these communities. Many promising future research directions present themselves, so as to extend the 

functionality and enhance the operation of analyzing large collections of PPIs networks directly using graph 

mining approaches rather than using basic tabular data analysis techniques. 
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