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 Chronic kidney disease (CKD) poses a significant health risk globally, 

necessitating early and accurate detection to ensure timely intervention and 

effective treatment. This study presents an advanced ensemble machine 

learning (ML) approach combined with optimal feature selection to enhance 

the detection of CKD. Using five baseline ML classifiers like gradient 

boosting (GB), random forest (RF), K-nearest neighbors (KNN), support 

vector machine (SVM), and decision tree (DT), and utilizing grid search for 

hyperparameter tuning, the proposed ensemble model capitalizes on the 

strengths of each algorithm. Our approach was tested on a public benchmark 

CKD dataset from Kaggle. The experimental results demonstrate that the 

ensemble model consistently outperforms individual classifiers and existing 

methods, achieving 97.5% accuracy, precision, recall, and an F1-score of 

97.4%. This superior performance underscores the ensemble model's 

potential as a reliable early CKD detection tool. Integrating ML into CKD 

diagnostics enhances accuracy. It facilitates the development of automated, 

scalable diagnostic tools, aiding healthcare professionals in making informed 

decisions and ultimately improving patient outcomes. 
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1. INTRODUCTION 

In today's world, chronic kidney disease (CKD) is a rapidly expanding illness that affects thousands 

of people due to the lack of early indicators and accessible medical treatment. Most people with CKD are 

from middle-class and lower-class nations [1], [2]. Approximately 1 billion people died from CKD in 2017 [3]. 

CKD is more common in developed countries. In lower- to middle-income nations, there are 390.6 billion 

people with CKD overall, with 178 billion men and 211 billion women [4]. These data show that a significant 

proportion of the population in emerging nations has CKD, and this proportion seems to grow daily. Much 

research has been conducted on early screening to address CKD at its earliest stages. This paper emphasizes 

the potential of precision in machine learning (ML) predictive algorithms for CKD. ML, with its ability to 

enable complex analysis, reduce human error, and improve prediction accuracy, offers hope in the fight 

https://creativecommons.org/licenses/by-sa/4.0/
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against CKD. When the two kidneys become damaged, a common type of kidney illness known as CKD 

develops, causing long-term symptoms. This kidney disorder, which may lead to poor kidney functionality, is 

referred to as kidney failure. A medical condition or a deficiency in necessary nutrients, such as a decrease in 

the glomerular filtration rate (GFR) [5], might be the result. The proposed forecasting approach uses an 

ensemble technique with five ML classifiers: gradient boosting (GB), support vector machine (SVM), random 

forest (RF), decision tree (DT), and K-nearest neighbors (KNN) as baseline learners to forecast outcomes based 

on medical data input. ML is becoming more critical in identifying medical conditions because it enables 

complex analysis, reduces human error, and improves prediction accuracy. ML algorithms are considered 

trustworthy for predicting gastrointestinal disease, cardiovascular disease, type 2 diabetes, and cancers [6]. 

Various healthcare data affect the produced model's stability and adaptability and lead to deceptive 

guidelines and repeatable clinical models; it comes with several disadvantages. As a result, the learning 

procedure in deep learning (DL) may result in a high-variance network and fail to accomplish optimal 

parameters automatically. A variety of DL frameworks could be used to address this difficulty. We refer to 

this procedure as ensemble learning, a powerful approach that combines the benefits from conventional and 

ensemble learning to overcome the limitations of individual models and provide an increased adaptability and 

broadly applicable approach [7]. Essential learners and variation are the two primary types of ensemble learning 

[8]. Initially, combining various data sets leads to homogeneous learning. Secondly, using multiple 

frameworks, diverse development can be accomplished. Among the several configurations used to build 

ensemble models are stacking [9], boosting [10], and bagging [11]. The stacked ensemble model offers a 

versatile, resilient, and flexible approach to the investigation. Numerous research has shown that ensemble 

modeling produces a reliable and efficient framework, reassuring us about the robustness of the approach. 

They selected the best feature selection, usually the first step towards creating an effective model. In 

the field of ML, selecting features was thoroughly studied, showing promise for use in medical fields. Three 

primary categories of feature selections exist: wrapping, filtering, and embedding [12]. The research team 

used four feature evaluation techniques to pick the best feature selection. The primary goal was to create an 

ensemble model to enhance predictive effectiveness while utilizing the best feature subset. Compared with 

the present methods, the suggested feature shows great promise in the earlier diagnosis of CKD from a 

medical approach, encouraging us about the potential impact of the research. 

Therefore, to address a gap in this area, we will explore multiple ML techniques in this study along with 

an ensemble strategy to combine these algorithms. Consequently, this paper's primary contributions are as follows: 

‒ To propose an ML-based ensemble model based on a majority voting approach to combine five ML 

models as a baseline classifier (GB, SVM, KNN, RF, and DT) with fine tuning using grid search to 

enhance detection and classification performance. 

‒ To examine the benefits and drawbacks of each prediction approach, evaluate its effectiveness through a 

range of measures. The outcomes are contrasted with those of the current techniques to illustrate the 

power of the suggested models on the datasets. 

The paper's organization is as follows: section 1 presents an overview of CKD. Section 2 discussed 

the previous CKD prediction and classification literature. The step-by-step methodology is explained in the 

section 3 in detail. Section 4 measures the performance of the suggested models and compares the final 

results. Section 5 discusses this study's conclusion and future direction. 
 

 

2. RELATED WORK 

This section discusses algorithm-related investigations and evaluates specific strategies based on 

their performance. Applying the data mining approach to the specialized examination of healthcare records 

provides a valuable approach to investigation [13]. Compared with the naïve Bayes (NB) technique, the DT 

approach achieved a 92% accuracy score, 93% specificity, and 94% sensitivity for classifying diabetic 

datasets. Additionally, researchers discovered that mining helps recover correlations between traits that are 

no longer predictive of the outcomes they attempt to forecast. Predictive algorithms using ML approaches, 

such as logistic regression (LR), SVM, KNN, and DT classification algorithms for CKD forecasting, were 

discussed by investigators [14]. The study demonstrated that the SVM algorithm had the highest accuracy 

score, reaching 97%. The proposed technique's learning and testing yielded the highest sensitivity results for 

SVM. Based on this analysis, it is possible to conclude that chronic kidney failure can be predicted using the 

SVM algorithm. The research selected and analyzed three distinct techniques [15] to obtain an appropriate 

prediction rate across the dataset. The study used the GB classifier, which produced the most effective 

results. While AdaBoost and linear discriminant analysis (LDA) achieved a 96% performance score, the GB 

classifier achieved a 98% performance score. Additionally, compared to other ML classifiers, the GB 

classifier requires more time to produce a forecast but provides better-predicted results on both the receiver 

operating characteristic (ROC) and area under the curve (AUC) scores. Therefore, accurate prediction 
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depends heavily on the initial processing plan, and preprocessing techniques were used cautiously to achieve 

the expected outcomes properly. Investigators predicted CKD using a novel selection method [16]. By 

applying certain classifications and appropriately assessing the overall outcome, CKD is projected to be used 

in this work. The NB, RF, and artificial neural network (ANN) [17] classifiers were evaluated, and it was 

found that the RF outperforms the other models. The value of CKD prediction has increased over time. 

Implementing several feasible adaptive strategies can enhance the recommended classifiers' performance. 

NB, RF, and KNN were used to forecast CKD. The early identification of CKD aids in promptly treating 

people afflicted and stops the illness from worsening. 

An ML predictive technique for early identification of CKD was created in [18]. The predictive 

models have been assessed and verified for the initial features provided by the dataset, which contains input 

features collected through the CKD dataset. DT, RF, and SVM classifiers were built to diagnose CKD. The 

predictive model's performance score served as the basis for evaluating the models' performance analysis. In 

contrast, the study's findings demonstrated that the RF model outperforms DT and SVM models regarding 

CKD prediction. In addition to being necessary for eliminating impurities from the human body, the kidneys 

also regulate BP, the body's perception of the pH level, and its level of electrolyte. In between 

malfunctioning in each body organ, dysfunction contributes to minor to fatal disorders. Consequently, 

scientists from all around humanity have devoted their efforts to developing methods for precisely diagnosing 

and treating CKD. The number of health conditions that ML classifiers can identify includes CKD, as these 

algorithms are being utilized more and more in medical research for identification. The process and outcome 

accuracy have gradually improved due to research into using ML techniques to identify CKD. Out of all the 

classification methods, investigators suggested that the RF model achieves a 99% accuracy score, which was 

the most efficient. The research shows how to effectively handle the absence of values in data using four 

different approaches: statistical procedures. Additionally, it assesses how well ML models work in two 

scenarios, one in which the hyperparameters are tuned and the other in which they are not, and finds that the 

algorithms' effectiveness has significantly improved, as shown in [19]. The work aims to investigate the 

suitability of particular supervised ML models in the biomedical domain and assess their capacity to identify 

various severe illnesses, including the earlier detection of CKD [20]. 

Researchers have tried to identify kidney disease earlier on or forecast its emergence. While disease 

forecasting suggests the underlying disease can occur throughout the future, disease identification suggests 

the individual now has the illness. Consequently, two lines of research have been established in this field: 

identification and forecasting. With the first category, there have been a lot of investigations in this area [21]. 

After examining the previous study, we encountered several research gaps: 

− The data on CKD remains insufficient. Medical testing records became the basis for earlier research, but 

they cover a limited number of instances. 

− The earlier studies focused on identifying the disease after it had already manifested. 

− The research in this area has never been thoroughly investigated because there is no information. 

− A single prior study attempted to forecast illness beforehand. Nonetheless, this study's accuracy was lacking. 

− The CDK disease death rate proliferates based on the preceding issues. 
 
 

3. MATERIAL AND METHODS 

This research presents an innovative ensemble ML strategy to identify CKD, employing advanced 

techniques for optimal feature selection. The selected features significantly impact CKD from a medical 

perspective. The proposed framework consists of several phases: dataset collection, preprocessing, feature 

selection, model development, and optimization, as depicted in Figure 1. Each step is described in detail as follows. 
 

3.1.  Dataset description 

The UC Irvine Machine Learning Library provided the standard CKD dataset used in this 

investigation [22]. Many researchers utilized this dataset to conduct experiments. The dataset consists of  

400 cases, 250 with no CKD and 150 with CKD. Figure 1 shows that each class label contains two values:  

1 and 0 for CKD and no CKD, respectively. Figure 2 shows the number of observations in the dataset. 
 

3.2.  Data preprocessing 

Healthcare information contains normal, abnormal, or null values due to the instrument, network, or 

record entry operator. Challenges with datasets have a detrimental impact on the development of an ML model. 

This stage's primary goal is to handle outliers and missing numbers to improve the quality of the healthcare dataset. 
 

3.2.1. Data encoding 

The dataset we work with contains both categorical and numeric variables. It's crucial to understand 

that two feature-selection methods work better with numerical characteristics than categorical ones: ML. 
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Therefore, all categorical characteristics were encoded using the scikit learning library's labeling encoder 

package, a key technical step in our process. 
 

3.2.2. Filling missing values 

We follow a meticulous process when filling in missing data. Several techniques were proposed, and 

the choice depends on how much data and features are absent. When the amount of missing data is modest 

(5% to 10%), traditional statistical approaches like mean, maximum, and mode function well. However, 

when the percentage of missing values rises (20% to 50%), advanced methods like expectation maximization 

are needed [23]. In our case, we use the feature averages to impute the missing values, ensuring the quality 

and integrity of our dataset. 
 

3.2.3. Removing outliers 

We take a thorough approach to identify and remove outliers, which are parameters that 

significantly deviate from the typical range of every feature value. This is a crucial step in the creation of a 

robust and comprehensive model [24]. In the present investigation, we first examined all data statistically and 

then verified the findings from a healthcare perspective. Any outliers identified in the data were substituted 

with the feature average, ensuring the robustness of our model. 

 

3.2.4. Data standardization and normalization 

The standard MinMaxScaler() function was employed for scaling feature values. In (1) was used for 

scaling the numerical values for batch normalization and standardization. In this case, the standard deviation 

has been configured to six, and the data is assumed to be zero. 
 

𝑆(𝐷) =  
∑ 𝑑𝑖−𝑑𝑚𝑖𝑛

𝑆
𝑖=1

𝑑𝑚𝑎𝑥−𝑑𝑚𝑖𝑛
 (1) 

 

where, S, D, 𝑑𝑖, 𝑑𝑚𝑎𝑥 , 𝑑𝑚𝑖𝑛 represents the number of data instances in dataset, is the average of the 

characteristics, the lowest and maximal instances values, respectively. 
 

 

 
 

Figure 1. Proposed framework to predict CKD 
 

 

 
 

Figure 2. Distribution of dataset 
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3.3.  Feature optimization 

Figure 3 demonstrates positive relationships between each feature. Conversely, there are some 

negative correlations with hemoglobin, potassium, red blood cell count, and white blood cell count. The 

associations between each feature can be seen by examining the heatmap of the patient information displayed 

in Figure 3. Figure 4 analysis of the histograms is essential for feature selection, as it helps identify outliers, 

the need for normalization and also helps to shows the overall importance of each feature in detecting CKD. 
 
 

 
 

Figure 3. Heatmap of the patient information 
 

 

 
 

Figure 4. Heatmap of each feature 
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3.4.  Build machine learning models 

Classification techniques are crucial for training and testing supervised learning systems. Baseline 

ML classifiers utilize data from the training and testing sets to achieve the desired results. The selection of an 

appropriate classification method is crucial, as it significantly impacts the accuracy, generalization, and 

overall performance of the ML system. 

 

3.4.1. Decision tree 

The DT algorithm operates like a graph or tree-like structure containing the root nodes and  

sub-nodes, like leaves. The characteristics in this case are the sub-nodes, while the subdivisions represent the 

results of each examination on each node. It is among the most widely used algorithms for categorization 

since it may function without requiring location barriers or a wealth of field data [25]. 

 

3.4.2. Random forest 

The RF technique has become the most efficient among the several ML techniques. It has been 

applied to forecast and probabilistic calculations. Numerous DTs make up the RF classifier. 

 

3.4.3. K-nearest neighbor 

A popular supervised learning technique for handling regression and categorization problems 

includes the kNN. Selecting the numerical value of the instance (k), which is nearest to the query, and 

determining the Euclidian distances among every example with the data are the steps involved in kNN 

decision-making. From there, the more frequent label with categorization for regression is selected. The kNN 

approach's performance is increased by randomly selecting the value of k. 

 

3.4.4. Gradient boosting 

GB uses DT all the time. It is based on the idea that the optimal future model can decrease the total 

error in forecasting when combined with previous models. The critical notion becomes to reduce errors by 

specifying the expected outcomes for this next model. The desired results for every instance are ascertained 

using the gradient of the error rate with respect to the forecast. 

 

3.4.5. Support vector machine 

A hyperplane has been employed by the SVM to divide the data set into two groups. The 

technique looks for a decision threshold to optimize the margin and reduce categorization errors among the 

two groups. The process of finding SVM accomplishes this. The data elements nearest to the decision 

border are these. Additional data elements can be categorized by identifying which part of the hyperplane 

it corresponds to after the hyperplane has been discovered. When projecting the input within a high-

dimensional plan, the kernel within support vector classification (SVC) is utilized for handling non-

linearly separated data [26], [27]. 

 

3.4.6. Ensemble model 

To build the ensemble model used, five baseline ML classifiers, GB, RF, KNN, SVM, and DT, were 

trained using grid search to optimize hyperparameters CKD prediction models and achieved the best 

performance. Each classifier was trained on the CKD dataset, and their predictions were used to create a new 

dataset that contained these predictions as features. This new dataset was then used to train a meta-learner, 

specifically an RF model optimized by grid search. Meta learner combined the predictions of the baseline 

classifiers to produce a final, more accurate prediction. This ensemble approach leverages the strengths of 

multiple models to improve prediction accuracy for CKD detection. 

The proposed Pseudocode 1 outlines the construction of an ensemble learning model using CKD 

dataset 𝐷. Initially, multiple baseline models (GB, RF, KNN, SVM, DT) are optimized using grid search and 

trained on D. Their predictions are then stacked to form a meta-dataset 𝐷′, on which a meta-learner (RF) is 

trained to generate the final ensemble model, improving classification performance. 
 

Pseudocode 1: Ensemble model 
Input: 𝐶𝐾𝐷 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 𝐷 =  {(𝑥1, 𝑦1), (𝑥2, 𝑦2). . . . . (𝑥𝑛 , 𝑦𝑛)} 
 ML Models 𝐺𝐵, 𝑅𝐹, 𝐾𝑁𝑁, 𝑆𝑉𝑀, 𝐷𝑇  

Output: Ensemble 𝐸 
Begin 

Step-1: Grid Search and Train Baseline ML Models 

    Initialize hyperparameter grids for 𝐺𝐵, 𝑅𝐹, 𝐾𝑁𝑁, 𝑆𝑉𝑀, 𝐷𝑇 
     

    Perform grid search and cross-validation for each model: 
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    For model in [𝐺𝐵, 𝑅𝐹, 𝐾𝑁𝑁, 𝑆𝑉𝑀, 𝐷𝑇]: 

        Perform Grid Search on model with dataset 𝐷 
        Select best model 𝑀𝑎  based-on grid search results 

        Train best model 𝑀𝑎 on dataset 𝐷 

        Save trained model 𝑀𝑎 

𝐸 =  [𝑀𝐺𝐵, 𝑀𝑅𝐹 , 𝑀𝐾𝑁𝑁 , 𝑀𝑆𝑉𝑀, 𝑀𝐷𝑇] 
end for 

Step-2: Create New Dataset 𝐷′ for Meta Learner 
    Initialize 𝐷′ =  [] 
    For each sample (𝑥𝑖 , 𝑦𝑖) in dataset 𝐷: 

        Initialize feature vector 𝑠𝑖  =  [] 
        For each model 𝑀𝑎 in 𝐸: 

            𝑟𝑎𝑖  = Predict class label of 𝑥𝑖  using 𝑀𝑎 

            Append  𝑟𝑎𝑖 to 𝑠𝑖 

        Append (𝑠𝑖 , 𝑦𝑖) to 𝐷′ 
   end for 

Step-3: Train Meta Learner (RF) on D' 

    Perform Grid Search on RF with dataset D' 

    Select best RF model M_RF_meta based on grid search results 

    Train best RF model M_RF_meta on dataset D' 

Step-4: Return the trained Ensemble Model 

    Return M_RF meta 
End 

 

3.5.  Loss function 

The loss function for an ensemble model, especially one using a meta-learner like RF, typically 

involves the combined error from all the base learners. Simplified representation of the loss function for such 

an ensemble model: 

‒ Base learner loss function: for each base learner 𝑀𝑎, the loss functions 𝐿𝑎 is computed on the training 

dataset 𝐷. 

‒ Meta learner loss function: the meta learner 𝑀𝑚𝑒𝑡𝑎 uses the predictions from all base learners to create a 

new dataset 𝐷′. The loss function 𝐿𝑚𝑒𝑡𝑎 is computed on this new dataset. 

‒ Loss function for base learners: for each base learner 𝑀a. 

 

𝐿𝑎 =  
1

2
 ∑ 𝐿(𝑦𝑖 , 𝑀𝑎(𝑥𝑖))𝑛

𝑖=1   (2) 

 

Where 𝑛 represent number of features, 𝑦𝑖is the true label for features 𝑥𝑖, 𝑀𝑎(𝑥𝑖) is the prediction of the 

base learner. 𝑀𝑎 for sample 𝑥𝑖, and 𝐿 is the cross-entropy loss function for classification. 

‒ Loss function for meta learner: for the meta learner 𝑀𝑚𝑒𝑡𝑎: 

 

𝐿𝑚𝑒𝑡𝑎 =  
1

𝑚
 ∑ 𝐿 (𝑦𝑖 , 𝑀𝑚𝑒𝑡𝑎(𝑆𝑗))𝑚

𝑗=1  (3) 

 

Where 𝑚 represent number of features in the new dataset 𝐷′. 𝑦𝑖  is the true label for the new feature 

vector 𝑆𝑗, 𝑀𝑚𝑒𝑡𝑎(𝑆𝑗) is the prediction of the meta learner 𝑀 meta for the new feature vector 𝑆𝑗, and 𝑆𝑗 is 

the new feature vector consisting of predictions from all base learners for the original sample 𝑥𝑗 

‒ Combined loss function: the overall loss function for the ensemble model can be seen as the 

combination of the losses from the base learners and the meta learner: 

 

𝐿𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 =  ∑ 𝛼𝑎𝐿𝑎 +  𝛽𝐿𝑚𝑒𝑡𝑎𝑎  (4) 

 

Where 𝛼𝑎 and 𝛽 represents the weights that balance the importance of each base learner's loss and the 

meta learner's loss. 

 

3.6.  Hyperparameter settings 

The random grid search technique was employed for hypermeter configuration to attain optimal 

performance regarding the computation efficiency of the suggested baseline ML classifiers and ensemble 

model as shown on Table 1. Grid search allows for systematically examining different variations of 

hyperparameters by providing a sequence of values corresponding to every parameter. This guarantees that 

every possibility is explored to determine the hyperparameters' desired values. Because grid search seems 

predictable, it consistently produces identical results with similar information and parameters. This feature 

makes it easier to compare data repeatedly, promoting accurate analysis and evaluation. Grid search is simple 

to use and is one of its main benefits. 
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Table 1. Hyperparameter setting of proposed baseline ML classifiers and ensemble model 
Classifiers Parameters 

GB parameters_grid_gb = {'n_estimators': [50, 100, 200],'learning_rate': [0.01, 0.1, 0.2], 'max_depth':  
[3, 4, 5],'subsample': [0.7, 0.8, 0.9]} 

SVM parameters_grid = {'kernel': ['poly', 'rbf', 'linear', 'sigmoid'], 'C': [0.1, 1, 10, 100, 1000], 'gamma': ['scale', 'auto'], 

'shrinking': [True, False]} 
KNN knn_parameters_grid = {'n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 'weights': ['uniform', 

'distance'],'algorithm':['auto', ball_tree', 'kd_tree', 'brute'], 'n_jobs':[1, -1]} 

DT dt_parameters_grid = {'criterion': ['gini', 'entropy'], 'splitter': ['best', 'random'], 'min_samples_leaf': [1, 2, 3, 4, 5], 
'max_features': ['auto', 'sqrt', 'log2']} 

RF rf_parameters_grid = {'n_estimators': [10, 30, 40, 50, 60, 70, 80, 90, 100], 

'criterion': ['gini', 'entropy'], 'min_samples_split': [1.0, 2, 3, 4, 5], 'max_features': ['auto', 'sqrt', 'log2']} 
Ensemble param_grid = {'n_estimators': [10, 50, 100], 'criterion': ['gini', 'entropy'],'min_samples_split': [2, 5, 

10],'max_features': ['auto', 'sqrt', 'log2']} 

 

 

4. RESULT AND DISCUSSION 

This section presents the effectiveness of the suggested baseline ML classifiers and the suggested 

ML-based ensemble classifier in detecting and classifying the CKD on the dataset based on the feature 

optimization technique. All the baseline ML classifiers were tuned using random grid search, and all 

classifiers were built using Keras and the TensorFlow library. Grid search was utilized to optimize the  

meta-learner classifier. Google Colaboratory was used to conduct all of the tests. We used the CKD dataset 

for these experiments. Using stratified sampling, divide the dataset into two sets: 70% training with  

280 samples and 30% testing with 120 samples. The performance of ML models was measured using several 

evaluation parameters such as accuracy, precision, recall, and F1-score. True positive (TP), false positive 

(FP), true negative (TN), and false negative (FN) represent the units of calculation used for all of them. 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇_𝑃 + 𝑇_𝑁

𝑇_𝑃 + 𝑇_𝑁 + 𝐹_𝑃 + 𝐹_𝑁
 (5) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇_𝑃

𝑇_𝑃 + 𝐹_𝑃
 (6) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇_𝑃

𝑇_𝑃 + 𝐹_𝑁
 (7) 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 × 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (8) 

 

Table 2 shows the performance analysis of various baseline ML classifiers and an ensemble model 

based on their metrics. The GB and RF both achieve a high accuracy of 97.5%, with GB having a precision of 

95.4% and recall of 97.6%, resulting in an F1-score of 96.5%. RF demonstrates perfect recall at 100%, slightly 

lower precision at 94.7%, and the highest F1 score at 97.3%. KNN shows the lowest accuracy at 92.5%, precision 

of 93.0%, recall of 91.4%, and an F1-score of 92.1%. SVM performs well with 95.8% accuracy, 94.7% precision, 

96.4% recall, and a 95.6% F1 score. DT achieves 93.3% accuracy, 89.5% precision, 96.2% recall, and a 92.7% 

F1 score. The ensemble model consistently performs consistently across all metrics, achieving 97.5% accuracy, 

precision, and recall and a nearly perfect F1-score of 97.4%. Tables 3 to 8 show the classification report of each 

baseline ML model. It is indicated that each model performed better, with a maximum accuracy score of 97.00%. 

Table 8 also shows the classification report of the proposed ensemble model. 
 

 

Table 2. Performance analysis of proposed baseline ML and ensemble model 
Classifiers Accuracy Precision Recall F1-score 

GB 97.5 95.4 97.6 96.5 

RF 97.5 94.7 100 97.3 
KNN 92.5 93.0 91.4 92.1 

SVM 95.8 94.7 96.4 95.6 

DT 93.3 89.5 96.2 92.7 
Ensemble 97.5 97.5 97.5 97.4 

 

 

Table 3. Classification report of GB 
 Precision Recall F1-score Support 

0 0.97 1.00 0.98 84 

1 1.00 0.92 0.96 36 

Accuracy   0.97 120 

Macro Avg 0.98 0.96 0.97 120 

Weighted Avg 0.98 0.97 0.97 120 
 

Table 4. Classification report of SVM 
 Precision Recall F1-score Support 

0 0.97 1.00 0.98 84 

1 1.00 0.92 0.96 36 

Accuracy   0.97 120 
Macro Avg 0.98 0.96 0.97 120 

Weighted Avg 0.98 0.97 0.97 120 
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Table 5. Classification report of KNN 
 Precision Recall F1-score Support 

0 0.95 0.98 0.96 84 

1 0.94 0.89 0.91 36 

Accuracy   0.95 120 

Macro Avg 0.95 0.93 0.94 120 

Weighted Avg 0.95 0.95 0.95 120 
 

Table 6. Classification report of RF 
 Precision Recall F1-score Support 

0 0.97 1.00 0.98 84 

1 1.00 0.92 0.96 36 

Accuracy   0.97 120 

Macro Avg 0.98 0.96 0.97 120 

Weighted Avg 0.98 0.97 0.97 120 
 

 

 
Table 7. Classification report of DT 
 Precision Recall F1-score Support 

0 0.97 1.00 0.98 84 

1 1.00 0.92 0.96 36 

Accuracy   0.97 120 

Macro Avg 0.98 0.96 0.97 120 

Weighted Avg 0.98 0.97 0.97 120 
 

Table 8. Classification report of ensemble model 
 Precision Recall F1-score Support 

0 0.97 1.00 0.98 84 

1 1.00 0.92 0.96 36 

Accuracy   0.97 120 

Macro Avg 0.98 0.96 0.97 120 

Weighted Avg 0.98 0.97 0.97 120 
 

 

 
Figure 5 shows the confusion matrix of the proposed baseline ML and ensemble model for 

calculating the TP, FN, TN, and FP values. The proposed GB, SVM, DT, RF, and ensemble models all 

exhibit similar predictive values with 84 TPs, 0 FNs, 33 TNs, and 3 FPs, indicating perfect recall due to the 

absence of FNs and high specificity with only 3 FPs out of 36 TNs. KNN shows slightly lower performance 

with 82 TPs, 2 FNs, 32 TNs, and 4 FPs, still maintaining high sensitivity but slightly decreasing specificity. 

This analysis indicates that all models, except KNN, provided almost identical and superior performance in 

identifying positive and negative cases, with KNN performing slightly lower in comparison. 

 

 

    

    

 

Figure 5. Confusion matrix for proposed classifiers 

 

 

Figures 6 to 11 show the 3D plots for GB, SVM, KNN, DT, RF, and ensemble, which indicate the 

relationship between various hyperparameters and model accuracy. There are three 3D plots of each 

model. The first plot examines the effect of varying the number of estimators (n_estimators) of each model 

and the subsample ratio on accuracy, with a specific configuration of 200 estimators and a subsample of 

0.7; C parameter is one and shrinking was set to true; minimum sample leaf set to 4 for DT; and minimum 

sample splitting values set to 10 for RF; minimum sample splitting values set to 2 and maximum depth is 
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10 for ensemble. It illustrates how the accuracy changes as the parameters are adjusted, showing potential 

peaks at specified values. The second plot explores the effect of changing the learning rate and subsample 

ratio on the accuracy set to a learning rate of 0.1 and a subsample of 0.7 for GB. The best parameter 

gamma is one, and shrinking is true for SVM, emphasizing how accuracy responds to parameter changes, 

potentially revealing optimal regions for these settings. The third plot focused on the interaction between 

the learning rate and the number of estimators at learning rates between 0.1 and 200 estimators and how 

these parameters influence the model's performance, helping to identify the best combination for 

maximum accuracy. 

 

 

   

 

Figure 6. 3D plotting of GB 

 

 

   
 

Figure 7. 3D plotting of SVM 

 

 

   
 

Figure 8. 3D plotting of KNN 
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Figure 9. 3D plotting of DT 
 
 

   
 

Figure 10. 3D plotting of RF 

 

 

   
 

Figure 11. 3D plotting of ensemble model 

 

 

Figure 12 shows the ROC-AUC curve that indicates the performance of all proposed ML and 

ensemble models in distinguishing between classes based on their true positive rate (TPR) and false positive 

rate (FPR) scores. The ROC-AUC curves for GB, RF, and the ensemble model show excellent performance 

with an AUC of 0.982. The SVM also performs very well with an AUC of 0.963, followed by the DT with an 

AUC of 0.941, and KNN with an AUC of 0.934, all significantly outperforming the baseline random 

performance represented by an AUC of 0.5. 

Table 9 shows the comparative analysis of the proposed ensemble model with various existing 

methods used for CKD detection in terms of accuracy score. Kumar et al. [28] utilized SVM, DT, and ANN, 

achieving 92.76% accuracy, while Walse et al. [29] used RF, NB, and DT with 91.00% accuracy. Pal [30] 

employed LR, DT, and bagging, attaining 95.92%. Raza [31] and Atallah and Mousa [32] used majority voting 

ensemble (MVE), recording 88.00% and 90.00% accuracy, respectively. Neloy et al. [33] with weighted 

average ensemble (WAE) reached 93.00%, and Revathy et al. [20] reported lower accuracies for RF (74.00%), 
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DT (73.5%), and LR (72.2%). Hassan et al. [34] achieved a high accuracy of 97.33% using an ensemble 

approach, Islam et al. [35] reported an accuracy of 97.00% using XGBoost. Saif et al. [36] utilized 

convolutional neural network (CNN) and long short-term memory (LSTM), achieving 94.00%. The proposed 

ensemble model with grid search outperforms all these methods, achieving the highest accuracy of 97.5%, 

demonstrating its superior efficacy in CKD detection. 
 

 

 
 

Figure 12. ROC-AUC curve 
 

 

Table 9. Comparative analysis of proposed the ensemble model with existing methods 
References Methods used Accuracy in % 

Kumar et al. [28] SVM, DT, ANN 92.76 

Walse et al. [29] RF, NB, DT 91.00 

Pal [30] LR, DT, Bagging 95.92 
Raza [31] MVE 88.00 

Atallah and Mousa [32] MVE 90.00 

Neloy et al. [33] WAE 93.00 
Revathy et al. [20] RF 

DT 

LR 

74.00 

73.50 

72.20 
Hassan et al. [34] Ensemble 97.33 

Islam et al. [35] XGBoost 97.00 
Saif et al. [36] CNN, LSTM 94.00 

Proposed Ensemble with grid search 97.5 

 

 

5. CONCLUSION AND FUTURE SCOPE 

In many instances, combining the results of multiple independent ML models can reduce 

generalization errors and provide improved results. As a result, the ensemble strategy has emerged as a 

reliable and industry-leading approach in many domains. The basic concept behind ensemble modeling is to 

train multiple models and combine their findings with one of several ensemble strategies. Researchers have 

tried to detect or predict the onset of kidney disease. The practical implications of the investigation include 

the fact that previous investigations have been interested in diagnosing diseases. Additionally, previous 

algorithms have often shown poor performance. The central part of this study is to predict CKD using an 

ML-based ensemble. This research was conducted on a standard CKD dataset collected from Kaggle. We 

propose five predictive ML models as baseline classifiers in this study: GB, SVM, KNN, RF, and DT, and 

configure the grid search hyperparameters of each classifier. Then, we combine all the baseline classifiers to 

form an ensemble model with fine-tuning using grid search hyperparameters and classification majority 

voting techniques to improve performance. The final experimental results indicate that the combined model 

consistently performs better, with 97.5% accuracy, precision, and recall and an almost perfect F1-score of 

97.4%, compared to individual classifiers and existing methods. This robust performance of the ensemble 

model is a reliable tool for earlier CKD detection, which is critical for timely intervention and treatment. The 

integration of ML into CKD detection not only provides higher levels of accuracy but also paves the way for 

automated, scalable diagnostic tools that can help medical practitioners make accurate decisions and patient 

conditions eventually improve. There are numerous avenues for future research direction in CKD prediction. 

Expanding the dataset to include diverse populations and more varied clinical settings could enhance the 
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model's generalizability and robustness. Additional advanced ML algorithms, such as pre-trained DL models, 

might improve accuracy and predictive capabilities. Moreover, integrating multi-modal data, including 

environmental and lifestyle factors, could provide a more reliable evaluation of CKD risk factors and early 

detection. Additionally, explainable AI techniques can help demystify the ensemble model's decision-making 

process, thereby increasing trust and adoption among medical practitioners. Collaborations with healthcare 

institutions for pilot studies and longitudinal research can validate and refine the model, ensuring its practical 

utility and impact. Finally, exploring integrating CKD detection systems with electronic health records (EHR) 

and other healthcare IT infrastructures can streamline workflows and improve patient management outcomes. 
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