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ABSTRACT

To ensure that artificial intelligence (AI) can be aligned with humans, AI models
need to be developed and supervised by humans. Unfortunately, it is possible
for an AI to exceed human capabilities, which is commonly referred to as su-
peralignment models. Thus, it raised the question of whether humans can still
supervise a superalignment model, which is encapsulated in a concept called
weak-to-strong generalization. To address this issue, we introduce ensemble
reverse knowledge distillation (ERKD), which leverages two weaker models to
supervise a more robust model. This technique is a potential solution for humans
to manage a super-alignment of models. ERKD enables a more robust model to
achieve optimal performance with the assistance of two weaker models. We tried
to train a more robust EfficientNet model with weaker convolutional neural net-
work (CNN) models in a supervised fashion. With this method, the EfficientNet
model performed better than the model trained with the standard transfer learn-
ing (STL) method. It also performed better than a model that was supervised by
a single weaker model. Finally, ERKD-trained EfficientNet models can perform
better than EfficientNet models that are one or even two levels stronger.
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1. INTRODUCTION
The development of artificial intelligence (AI) model must be integrated with human supervision to

obtain a useful model for humans. For example, in the field of image classification, convolutional neural
networks (CNN) models, such as ResNet [1], DenseNet [2], EfficientNet [3], Inception V3 [4], and MobileNet
V3 [5] models, were asked to learn a collection of images labeled by experts, such as ImageNet [6], CIFAR-10
[7], Food-101 [8], Oxford 102 Flowers [9], Birdsnap [10], and other datasets. Large language models (LLMs)
such as GPT-4 [11], Gemini 1.5 [12], and Llama-3 [13] were also built to learn human-generated text datasets to
perform natural language processing (NLP) tasks. To add an additional guarantee of its alignment with humans,
LLMs were also trained with an additional step called reinforcement learning from human feedback (RLHF),
which rewards or punishes during learning based on human judgment [14]–[16]. Until now, all forms of AI
have always been intentionally directed to align with human knowledge, experience, evaluation, and feedback
to assist in completing human tasks.

However, the emergence of AI models that have better capabilities than humans, commonly referred
to as superalignment models, is unavoidable. This is largely due to the fact that AI supervision was not usually
done by a large crowd of humans. Most of the datasets that were used to train AI models nowadays were curated
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via crowd-sourcing. This theoretically can crystallize the wisdom of the crowd within AI models, which can
lead the models to be more intelligent than a single human. The emergence of superalignment models can
also come from the practice of applying reinforcement learning without human supervision, which has been
demonstrated multiple times in video games [17], board games [18], [19], and recently LLM [20].

The emergence of superalignment models raised the question: How can we as humans supervise these
models to better align with us if they are better than us? As superalignment models can emerge from the
wisdom of the crowd, perhaps we can also supervise these models via another wisdom of the crowd. This
study aims to simulate this idea by having an ensemble of weaker models to supervise a stronger model. In
the machine learning community, it is known that an ensemble of weaker models can form a strong model.
This concept is named ensemble learning and has been used to form a strong machine learning model such as
random forest [21] and XGBoost [22].

To achieve our aim, we designed a schema of more than one weaker teacher models to supervise one
stronger model in the knowledge distillation (KD) framework [23]. We named this schema ensemble reverse
knowledge distillation (ERKD). Figure 1 illustrates the ERKD schema with two weak teacher models. To
simulate the idea of supervising a model that is already intelligent, we use transfer learning as the main task.
In particular, we use transfer learning for image classification as the task. To measure the success of this study,
we compare ERKD with a standard transfer learning (STL) procedure.

Figure 1. The ERKD schema with two weak teacher models

2. METHOD
2.1. Dataset

This study uses two image classification datasets, namely CIFAR-10 and CIFAR-100 [7]. Both
datasets consist of 50,000 images for training and 10,000 images for testing. Both also have 32×32 pixels
resolution images. The difference between the two datasets is that CIFAR-10 only has ten classes, so each class
consists of 6,000 images, while CIFAR-100 has 100 classes, so each class consists of 600 images. These two
datasets are used in this study because they are commonly used in AI studies.

2.2. Train, validation, and test split data

The CIFAR-10 and CIFAR-100 datasets have been divided into 50,000 images for training and 10,000
for testing. All images in the training section have been randomized. Then, we split the training part into
two parts, namely, 40,000 images used for training and 10,000 images used for validation. The 40,000 images
used as the training model will be subjected to data augmentation. Meanwhile, the 10,000 validation images
will calculate the error rate and validation when the model learns. Finally, 10,000 test images will be used to
measure the performance of the model.
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2.3. Data preprocessing
We preprocessed the dataset with z-score standardization on scale 0 to 1. Firstly, we normalize the

pixel values from scale 0-to-255 to scale 0-to-1. Afterwards, we standardize the pixel values with z-score
standardization, with the mean and standard deviation values derived from the dataset. For the CIFAR-10
dataset, the mean values were 0.4914, 0.4822, and 0.4465 for the red, green, and blue channels, respectively.
The standard deviation values were 0.247, 0.243, and 0.261 for the red, green, and blue channels, respectively.
For the CIFAR-100 dataset, the mean values were 0.5071, 0.4865, and 0.4409 for the red, green, and blue
channels, respectively. The standard deviation values were 0.267, 0.256, and 0.276 for the red, green, and blue
channels, respectively.

2.4. Data augmentation
To avoid overfitting, we applied data augmentation with a random crop to 28×28 pixels and a random

horizontal flip. This data augmentation procedure is applied only to the training dataset during model training.
The data augmentation process was performed online for each epoch.

2.5. Models
For the transfer learning process in this study, we used EfficientNet and EfficientNet V2 [24] models,

which were pre-trained on the ImageNet dataset [25], [26]. EfficientNet models have a hierarchy of weak
models to strong models due to the use of systematic model scaling, i.e. from the weakest B0 to strongest B7
in EfficientNet and from the weakest V2S to the stronger V2M to the strongest V2L in EfficientNet v2. With
this characteristic, EfficientNet models are perfect for the setup in this study.

2.6. Training process
The training process in all experiments in this study used Adam optimization [27] with a learning rate

of 10-3 and a ridge regularization of 10-5. In addition, training was conducted with 100 epochs, a batch size
of 32, and the random seed used was 42. Furthermore, the temperature used in the KD process was 2.0. The
checkpoint model technique is used during training based on the best validation accuracy. The image resolution
scale in the EfficientNet study is also adjusted for each model in this study. EfficientNet models B0 to B7 use
image sizes 32, 34, 38, 44, 54, 66, 76, and 86, respectively. Meanwhile, the EfficientNet V2 models, V2S,
V2M and V2L, use image sizes of 32, 40, and 48, respectively.

2.7. Experiment setup
In ERKD, we used two weaker models to supervise a stronger model. For example, a stronger model

EfficientNet B2 was supervised by using EfficientNet B1 and B0. The weaker models were first trained with
STL on the CIFAR-10 and CIFAR-100 datasets. Afterwards, these two models were used as teachers by
producing soft labels to train a stronger student model in a response-based KD framework. The stronger
student model was optimized to match the distribution of the soft labels using the Kullback-Leibler divergence
(KL divergence) loss function.

3. RESULTS AND DISCUSSION
In Table 1, we compare the accuracy of STL and three different variations of ERKD with a different

proportion given to the loss functions: i) equal proportion, ii) 10% for cross entropy loss and 45% for KL
divergence, and iii) 30% for cross entropy loss and 35% for KL divergence. The icons in the table indicate
that ERKD outperforms the STL. The square indicates the best accuracy, the circle indicates the second-best
accuracy, and the triangle indicates the third-best accuracy. As seen in the table, all variations of ERKD
outperform STL. This proves that two weaker models can still supervise the stronger model, e.g. EfficientNet
B0 and EfficientNet B1 can still supervise EfficientNet B2.

In addition, we also experimented using only one weaker model as a teacher of the stronger model.
For example, EfficientNet model B2 is taught only by B0 or B1. The proportion of between the cross entropy
loss and the KL divergence loss are both 50%. The results can be seen in Table 2. The icons in the table
indicates that ERKD outperforms the STL and a single-teacher method. The square indicates the best accuracy,
the circle indicates the second-best accuracy, and the triangle indicates the third-best accuracy. We found that
at least one variation of ERKD can outperform using only one weaker model. This proved that the ensemble
learning concept in ERKD is also effective in improving model performance. For example, EfficientNet B2 is
more optimal when supervised by B0 and B1 than B0 or B1 alone.
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Table 1. Comparison of the student model’s accuracy between ERKD and STL
Teacher 1 Teacher 2 Student

Dataset
Student accuracy

Model Image size Model Image size Model Image size STL
Teacher 1 and 2

Average
(%)

10 45 45
(%)

30 35 35
(%)

B1 34 B0 32 B2 38 CIFAR-
10

88.84 89.79 89.40 89.49

B2 38 B1 34 B3 44 90.63 91.34 91.21 91.18
B3 44 B2 38 B4 54 91.69 92.87 92.56 92.68
B4 54 B3 44 B5 66 92.63 92.94 93.23 93.43
B5 66 B4 54 B6 76 93.02 93.23 93.61 93.51
B6 76 B5 66 B7 86 93.18 93.78 93.75 93.94
V2M 40 V2S 32 V2L 48 92.09 92.47 92.63 92.65
B1 34 B0 32 B2 38 CIFAR-

100
64.93 68.77 68.39 68.68

B2 38 B1 34 B3 44 68.39 70.09 70.42 70.36
B3 44 B2 38 B4 54 71.27 72.72 74.01 73.84
B4 54 B3 44 B5 66 71.35 73.87 74.27 73.83
B5 66 B4 54 B6 76 72.63 75.61 75.12 75.80
B6 76 B5 66 B7 86 73.11 74.75 75.89 75.92
V2M 40 V2S 32 V2L 48 69.82 70.98 70.99 72.13

Table 2. Comparison of the student model’s accuracy between ERKD using teachers 1 and 2, and STL
Teacher 1 Teacher 2 Student

Dataset
Student accuracy

Model
Image
size

Model
Image
size

Model
Image
size

STL (%)
Teacher 1 Teacher 2 Teacher 1 and 2
Only (%) Only (%) Average

(%)
10 45 45
(%)

30 35 35
(%)

B1 34 B0 32 B2 38 CIFAR-
10

88.84 89.54 89.24 89.79 89.40 89.49

B2 38 B1 34 B3 44 90.63 90.87 91.24 91.34 91.21 91.18
B3 44 B2 38 B4 54 91.69 92.19 92.33 92.87 92.56 92.68
B4 54 B3 44 B5 66 92.63 93.02 93.11 92.94 93.23 93.43
B5 66 B4 54 B6 76 93.02 93.17 93.33 93.23 93.61 93.51
B6 76 B5 66 B7 86 93.18 93.89 93.86 93.78 93.75 93.94
V2M 40 V2S 32 V2L 48 92.09 92.52 91.98 92.47 92.63 92.65
B1 34 B0 32 B2 38 CIFAR-

100
64.93 67.41 67.28 68.77 68.39 68.68

B2 38 B1 34 B3 44 68.39 69.29 69.34 70.09 70.42 70.36
B3 44 B2 38 B4 54 71.27 73.05 73.60 72.72 74.01 73.84
B4 54 B3 44 B5 66 71.35 74.12 72.86 73.87 74.27 73.83
B5 66 B4 54 B6 76 72.63 74.26 75.06 75.61 75.12 75.80
B6 76 B5 66 B7 86 73.11 74.51 74.70 74.75 75.89 75.92
V2M 40 V2S 32 V2L 48 69.82 70.08 68.73 70.98 70.99 72.13

To check whether architectural similarity can influence the performance of ERKD, we picked other
CNN models to replace EfficientNet models as teachers. The other CNN models were picked and mapped to
replace EfficientNet models on the basis of similar accuracy on ImageNet dataset. Other CNN model architec-
tures we finally picked were ResNet, RegNet [28], ConvNext [29], and ResNeXt. Table 3 provides the mapping
of the other CNN model to their EfficientNet equivalent.

With the addition of other CNN models, we now have four candidates to be used as teachers: two
weaker EfficientNet models and two other CNN models equivalent to the EfficientNet models. For the sake of
simplicity, we named the first two EfficientNet models as teacher 1 and teacher 2, while the other two CNN
models as teacher 3 and teacher 4. For example, to supervise EfficientNet B2, teacher 1 and teacher 2 are
respectively B1 and B0, meanwhile teacher 3 and teacher 4 are respectively ResNet-101 and ResNet-152.

In Tables 4 and 5, we show the result of experiments on substituting only one EfficientNet teacher
with other CNN models. The result with the icon in Table 4 indicates that ERKD outperforms the STL and a
single teacher method. The square indicates the best accuracy, the circle indicates the second-best accuracy,
and the triangle indicates the third-best accuracy. While, the result with the icon in Tables 5 and 6 indicates
that ERKD outperforms the STL and a single-teacher method. The square indicates the best accuracy, the
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circle indicates the second-best accuracy, the equilateral triangle indicates the third-best accuracy, and the right
triangle indicates the fourth-best accuracy.

Table 3. The mapping of other CNN models to the EfficientNet models based on similar accuracy on
ImageNet dataset

EfficientNet model Others CNN model EfficientNet accuracy (%) Others CNN model (%)
B0 ResNet-101 77.692 77.374
B1 ResNet-152 77.692 77.374
B2 RegNet Y 16GF 77.692 77.374
B3 ConvNeXt Tiny 77.692 77.374
B4 ResNeXt101 64X4D 77.692 77.374
B5 ResNeXt101 64X4D 77.692 77.374
B6 ConvNeXt Small 77.692 77.374

V2S ConvNeXt Base 77.692 77.374
V2M ConvNeXt Large 77.692 77.374

Table 4. Comparison of the student model’s accuracy between ERKD using teachers 1 and 4, and STL
Teacher 1 Teacher 4 Student

Dataset
Student accuracy

Model Model Model STL (%)
Teacher 1 Teacher 4 Teacher 1 and 4
Only (%) Only (%) Average (%) 10 45 45 (%) 30 35 35(%)

B1 B0 B2 CIFAR-
10

88.84 89.54 89.46 89.54 89.57 89.67

B2 B1 B3 90.63 90.87 90.56 91.07 90.94 91.34
B3 B2 B4 91.69 92.19 92.20 92.54 92.83 92.62
B4 B3 B5 92.63 93.02 92.81 92.98 93.03 93.34
B5 B4 B6 93.02 93.17 93.62 94.05 93.42 94.03
B6 B5 B7 93.18 93.89 93.89 93.85 93.74 94.28
V2M V2S V2L 92.09 92.52 92.30 92.63 92.35 92.33
B1 B0 B2 CIFAR-

100
64.93 67.41 65.95 67.59 67.22 66.99

B2 B1 B3 68.39 69.29 68.57 69.53 69.17 69.60
B3 B2 B4 71.27 73.05 73.22 74.49 73.10 73.51
B4 B3 B5 71.35 74.12 72.76 74.32 73.90 74.50
B5 B4 B6 72.63 74.26 74.21 74.93 74.88 75.14
B6 B5 B7 73.11 74.51 74.66 75.62 75.23 75.26
V2M V2S V2L 69.82 70.08 69.95 72.30 71.16 71.32

Table 5. Comparison of the student model’s accuracy between ERKD using teachers 2 and 3, and STL method
Teacher 2 Teacher 3 Student

Dataset
Student accuracy

Model Model Model STL (%)
Teacher 2 Teacher 3 Teacher 2 and 3
Only (%) Only (%) Average

(%)
10 45 45
(%)

20 40 40
(%)

30 35 35
(%)

B1 B0 B2 CIFAR-
10

88.84 89.24 89.58 89.79 89.33 89.75 89.64

B2 B1 B3 90.63 91.24 91.14 91.56 91.39 91.45 91.40
B3 B2 B4 91.69 92.33 92.46 92.10 92.42 92.63 92.91
B4 B3 B5 92.63 93.11 93.26 93.46 93.20 93.30 93.20
B5 B4 B6 93.02 93.33 93.95 93.41 93.79 94.15 93.73
B6 B5 B7 93.18 93.86 94.24 93.66 93.71 94.04 93.83
V2M V2S V2L 92.09 91.98 92.47 92.31 92.63 92.29 92.26
B1 B0 B2 CIFAR-

100
64.93 67.28 66.39 67.81 67.03 67.65 67.49

B2 B1 B3 68.39 69.34 69.30 70.19 70.06 69.99 69.85
B3 B2 B4 71.27 73.60 72.96 73.26 73.93 73.24 73.41
B4 B3 B5 71.35 72.86 72.99 73.47 73.81 73.66 73.98
B5 B4 B6 72.63 75.06 74.67 74.93 75.61 76.19 75.65
B6 B5 B7 73.11 74.70 74.55 75.60 74.94 74.86 75.04
V2M V2S V2L 69.82 68.73 70.80 70.92 70.91 71.18 71.39
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In Table 4, only teacher 1 and teacher 4 are used. Meanwhile, only teacher 2 and teacher 3 are used
in Table 5. We add a new proportion of 20% for cross entropy loss and 40% for KL divergence loss in Table 5.
We also show the result of substituting all the EfficientNet teachers with other CNN models in Table 6. From
these results, we found ERKD can generally still improve the accuracy compared to STL and using one teacher
only. This fact is especially obvious when we see the accuracy of using different teachers combination side by
side in Table 7, where there is no combination that dominantly outperforms other combination. The squares in
Table 7 indicate superior performance. Thus, ERKD still works regardless of the architectural similarity.

Table 6. Comparison of the student model’s accuracy between ERKD using teachers 3 and 4, and STL
Teacher 3 Teacher 4 Student

Dataset
Student accuracy

Model Model Model STL (%)
Teacher 3 Teacher 4 Teacher 3 and 4
Only (%) Only (%) Average

(%)
10 45 45
(%)

30 35 35
(%)

50 25 25
(%)

B1 B0 B2 CIFAR-
10

88.84 89.58 89.46 89.50 89.23 89.52 89.85

B2 B1 B3 90.63 91.14 90.56 91.03 91.35 91.04 91.39
B3 B2 B4 91.69 92.46 92.20 92.22 92.54 92.43 92.63
B4 B3 B5 92.63 93.26 92.81 93.46 92.80 93.35 92.95
B5 B4 B6 93.02 93.95 93.62 94.11 93.92 93.56 94.24
B6 B5 B7 93.18 94.24 93.89 94.00 93.99 93.91 93.92
V2M V2S V2L 92.09 92.47 92.30 92.66 92.54 92.26 92.23
B1 B0 B2 CIFAR-

100
64.93 66.39 65.95 66.33 66.64 66.73 66.80

B2 B1 B3 68.39 69.30 68.57 69.61 69.80 69.70 68.53
B3 B2 B4 71.27 72.96 73.22 72.82 73.31 72.65 72.33
B4 B3 B5 71.35 72.99 72.76 73.76 73.39 73.56 73.25
B5 B4 B6 72.63 74.67 74.21 74.85 75.03 74.70 75.20
B6 B5 B7 73.11 74.55 74.66 75.07 74.82 74.96 74.10
V2M V2S V2L 69.82 70.80 69.95 71.58 71.03 71.69 71.10

Table 7. The accuracy of comparison of ERKD with various teachers
Student model Dataset Teacher 1 and 2 (%) Teacher 1 and 4 (%) Teacher 2 and 3 (%) Teacher 3 and 4 (%)

B2 CIFAR-10 89.79 89.67 89.79 89.85
B3 91.34 91.34 91.56 91.39
B4 92.87 92.83 92.91 92.63
B5 93.43 93.34 93.46 93.46
B6 93.61 94.05 94.15 94.24
B7 93.94 94.28 94.04 94.00

V2L 92.65 92.63 92.63 92.66
B2 CIFAR-100 68.77 67.59 67.81 66.80
B3 70.42 69.60 70.19 69.80
B4 74.01 74.49 73.93 73.31
B5 74.27 74.50 73.98 73.76
B6 75.80 75.14 76.19 75.20
B7 75.92 75.62 75.60 75.07

V2L 72.13 72.30 71.39 71.69

When we tried to compare the accuracy of models trained with ERKD with a stronger model trained
with STL, we found a surprising result that sometimes a weaker model with ERKD can be stronger than a
stronger model with STL. For example, we compared the performance of EfficientNet B2 model using ERKD
with the performance of the EfficientNet model using the STL method. The results can be seen in Table 8,
which shows that some models with certain datasets can beat stronger models. The result with the icon in
Table 8 indicates that ERKD outperforms the STL of a one-level higher robust model.

Similarly, the result with the icon in Table 9 shows that ERKD outperforms the STL of a two-level
higher robust model. The square indicates the best accuracy, the circle indicates the second-best accuracy, the
equilateral triangle indicates the third-best accuracy, and the right triangle indicates the fourth-best accuracy.
For CIFAR-10 dataset; EfficientNet models B4, B5, and B6 with ERKD can outperform EfficientNet models
B5, B6, and B7. Meanwhile for CIFAR-100 dataset; EfficientNet models B2, B4, B5, and B6 can outperform
EfficientNet models B3, B5, B6, and B7.
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Table 8. The accuracy of comparison between ERKD and STL model with one level higher robust model
Student
model

Dataset STL 1 level higher
(%)

Teacher 1 and 2
(%)

Teacher 1 and 4
(%)

Teacher 2 and 3
(%)

Teacher 3 and 4
(%)

B2 CIFAR-10 90.63 89.79 89.67 89.79 89.85
B3 91.69 91.34 91.34 91.56 91.39
B4 92.63 92.87 92.83 92.91 92.63
B5 93.02 93.43 93.34 93.46 93.46
B6 93.18 93.61 94.05 94.15 94.24
B2 CIFAR-100 68.39 68.77 67.59 67.81 66.80
B3 71.27 70.42 69.60 70.19 69.80
B4 71.35 74.01 74.49 73.93 73.31
B5 72.63 74.27 74.50 73.98 73.76
B6 73.11 75.80 75.14 76.19 75.20

Table 9. The accuracy of comparison between ERKD and STL model with two levels higher robust model
Student
model

Dataset STL 2 level higher
(%)

Teacher 1 and 2
(%)

Teacher 1 and 4
(%)

Teacher 2 and 3
(%)

Teacher 3 and 4
(%)

B2 CIFAR-10 91.69 89.79 89.67 89.79 89.85
B3 92.63 91.34 91.34 91.56 91.39
B4 93.02 92.87 92.83 92.91 92.63
B5 93.18 93.43 93.34 93.46 93.46
B2 CIFAR-100 71.27 68.77 67.59 67.81 66.80
B3 71.35 70.42 69.60 70.19 69.80
B4 72.63 74.01 74.49 73.93 73.31
B5 73.11 74.27 74.50 73.98 73.76

We also tried to compare ERKD with the two-level stronger models with STL. For example, the per-
formance of the EfficientNet B2 model using ERKD is compared with the performance of the EfficientNet B4
model using the STL method. The results can be seen in Table 9. Surprisingly, we still found that some weaker
models can be stronger with ERKD than the two-level stronger models with STL. Using ERKD. EfficientNet
model B5 with the CIFAR-10 dataset performs better than EfficientNet model B7 with the CIFAR-10 dataset.
In addition, EfficientNet Models B4 and B5 with CIFAR-100 dataset using ERKD also perform better than
EfficientNet models B6 and B7. These two surprising results prove that ERKD effectively improves model
performance.

4. CONCLUSION
All experiments proved that ERKD can improve the model’s performance. The model’s performance

with the ERKD method can be better than the STL and single-teacher methods. It can also be better than
the STL method’s one or two-level, stronger model. Thus, the ERKD method is suitable for supervising
stronger models using weaker models. This study also proved that the ERKD method can improve the model’s
performance even though the weak and strong models’ architectures are different. The EfficientNet models
can still outperform even when assisted by other CNN models. Despite using weaker AI instead of human,
the result of this study shows a glimmer of hope that an AI with stronger intelligence than human can still
be supervised by humans. The trick is to have several humans to collaborate in managing a super-alignment
model. Future studies could investigate a similar study but without using the trained model. They could also
investigate ERKD methods in other computer vision tasks, such as image detection or image segmentation. In
addition, they can also experimented on using more than two weaker models to supervise a stronger model to
get the optimal number of weaker models.
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