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 Fungal, bacterial, and viral diseases significantly threaten citrus production 

and quality worldwide, prompting producers to explore technological 

solutions to mitigate the financial impact of these diseases. Image analysis 

techniques have emerged as powerful tools for detecting citrus diseases by 

differentiating between healthy and diseased specimens through the 
extraction of discriminative features from input images. This paper 

introduces a valuable dataset comprising 953 color images of orange leaves 

from the species Citrus sinensis (L.) Osbeck, which serves to train, evaluate, 

and compare various algorithms aimed at identifying abnormalities in citrus 
fruits. The development of automated detection systems is crucial for 

reducing economic losses in citrus production, with this research focusing on 

twelve specific diseases and nutrient deficiencies. We propose a novel 

approach to citrus plant disease detection utilizing a hyper-parameter tuned 
transferrable convolutional neural network (TCNN) model, referred to as the 

enhanced fruitfly optimization algorithm (EFOA)-TCNN model. This model 

optimizes the parameters of TCNN using the EFOA and enhances 

architectural design by incorporating three convolutional layers alongside an 
energy layer instead of a traditional pooling layer. Experimental results 

demonstrate that the proposed EFOA-TCNN model outperforms existing 

state-of-the-art methods, achieving a sensitivity of 0.975 and an accuracy of 

0.995. 
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1. INTRODUCTION 

Species that are indigenous to Australia, Melanesia, and certain regions of Asia are included in the 

genus Citrus, which is comprised of the fruit crops that are the most economically valuable on a global scale. 

Citrus fruits, which include sweet oranges and mandarins, are grown in more than 140 countries and are 

primarily cultivated for the purpose of serving the markets for fresh fruit and beverages. According to the 

Food and Agriculture Organization of the United Nations (FAO) in 2020 [1], sweet oranges account for  

65 percent of the total citrus production worldwide [2], with Mediterranean countries being the leading 

exporters of fresh fruit. However, the persistent threat posed by a wide variety of fungal, bacterial, and 

oomycete diseases is a significant barrier to the efficient trade of citrus fruits, both domestically and 

internationally [3]. This is the case because citrus fruits are susceptible to a wide range of diseases. The 

https://creativecommons.org/licenses/by-sa/4.0/
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presence of these pathogens, which include Plenodomus tracheiphilus and Phytophthora species, has the 

potential to result in yield losses of thirty to fifty percent during crucial phases of the plant's life cycle [2]. 

The susceptibility of citrus plants to diseases is exacerbated by their acid pH and high water content, which 

leaves them vulnerable during the pre-harvest and post-harvest stages-6 and 7 respectively [4]. 

The purpose of this study is to investigate the issue of citrus disease detection, which is a significant 

obstacle that affects citrus production all over the world. Because of the demands placed on computational 

resources and the constraints imposed by network design, the machine learning and deep learning techniques 

that are currently in use have limitations when it comes to detecting these diseases with the required level of 

efficiency. The reason for this is that there is a growing demand for agricultural products that are of high 

quality and safe for the environment [5]–[8]. Therefore, advanced detection systems are essential in order to 

minimize economic losses in the citrus industry. The approach that has been proposed provides fresh 

perspectives by presenting a transferrable convolutional neural network (TCNN) model that has been 

optimized with the enhanced fruitfly optimization algorithm (EFOA). Using this method, disease detection is 

improved while maintaining low computational costs, which makes it accessible and practical for 

applications in the real world [9]. 

As stated in the introduction, the paper's main goal is to identify citrus diseases through image 

analysis and machine learning. However, it should be noted that the research presents the EFOA-TCNN model 

to identify 12 different kinds of citrus plant illnesses and deficits [10]–[12]. Although the financial burden of 

citrus illnesses is mentioned in the abstract, the introduction will be extended to discuss the importance of 

automated detection. The financial ramifications will be highlighted, including avoiding large crop losses, 

maintaining quality control in the citrus sector, and the shortcomings of conventional manual inspections in 

detecting these illnesses. The primary goal of this research is to develop the EFOA-TCNN model to identify 

twelve distinct types of citrus diseases and nutritional deficiencies through image analysis and machine 

learning. Although the abstract references the financial burden of citrus diseases [13]–[15], the introduction 

will be expanded to emphasize the importance of automated detection. Key financial implications include the 

prevention of substantial crop losses, the maintenance of quality control in the citrus sector, and the limitations 

of traditional manual inspection methods in effectively identifying these diseases [16]. 

Moreover, this introduction will delve deeper into the EFOA and its role in fine-tuning the TCNN. It 

will also elucidate the innovative incorporation of an energy layer in place of the conventional pooling layer 

and discuss how hyperparameter optimization enhances overall model performance. By evaluating the 

EFOA-TCNN model using a publicly available dataset of orange leaves, this paper aims to present a 

comprehensive solution for accurate citrus disease classification. 

Specifically, the paper is organized as follows. The literature that is pertinent to the topic is 

discussed in section 2. The methodology is presented in section 3. The results are discussed in section 4. 

Lastly, the findings are summarized in section 5. 

 

 

2. RELATED WORKS 

In their investigation of an automated system for citrus disease classification, Butt et al. [17] 

employed deep learning combined with optimal feature selection techniques. The initial phase of their 

approach involved data augmentation, which entails generating new images for the training dataset  

from existing examples. Leveraging transfer learning, the authors retrained two pre-existing models—

DenseNet-201 and AlexNet-using the enhanced dataset derived from leaf images. Their experiments 

achieved a remarkable precision level of 99.6%. At each stage, the proposed framework was compared to 

state-of-the-art methodologies, demonstrating superior performance. 

Yadav et al. [18] developed a computer vision system capable of automatically categorizing fruits 

and leaves, thereby facilitating efficient disease management in orchards. This study utilized features 

generated by CNNs and machine learning classifiers to effectively detect citrus black spot (CBS)-infected 

fruits and leaves exhibiting canker symptoms. The custom shallow CNN combined with radial basis function 

(RBF) support vector machine (SVM) achieved an overall accuracy of 92.1% for fruits affected by CBS and 

four other conditions (greasy spot, melanose, wind scar, and marketable). For leaves showing canker 

symptoms alongside four other conditions (control, greasy spot, melanoses, and scab), the VGG16 model 

with RBF SVM achieved an impressive overall accuracy of 93%. 

According to Dhiman et al. [3], an effective citrus fruit disease prediction model can be developed 

using hyperspectral imaging (HSI) systems and features extracted through both deep and shallow 

convolutional neural networks, combined with machine learning classifiers. Their proposed model integrates 

edge computing with deep learning architectures, specifically CNN and long short-term memory (LSTM) 

networks. This model incorporates a feature-fusion subsystem, a down-sampling method, and an advanced 

feature-extraction mechanism to ensure accurate disease detection in citrus fruits while enabling substantial 
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identification capabilities. The study utilized 2,950 labeled images of citrus fruits identified as affected by 

melanosis, scabs, cankers, black spots, or greening, drawn from online Kaggle and village datasets. 

Performance metrics such as precision, recall, F-measure, and support were employed to compare the 

proposed model with existing ones, assessed both with and without feature pruning. The research included 

two phases: the first involved experimental analysis using magnitude-based pruning (MBP), while the second 

combined MBP with post-quantization. The CNN-LSTM model, enhanced by these techniques, 

outperformed the current state-of-the-art CNN method, achieving accuracy rates of 97.18% and 98.25%, 

respectively. The CNN-LSTM Model hybrid model used for maize disease classification [19]. 

Uğuz et al. [8] introduced CitrusNet, a novel model based on CNNs for classifying damaged and 

abnormal citrus fruits. The study gathered 5,149 fruit images from citrus groves in Antalya, Turkey.  

Among the four CNN models tested, CitrusNet and ResNet50 yielded the best classification results.  

The second phase of their research evaluated five different CNN models for detecting two common diseases 

in Turkish citrus: alternaria alternata and thrips. Experimental results indicated that YOLOv5 and Mask R-

CNN were the most effective in detecting citrus diseases, achieving an average precision (AP) of 0.99.  

Wang et al. [20] built a citrus yellow shoot disease recognition model based on the YOLOv5s and achives an 

accuracy of 91.3% 

Saini et al. [21] proposed a deep CNN model for classifying citrus plant leaf and fruit diseases into 

seven categories. The model’s performance was evaluated using optimizers such as Adam, stochastic 

gradient descent (SGD), and RMSprop, with Adam achieving the highest precision of 98.6%. The study also 

showed that data augmentation, along with variations in epochs, batch size, and dropout, improved model 

accuracy. This approach demonstrates the potential of AI in enabling fast and accurate plant disease 

detection. Arthi et al. [22] proposed a novel approach named duck optimization with enhanced capsule 

network (DOECN) based citrus disease detection for sustainable crop management (CDDCM) was proposed 

to detect and classify citrus diseases effectively. The method integrates preprocessing steps, uses DOECN for 

feature extraction and hyperparameter tuning, and employs a deep stacked sparse autoencoder (DSSAE) for 

classification. A CNN-SVM hybrid model was proposed for citrus disease detection, using CNN for feature 

extraction and SVM for classification [23]. With an accuracy of 92.34%, the model effectively identifies 

multiple citrus diseases, supporting precision agriculture and sustainable crop management.  

Chowdhury et al. [24] developed a lightweight CNN model for citrus leaf disease detection and 

compared with pre-trained models like ResNet-50, VGG16, and DenseNet variants. Trained on an augmented 

dataset of 2800 images, the model achieved a 97.84% validation accuracy and 96% F1-score.  

Shastri et al. [7] proposed a new approach for reliable and automated disease identification using CNNs.  

By analyzing a substantial dataset of images depicting diseased citrus fruits and leaves, their suggested E-

CNN model demonstrated exceptional results in both recognition and classification accuracy. Qiu et al. [25] 

explored semantic embedding methods were investigated for disease images and structured descriptive texts. 

Visual features of leaves were extracted using convolutional networks of varying depths, including VGG16, 

ResNet50, MobileNetV2, and ShuffleNetV2. Shermila et al. [26] proposed a tailored approach that integrates 

a CNN with an LSTM, achieving an efficiency of 96%. 

 

2.1.  Problem statement 

Citrus diseases, caused by various fungal, bacterial, and viral infections, lead to significant financial 

losses in the citrus industry worldwide. Manual inspection methods are time-consuming, prone to errors, and 

require expert knowledge, making them inefficient for large-scale detection. Therefore, there is a critical 

need for automated systems that can accurately detect and classify multiple diseases in citrus plants to 

mitigate economic losses and ensure high-quality production. The problem is the inefficiency of traditional 

manual and non-optimized machine learning methods in detecting multiple citrus diseases, which can lead to 

economic losses and reduced production quality. Challenges in citrus disease detection: citrus diseases, 

caused by fungal, bacterial, and viral agents, are a major threat to global citrus production. Traditional 

methods of disease detection rely on manual observation, which is time-consuming and error-prone. The 

proposed method tackles the challenge by automating the detection process using image-based analysis, 

allowing early detection and minimizing crop losses. 

 

 

3. PROPOSED SYSTEM 

The paper proposes an EFOA integrated with a TCNN. The strategy behind using the EFOA is to 

optimize the hyper-parameters of the TCNN, allowing for better feature extraction and classification 

performance. This directly addresses the problem by improving the accuracy and sensitivity of disease 

detection. This research provides an innovative solution for automated citrus disease detection, with the 

EFOA-TCNN model outperforming conventional methods. The detailed analysis and comparison of models 

validate the robustness of the proposed approach, offering significant potential for real-world applications. 
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The research paves the way for future work in optimizing similar models for other plant diseases and 

agricultural challenges. Our research demonstrated that the EFOA-TCNN model significantly enhances the 

detection of citrus diseases compared to traditional methods. We found that the sensitivity of the  

EFOA-TCNN model reached 0.975, indicating a high true positive rate for identifying diseased samples. 

 

3.1.  Data description 

Gathered in orange orchards in the northeastern Mexican states of San Luis Potosi, the collection 

contains 953 color photos of Citrus species leaves. Orange leaves in the dataset are categorized into  

12 groups, as shown in Table 1. These groups include healthy, sick, nutrient deficient, and pests. In addition, 

Figures 1(a) to 1(l) displays examples of each anomaly, showing how the leaves' texture and color patterns 

change as predicted [27]. 

 

 

Table 1. Class-wise image delivery in the dataset 
Class name Abnormality type # Images 

Greasy spot Disease 100 

Fe Iron deficiency 100 

Mg Magnesium lack 100 

Zn Zinc deficiency 100 

Healthy Not abnormal 100 

HLB Disease 43 

Texas mite Pest 100 

Red scale Pest 30 

Red scale sequelae Pest 100 

Citrus leafminer Pest 100 

 

 

 
 

Figure 1. Here are the leaf samples included in the dataset: (a) strong, (b) huanglongbing, (c) greasy spot,  

(d) iron deficiency, (e) magnesium lack, (f) manganese deficiency, (g) nitrogen deficit, (h) zinc deficiency,  

(i) the citrus mite of Texas, (j) citrus leafminer, (k) red scale and its aftereffects, and (l) red scale itself 

 

 

3.2.  Classification using deep learning network construction 

For the purpose of plant disease categorization, the EFOA-TCNN architecture is shown. There are 

three key aspects of the picture that the recommended deep CNN takes into account: If the size of the 

description pattern is equal filter will be able to identify it. Second, various portions of the input picture use 

of the same forms or patterns [27]. Convolving the whole source image is additional models. Finally, the 

geometry of the source picture is unaffected by down sampled pixels, which layer. 

Two convolution layers make up the suggested EFOA-TCNN, with the pooling layers and the EL 

being directed by a third convolution layer. After that, the fully connected (FC) layer is paired with a 

SoftMax layer. By taking an average of the output, EL summarizes the feature maps of the final 

convolutional layer. Each feature map gets a value back from this, which is the same as the energy bank. This 
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design not only reduces the number of layers, but it also uses less memory and computation time when 

learning texture functions, and it does it quite well. This performance-computing time trade-off is made 

possible by EL. To layer's data flow, this layer is added. Shortly following the last pooling layer, the EL's 

flattened output is routed to the concatenation layer. In order to impart information on the image's shape and 

texture to the completely linked layer, this connection generates a fresh, flattened vector. The mathematical 

computation of the convolution layer's output size is given by (1) as: 

 

𝑂𝑢𝑡𝑝𝑢𝑡 =
𝐼𝑎−𝐼𝑏+2𝑆

𝜚+1
 (1) 

 

where 𝐼𝑎 besides 𝐼𝑏 characterizes the input besides filter size correspondingly, S signifies the padding, 

besides ϱ is the stride worth. 

Next, the first two layers of the three convolution layers are trained using a 5×5 kernel size, and 

their outputs are 16 and 32 channels, correspondingly. The third convolutional layer, which has 64 output 

channels besides a kernel size of 3×3, is used as a transitional layer to extract texture attributes [28]. The 

convolution layer may only learn 31,744 parameters, which are determined using the formula in (2) and (3): 

 

𝜉𝑣 = 𝜁𝑉 × (𝐼𝑘 × 𝜚 + 1) (2) 

 

𝜉𝑣 = 𝜁𝑉 + 𝑋𝑘 × 𝜚 × 𝜁𝑉 (3) 

 

where 𝜉𝑣 means the CNN layer learnable limits, 𝐼𝑘 characterizes the kernel size, then 𝜁𝑉 signifies the channel sum. 

The output of the input neuron is computed by each convolution layer. Its weight plus the least input 

field associated with it are multiplied by a dot product to get the computation. A 16-kernel output with 

dimensions of 32×32×16 is shaped by the initial convolution layer. According to (4), the first convolution 

layer neurons' output is: 

 

𝑆𝜗 = ∑ 𝐶𝜗 × 𝑇𝜗 + 𝑃𝜗𝜗  (4) 

 

Where 𝑆𝜗 represents the maps, 𝐶𝜗 characterizes the feature maps that were supplied, and T stands for the 

weighted map. The last layer energy description as its output. After the third convolution layer, energy layers 

are mixed criteria. Like a descriptor, it describes the texture in a similar way. In (5) provides relationship as: 

 

𝐸𝐿(𝜉, 𝜗) = 𝜌[∑ 𝑇𝑖
𝜔𝜗𝑖 + 𝑃

𝑗
𝑖=1 ] (5) 

 

Where EL(ξ,ϑ) stands for the EL layer, j for the input influences, and T for the EL weighted vector. There are 

fewer parameters that can be learned because the connection among the EL and FC layers is narrower than 

the last traditional convolution layer connectivity [29]. Forward and backward propagation also allow EL to 

learn, and it remembers the energy data from the previous layer. In addition to enhancing the learning 

capability and simplifying the projected system, EL helps to decrease the vector size of layer. To determine 

the EL parameters that can be learned, use (6) as: 

 

𝜉𝐸𝐿 = 𝜂
𝑚 × 𝜂𝑚−1 (6) 

 

where 𝜉𝐸𝐿  is the EL learnable limits, 𝜂𝑚 is the current neuron, besides 𝜂𝑚−1 is the neuron. 

Between the convolution the batch activation purpose is utilized to process. To eliminate the internal 

covariate shift, batch normalization is employed. The standard deviation and mean can be normalized to 

achieve this. In (7) and (8) are utilized in the bulk normalization procedure to determine the mean and 

variance.  

 

𝜏𝑄 =
1

𝑛
∑ 𝑙𝑖
𝑛
𝑖  (7) 

 

𝑣𝑄 =
1

𝑛
× ∑ (𝑙𝑖 − 𝜏𝑄)

2𝑛
𝑖  (8) 

 

Where 𝜏𝑄 and 𝑣𝑄 characterizes the mean besides variance correspondingly, 𝑛 is the size of 𝑙𝑖 component of 

attributes. A value of 64 is used for n in our work. When using (9) to determine the batch normalization, the 

result is: 
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𝜆𝑖 =
𝜗𝑖−𝜏

√𝜈2+𝜙
𝛼 + 𝐴 (9) 

 

where 𝑎 and 𝐴 are the values of the initializable parameters for each output function. By plugging rectified 

linear unit (ReLU) into the activation function in (10) and then calculating the output of (11) as: 
 

𝜆𝑖,𝑗,𝑘 = 𝑚𝑎𝑥0,𝜗𝑖,𝑗,𝑘  (10) 

 

𝜆𝑅𝑒𝐿𝑈 = 𝑅𝑒𝐿𝑈(𝐵𝑛𝑜𝑟𝑚(𝐶𝑜𝑛𝑣(𝓌, 𝑥))) (11) 
 

Where 𝜆𝑖,𝑗,𝑘  signifies features and 𝜗𝑖,𝑗,𝑘 stands for the input element's attribute. As a consequence of the 

control network's overfitting, the pooling layer subsequently shrinks the feature mappings, weights, and 

computations. In (12) is used to calculate the layer numerically: 
 

𝑀𝑝𝑜𝑜𝑙 = 𝑚𝑎𝑥(0,∑ 𝜗𝑘−1𝑇𝜗𝑄 ) (12) 

 

Where 𝑀𝑝𝑜𝑜𝑙 stands for the feature maps that will be output, ϑ for the feature maps that will be input, Q for 

the size of the pooling, and T for the maximum layer for the vector. Two max layers, each with a 2×2 kernel 

scope, are utilized in this study. 

For each weighted update, the dropout layer removes a fraction of randomly chosen parameters in 

order to prevent overfitting of the training data [30]. In order to prevent training data from being overfit, drop 

editing is employed in to continually eliminate a parameter. Over-compatibility of training data is a problem 

for FC layers because they have the most parameters in the network. Because of this, the dropout layer is 

decided upon subsequent to the FC layer. A classifier that makes use of the loss function is the SoftMax 

layer. For SoftMax, the possible outcomes might take on values between zero and one. In (13) the loss 

function is expressed mathematically as: 
 

𝑘𝑙 = δ𝑗 + 𝑙𝑜𝑔∑ 𝑒𝑥𝑝(𝛿𝑖)𝑖  (13) 

 

Where 𝑘𝑙 stands for the overall loss and δ𝑗 with the i-th vector element's class d. As shown in (14) using the 

SoftMax function, the classifier's goal is to minimize the probability discrepancy between the actual and 

estimated labels. 
 

𝜆𝑖 =
𝑒𝑥𝑝

𝛿𝑗

∑ 𝑒𝑥𝑝(𝛿𝑗)𝑖
 (14) 

 

When this step is finished, EFOA-TCNN moves on to the hyper-parameter tuning process, which will be 

described in the subsection that follows. As you can see from Table 2, the input and output dimensions of the 

projected network are fully labelled.  
 
 

Table 2. Proposed EFOA-TCNN architecture layers 
Types Padding Kernel size to form 

each feature map 

Stride Output size Input size 

Convolutional layer 1 [1 1 1 1] 5×5 [1 1] 62×62×16 64×64×1 

Max pooling layer 1 [1 1 1 1] 2×2 [2 2] 32×32×16 62×62×16 

Convolutional layer 2 [1 1 1 1] 5×5 [1 1] 30×30×32 32×32×16 

ReLU      

Max pooling layer 2 [1 1 1 1] 2×2 [2 2] 16×16×32 30×30×32 

Convolutional layer 3 [1 1 1 1] 3×3 [1 1] 16×16×64 16×16×32 

ReLU      

EL - - - 128×1 16×16×64 

Dropout - - - 128×1 128×1 

FC1 - - - 1024×1 128×1 

Dropout - - - 1024×1 1024×1 

FC2 - - - 2×1 1024×1 

SoftMax layer - - - - - 

Classification layer - - - - - 

 

 

3.2.1. Fine-tuning using EFOA 

This section begins by looking into the origins of logarithmic spiral pathways. After that, an 

adaptable switch (ratio) is built to strike the right combination of exploration and exploitation based on 
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variations in the values of expressions on the face. EFOA is used for optimizing the hyper-parameters of the 

TCNN model, such as the learning rate, batch size, number of filters, and dropout rates. Optimization of these 

hyper-parameters is critical to achieving the best possible model performance, as improper hyper-parameter 

tuning can lead to poor generalization or overfitting. In EFOA, each fruit fly represents a candidate solution 

(a set of hyper-parameters), and the algorithm explores the search space to find the best combination of 

parameters that minimizes the classification error on the validation dataset. 

The search process in EFOA involves both local and global search phases to balance exploration 

and exploitation. The local search refines the search around promising solutions, while the global search 

ensures the algorithm does not get stuck in local minima. The enhanced version of FOA introduces 

improvements in its search strategies, including adaptive parameter tuning and multi-dimensional 

exploration, which help in faster convergence to the optimal hyper-parameters. The integration of a new 

adaptable switch (ratio) and an enhanced FA is then shown. 

 

3.2.2. Design of the logarithmic spiral path 

The Sphere function 𝑓(𝑥) = ∑ 𝑋𝑖
2 𝑑

𝑖=1 and Schwefel function 𝑓(𝑥) = ∑ (∑ 𝑋𝑗
𝑖
𝑗=1 )2𝑑

𝑖=1 (xi varies 

between -100 to 100, and d is set to 10) are chosen as the benchmark functions. Our research involves 

running tests 50 times to calculate the mean performance. By doing this, the final results are less affected by 

unpredictability in population position initialization. In these 50 runs, the appropriate variables for every 

algorithm are all given the same value. The quantity of searchers is 15, 𝛼 =  0.2,  𝛽0  =  1 𝑎𝑛𝑑 𝛾 =  1. 

The potential for local space utilization has gone unnoticed. How to sustain exploration and 

exploitation of firefly is an intriguing topic in the search process. When the problem is solved, the optimizer's 

effectiveness will increase and the computational load will decrease. We solve this conundrum by 

considering large raptors that travel in a logarithmic spiral, like peregrine falcons in search of food. This 

strategy is based on experimental biology. We've also noticed a similar flight pattern for fireflies at night. 

The logarithmic spiral path is one technique that could be used to improve FA exploitation. The design of a 

novel position updating method based on this is how the logarithmic spiral looks,  

 

𝑋𝑖,𝑡+1 = 𝑋𝑖,𝑡 + 𝛽0. 𝑒
−𝛾.𝑟𝑖𝑗

2

 . (𝑋𝑗,𝑡 − 𝑋𝑖,𝑡)⨂ 𝑒
𝑏.𝑙  ⨂cos (2𝜋. 𝑙) (15) 

 

In (15), l is an even random vector in d dimensions in [−1, 1]𝑑 ; the logarithmic spiral's shape is determined 

by the constant b, which has a default value of 1. To describe the position update methodology in (16), two 

causes determine this position variation: logarithmic spiral paths and brightness intensity. The coefficients in 

mathematics represent the latter 𝑒𝑏.𝑙  ⨂cos (2𝜋. 𝑙). 
 

3.2.3. Adaptive switch design 

In order to equalize both exploring and exploiting modes, this research provides the adaptive switch 

(ratio) technique. Which approach will be employed in the following iteration: 

 

{
𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑀𝑜𝑑𝑒 𝑓𝑜𝑟 𝐺𝑙𝑜𝑏𝑎𝑙 𝑆𝑒𝑎𝑟𝑐ℎ, 𝑖𝑓 𝑢 > 𝑅𝑡,
𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑀𝑜𝑑𝑒 𝑓𝑜𝑟 𝐿𝑜𝑐𝑎𝑙 𝑆𝑒𝑎𝑟𝑐ℎ, 𝑖𝑓 𝑢 ≤ 𝑅𝑡 ,

 (16) 

 

Where u is a generated number randomly with uniform distribution [0, 1] and the 𝑅𝑡 is computed in the 

previous iteration. The exploitation method must be selected with a greater probability than a mode of 

exploration in order to hasten the optimizer's convergence. Thus, we describe the changeover R_(t+1) 

ranging from [0.5, 1]. Setting the beginning ratio to 0.5 results in the value of the adaptable switch: 

 

𝑅𝑡+1 =

{
 
 

 
 

1

1+exp (−
𝑓𝑡
∗

𝑓𝑡−1
∗ )

, ⌊lg|𝑓𝑡
∗|⌋  ≠⌊lg|𝑓𝑡−1

∗ |⌋ ,

1

1+exp (−
𝑓𝑡
∗−𝜃.⌊

𝑓𝑡
∗

𝜃
⌋

𝑓𝑡−1
∗ −𝜃.⌊

𝑓𝑡−1
∗

𝜃
⌋

)

, 𝑒𝑙𝑠𝑒  (17) 

 

In (17), 𝑓𝑡
∗ at the t-th iteration, is the best function's fitness value; 𝑙𝑔(·)  =  𝑙𝑜𝑔10(·); ⌊ · ⌋ is the floor's 

purpose. The calculation of the (18) is done using the formula by the adaptable scale parameter threshold: 

 

 𝜃 =  10⌊lg|𝑓𝑡
∗−𝑓𝑡−1

∗ |⌋+1 (18) 
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We shall examine three situations in order to comprehend how this formula works in greater detail: 

− The first condition, 𝑓𝑡
∗ ≫ 𝑓𝑡−1

∗ . As a result, there is a sizable gap between two iterations. The process of 

optimisation now has a fresh, better option thanks to search agents. Hence, an adaptive ratio 𝑅𝑡+1  
becomes 1 and the next iteration's a mode of exploration is selected;  

− If 𝑓𝑡
∗ ≪ 𝑓𝑡−1

∗ , then shift to exploration with regard to of performance degradation. The flexible ratio 

𝑅𝑡+1  will be 0.5, and we'll make using a mode of exploration more likely the following searches. 

− The final prerequisite is ⌊lg|𝑓𝑡
∗|⌋ = ⌊lg|𝑓𝑡−1

∗ |⌋ , imply the discovery of a closest minimum. By the item, 

we adjust the ratio by (19) to increase the sensitivity of the adaptive switch. In this scenario, there will 

be a high likelihood of search agents escaping potential traps. 

 

𝑓𝑡
∗−𝜃.⌊

𝑓𝑡
∗

𝜃
⌋

𝑓𝑡−1
∗ −𝜃.⌊

𝑓𝑡−1
∗

𝜃
⌋
 (19) 

 

The scaling factor ⌊lg|𝑓𝑡
∗ − 𝑓𝑡−1

∗ |⌋  can automatically detect the finding status. Thus, our adaptive 

switch improves convergence even more. Following that, the logistic function is used to convert the variation 

to a probability. The adaptable switch ratio is then determined. Based on the idea of a flexible switch layout, 

we discover that this particular switch has a greater capacity: agents that search activity has increased in 

choosing a mode of exploration when there is an interruption during the process of searching to ensure the 

optimization algorithm to find a greater ideal. 

 

3.2.4. Firefly's updated algorithm 

The updated location formula is now displayed as (20): 

 

𝑋𝑖,𝑡+1 = {
𝑋𝑖,𝑡 + 𝛽0. 𝑒

−𝛾.𝑟𝑖𝑗
2

. (𝑋𝑗,𝑡 − 𝑋𝑖,𝑡) + 𝛼. 𝑠𝑖𝑔𝑛[𝑟𝑎𝑛𝑑 − 0.5]⨂𝐿𝑒𝑣𝑦, 𝑢 > 𝑅𝑡,

𝑋𝑖,𝑡 + 𝛽0. 𝑒
−𝛾.𝑟𝑖𝑗

2

. (𝑋𝑗,𝑡 − 𝑋𝑖,𝑡) ⨂ 𝑒
𝑏.𝑙  ⨂ cos (2𝜋. 𝑙), 𝑢 ≤  𝑅𝑡 .

 (20) 

 

Our revised firefly method, termed the adaptable logarithmic spiral firefly algorithm, which integrates the 

advantages of FA with a modernized the logarithmic spiral pathway controlled by a smart adaptive switch. 

The pseudo-code demonstrates the modifications that were made for the conventional FA framework to 

accommodate our flexible switch. The most recent value of the fitness function f_t^* is logged to configure 

the flexible switch. We will employ a traditional technique in which the value of the switch is fixed at 0.5 to 

assess the effectiveness of the capability of the adaptive switch and the logarithm spiral path. In (21) is the 

method for updating position: 

 

𝑋𝑖,𝑡+1 = {
𝑋𝑖,𝑡 + 𝛽0. 𝑒

−𝛾.𝑟𝑖𝑗
2

. (𝑋𝑗,𝑡 − 𝑋𝑖,𝑡) + 𝛼. 𝑠𝑖𝑔𝑛[𝑟𝑎𝑛𝑑 − 0.5]⨂𝐿𝑒𝑣𝑦, 𝑢 > 0.5,

𝑋𝑖,𝑡 + 𝛽0. 𝑒
−𝛾.𝑟𝑖𝑗

2

. (𝑋𝑗,𝑡 − 𝑋𝑖,𝑡) ⨂ 𝑒
𝑏.𝑙  ⨂ cos (2𝜋. 𝑙), 𝑢 ≤  0.5.

 (21) 

 

 

4. RESULTS AND DISCUSSION 

To conduct the research, an Intel Core i5-7200 CPU besides 8 GB of internal memory is utilized. 

The processor is accomplished of running at 2.7 GHz. Devoted User Interface (UI) besides Jupyter Notebook 

(Python 3.7) perform the operations on Windows 10, a 64-bit operating system natural setting. 

 

4.1.  Validation analysis of proposed model with existing procedures 

Table 3 provides the experimental investigation of predictable faultless with existing procedures in 

terms of different metrics. In Table 3 means that the validation study of projected faultless with existing 

techniques. In this investigation, the MLP technique attained sensitivity as 0.915 besides specificity as 0.97 and 

accuracy of 0.957 and F-measure of 0.937 and precision as 0.840 correspondingly. Then the autoencoder 

technique attained sensitivity as 0.935, specificity as 0.98, accuracy of 0.953, F-measure of 0.946, and precision 

as 0.887 correspondingly. Then the deep belief network (DBN) technique attained sensitivity as 0.921, 

specificity as 0.99, accuracy of 0.964, F-measure of 0.942, and precision as 0.892 correspondingly. Then the 

CNN technique attained sensitivity as 0.936, specificity as 0.99, accuracy of 0.988, F-measure of 0.965, and 

precision as 0.913 correspondingly. Then the TCNN technique attained sensitivity as 0.956, specificity as 0.96, 

accuracy of 0.981, F-measure of 0.971, and precision as 0.937 correspondingly. Then the EFOA-TCNN 

technique attained sensitivity as 0.975, specificity as 1.00, accuracy of 0.995, F-measure of 0.986, and precision 
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as 0.959 congruently. The Figures 2(a) and 2(b) shows the visual representation of projected classical and 

comparison analysis of proposed with existing models for plant disease detection respectively. 

 

 

Table 3. Validation analysis of proposed textbook with existing techniques 
Classifiers Sensitivity Specificity Accuracy F-measure Precision 

MLP 0.915 0.97 0.957 0.937 0.840 
AE 0.935 0.98 0.953 0.946 0.887 

DBN 0.921 0.99 0.964 0.942 0.892 
CNN 0.936 0.99 0.988 0.965 0.913 

TCNN 0.956 0.96 0.981 0.971 0.937 
EFOA-TCNN 0.975 1.00 0.995 0.986 0.959 

 

 

 
(a) 

 

 
(b) 

 

Figure 2. Performance and comparative analysis, (a) visual representation of projected classical and 

(b) comparison analysis of proposed with existing models for plant disease detection 

 

 

The improvement in precision and F-measure indicates better balance in handling both true positives 

and false positives. This table provides a concise yet comprehensive comparison, clearly demonstrating the 

effectiveness of the proposed model. This approach keeps the manuscript manageable while showcasing the 

significant performance gains of the EFOA-TCNN. 

Validation analysis comparing the performance of the proposed EFOA-TCNN model with existing 

techniques, specifically the reference model [4], is presented in Table 4. The analysis highlights key metrics 

such as sensitivity, specificity, accuracy, F-measure, and precision. The reference model achieved a 

sensitivity of 95%, specificity of 96%, accuracy of 96%, F-measure of 95%, and precision of 96%. In 

contrast, the EFOA-TCNN model outperformed the reference model with a sensitivity of 97.5%, perfect 

specificity of 100%, an accuracy of 99.5%, an F-measure of 98.6%, and a precision of 95.9%. This indicates 

that the EFOA-TCNN model demonstrates superior performance across all metrics, significantly enhancing 

detection capabilities in the context of the study. Such findings underline the effectiveness of integrating 

optimization techniques like EFOA in deep learning models for improved classification tasks, as supported 

by various studies in the field of machine learning and image processing. 
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Table 4. Validation analysis of proposed textbook with existing techniques 
Classifiers Sensitivity (%) Specificity (%) Accuracy (%) F-measure (%) Precision (%) 

Reference [4] 95 96 96 95 96 
EFOA-TCNN 0.975 1.00 0.995 0.986 0.959 

 

 

4.2.  Discussion 

This research presents the development of an optimized model for citrus disease detection, focusing 

on improving accuracy and efficiency through the integration of the EFOA with a TCNN. The experimental 

results demonstrate that the proposed EFOA-TCNN model significantly outperforms traditional machine 

learning and deep learning techniques in detecting diseases from images of orange leaves. The EFOA-TCNN 

model achieved remarkable performance across key metrics, with an accuracy of 0.995, sensitivity of 0.975, 

and precision of 0.959. These results indicate the model's high capacity to correctly identify diseased leaves 

while minimizing false positives and negatives. The model's use of an energy layer in place of a traditional 

pooling layer allowed for better feature extraction, preserving crucial image details that contributed to its 

superior classification performance. This modification, combined with the hyper-parameter tuning provided 

by EFOA, resulted in improved sensitivity and accuracy compared to the baseline CNN model and other 

classifiers such as MLP and AE. 

The optimization of TCNN parameters using EFOA played a critical role in the model’s success. By 

fine-tuning hyper-parameters such as learning rate, filter size, and dropout rates, the EFOA significantly 

enhanced the TCNN’s ability to capture intricate disease patterns in the input images. This demonstrates the 

importance of applying optimization algorithms to improve deep learning architectures for specific 

applications, such as agricultural disease detection.  

In comparison to other classifiers, the proposed EFOA-TCNN model consistently outperformed 

MLP, AE, DBN, and CNN in all key metrics. The closest competing model, CNN, achieved an accuracy of 

0.988, but the EFOA-TCNN model still surpassed it with a notable 0.995 accuracy. The improvement in 

sensitivity (0.975) and specificity (1.00) shows the model's exceptional balance between correctly identifying 

diseased leaves and avoiding false positives, which is critical in real-world agricultural settings where over-

diagnosing diseases can lead to unnecessary treatments and costs.  

The research findings provide strong evidence that the proposed EFOA-TCNN model is a highly 

effective tool for automated citrus disease detection. By integrating the EFOA, the model significantly 

outperforms conventional techniques and demonstrates potential for real-world implementation. The 

inclusion of optimization algorithms such as EFOA helps bridge the gap between theoretical model 

development and practical applications, making this approach scalable for broader. 
 

 

5. CONCLUSION 

Deep learning has achieved significant advancements in agriculture, particularly in automating the 

identification of plant diseases while minimizing the reliance on extensive human involvement. This research 

focused on developing an automated system for disease identification in citrus leaves through deep learning 

and optimal feature selection. Initially, data augmentation was employed to expand the dataset, enhancing the 

robustness of deep learning representations. To further improve the precision and efficiency of plant disease 

detection, this study introduced a novel approach that integrates multiple methodologies. Specifically, a 

hyperparameter-tuned TCNN was utilized to enhance classification performance. This approach streamlined 

the architecture by replacing conventional pooling layers with just three energy layers, thereby making the 

model more accessible and effective. The use of the EFOA facilitated efficient hyperparameter tuning, which 

contributed to improved model performance. The extracted features were subsequently categorized using 

various supervised learning algorithms. Although the fusion of selected deep features significantly enhanced 

detection accuracy, it was accompanied by a trade-off in increased computational time. Looking ahead, this 

research lays the groundwork for implementing real-time monitoring systems for citrus plant disease 

detection. Future work will explore the integration of this model with internet of things (IoT) devices and 

edge computing systems, enabling real-time disease detection in agricultural fields. Such integration would 

facilitate rapid on-site analysis of plant health without relying on centralized servers, allowing farmers to 

receive immediate feedback and make timely interventions. Moreover, future studies could focus on 

enhancing the model's efficiency through optimization techniques that reduce computational overhead while 

maintaining accuracy. The exploration of adaptive learning systems that continuously improve with new data 

can also be a key area for development. This research underscores the potential of AI-powered disease 

detection systems in agriculture and sets the stage for further advancements in precision farming 

technologies. By combining advanced image analysis and optimization techniques, we can unlock new 

avenues for sustainable crop protection methods, ultimately benefiting both producers and consumers. 
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