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 The internet of things (IoT) and software-defined networks (SDN) play a 

significant role in enhancing efficiency and productivity. However, they 

encounter possible risks. Artificial intelligence (AI) has recently been 

employed in intrusion detection systems (IDSs), serving as an important 

instrument for improving security. Nevertheless, the necessity to store data 

on a centralized server poses a potential threat. Federated learning (FL) 

addresses this problem by training models locally. In this work, a network 
intrusion detection system (NIDS) is implemented on multi-controller SDN-

based IoT networks. The interplanetary file system (IPFS) FL has been 

employed to share and train deep learning (DL) models. Several clients 

participated in the training process using custom generated dataset IoT-SDN 
by training the model locally and sharing the parameters in an encrypted 

format, improving the overall effectiveness, safety, and security of the 

network. The model has successfully identified several types of attacks, 

including distributed denial of service (DDoS), denial of service (DoS), 
botnet, brute force, exploitation, malware, probe, web-based, spoofing, 

recon, and achieving an accuracy of 99.89% and a loss of 0.005.  
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1. INTRODUCTION  

The term "internet of things (IoT)" refers to connecting embedded devices to the internet. The idea 

behind the IoT is to enable everyday items to be connected over the network and gather vast amounts of data 

from devices with different powers and limited resources; hence, enforcing security and protection can be 

challenging [1]. Network traffic analysis and abnormal activity identification are resource-intensive tasks. 

Over the last several years, several lightweight approaches for improving IoT security have been created  

[2], [3], but these systems are unable to handle the significant security risks that have been discovered lately. 

Hence, it is imperative to design effective intrusion detection to efficiently defend against various forms of 

attacks. Intrusion detection system (IDS) performs an essential part as the primary defense mechanism [4] 

which employs many approaches to identify and flag abnormalities. Significant advancements have been 

achieved using machine learning (ML) and deep learning (DL) in recent years, resulting in widespread use 

across several domains. It can offer techniques to identify various forms of attack without the need for 

significant human involvement. While these methods have proven effective for IDS, they often need a 

centralized server to analyze the data gathered from all network users. Federated learning (FL) is a means to 

implement on-device learning while preserving data privacy [5]–[7]. FL is an iterative procedure in which the 
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entire model may be enhanced in each round by training the model on many devices and using their data 

across numerous iterations without exchanging data with a centralized server achieving privacy preservation 

and cost reduction, as expected in conventional centralized approaches [8]. Software-defined networking 

(SDN) is an innovative architecture that separates network control from forwarding functions, enabling direct 

programmability of network management and enhancing operational efficiency. The SDN network utilizes 

these attributes to create a proactive system for detecting intrusions in IoT networks, making it a superior 

choice for overcoming the challenges faced in the efficient operation of IoT due to its programmability and 

comprehensive perspective [9], [10].  

The network-based IDS, referred to as network intrusion detection system (NIDS), is designed to 

determine whether IP traffic is compromised by threads. The process consists of a training phase utilizing an 

accurate representation of recognized activities, followed by an operational classification and decision phase. 

The training and classification phases rely on the definition and extraction of a set of statistical parameters 

associated with each IP flow, which constitute the statistical fingerprint of the flow, and on DL classifiers 

designed to differentiate between normal and malicious traffic. In this study, FL was utilized to cooperatively 

train DL models to implement anomaly-based IDS on a multi-controller SDN-based IoT that leverages the 

characteristics of SDN to establish a proactive system for detecting intrusions in IoT networks. Several 

clients can obtain the DL model from the interplanetary file system (IPFS) network and participate in the 

training process by training the model locally on their custom-generated dataset and sharing only the 

parameters in an encrypted form using advanced encryption standards (AES) algorithm. This process 

enhances the overall efficiency, safety, and security. The model has successfully identified several types of 

attacks achieving an accuracy of 99.89% and a loss of 0.005.  

The rest of the paper is organized as follows: section 2 focuses on IDS research in context of SDN 

and IoT networks, and section 3 contains comprehensive background analysis with the details of our custom-

generated dataset IoT-SDN. The suggested methodology is discussed in section 4. The experimental results 

and efficacy of proposed method are presented in section 5, whereas section 6 outlines the work's conclusion.  
 

 

2. RELATED WORK 

The substantial amount of data and the diversity of devices make the security of the IoT a significant 

problem. IDSs have been developed employing various methodologies and strategies to secure and defend 

IoT networks. Several prominent intrusion detection algorithms recently developed to address security 

challenges in SDN and IoT networks are outlined in Table 1 which provides a summary of the researchers 

who have concentrated on implementing IDS on the SDN network.  
 

 

Table 1. Survey of the most related work of IDSs on the SDN and IoT networks 
Reference Year Network Dataset Technique Accuracy (%) 

Tang et al. [11] 2016 SDN NSL-KDD Deep neural network (DNN) 75.75 
Ajaeiya et al. [12] 2017 SDN Custom Random forest (RF) 85.4 
Ye et al. [13] 2018 SDN Custom Support vector machine (SVM) 95.24 
Latah and Toker [14] 2018 SDN NSL-KDD Decision tree 71 
Tang et al. [15] 2019 SDN NSL-KDD Gate recurrent unit (GRU)- 

recurrent neural network (RNN) 

89 

Boppana et al. [16] 2019 SDN NSL-KDD RF 81.95 
Hannache and Batouche [17] 2020 SDN Custom DNN 96.13 
Lim et al. [18] 2020 SDN-IoT N. A. FL-RF with actor-critic PPO N.A 
ElSayed et al. [19] 2021 SDN InSDN [20] Convolutional neural networks 

(CNN)+RF 
99.28 

Hadem et al. [21] 2021 SDN NSL-KDD SVM 95.98 
Alzahrani and Alenazi [22] 2021 SDN NSL-KDD XGBoost Detection: 95.5, 

Classification: 95.95 
Wani et al. [23] 2021 SDN CSE-CIC-IDS 2018 IDS IoT-SDL 99.05 
Mohsin and Hamad [24] 2022 SDN Custom RF 

KNN 
Naive Bayes (NB) 
Logistic regression (LR) 

RF: 100 
KNN: 99.99-100 
NB: 72.11-83.5 
LR: 59.44-92.74 

Ravi et al. [25] 2022 SDN-IoT SDN-IoT [26] GRU feature fusion Detection: 99 
Classification: 98 

Jose and Jose [27] 2023 IoT CIC-IDS 2017 DNN; LSTM; CNN 94.61; 97.67; 98.61 

Logeswari et al. [28] 2023 SDN NSL-KDD HFS-LGBM 98.72 
Chaganti et al. [29] 2023 SDN-IoT SDN IoT-focused LSTM 97.1 
Maddu and Rao [30] 2023 SDN InSDN edge IIoT DL 99.65 
Elsayed et al. [31] 2023 SDN-IoT ToN-IoT InSDN LSTM 96.35; 99.73 
Vidhya and Nagarajan [32] 2024 SDN-IoT CSE-CIC-IDS2018; 

SDN-IoT 
BiLSTM-based WNIDS 99.97-99.96 

95.13-92.90 
Niknami and Wu [33] 2024 SDN NSL-KDD; KDD99 DeepIDPS (CNN-LSTM+AM) 92.2-95.4; 95.26-97.42 
Our work 2024 SDN-IoT IoT-SDN [34] FL-DL 99.89 
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Ajaeiya et al. [12] introduced RF based IDS for identifying network threats in SDN. The network 

features used to train the model and predict network attacks consisted of tuple-5, packet count, byte count, 

and packet interarrival time. The detection method was tested against many types of attacks, including brute 

forcing, port scanning, and flooding attacks. While the results indicated a high level of accuracy in detecting 

attacks using the RF method, there is a lack of detailed information on the selection of the dataset for attack 

traffic. Therefore, these results may be solely relevant to non-IoT traffic. 

Ye et al. [13] introduced a distributed denial of service (DDoS) attack detection system in SDN that 

utilized SVM. The feature set used for predicting flooding attacks consisted of the 6-tuple network flow 

characteristics. The authors state that they achieved an average detection accuracy rate of 95.24% in 

detecting user datagram protocol (UDP) flooding attacks. However, the attack traffic created with the hping3 

tool is not suitable for generating IoT traffic. 

Latah and Toker [14] conducted a comparison of several supervised ML methods for anomaly-based 

intrusion detection in SDNs. The authors stated that the decision tree  algorithm obtained a higher accuracy 

of 99.7% when the network security laboratory (NSL)-KDD dataset characteristics were utilized as input for 

comparing ML detection models. However, the distinctive characteristics of SDN for detecting anomalies 

should be taken into account. Nevertheless, the NSL-KDD dataset was specifically created to assess and 

identify traditional network traffic, rather than focusing on the capabilities of SDN. 

Boppana et al. [16] conducted a comparison of ML algorithms using various feature selection 

methods in the SDN anomaly detection module. The NSL-KDD dataset was utilized to assess the 

effectiveness of various feature and ML model combinations in the context of SDN. However, the authors 

acknowledge that conducting tests on a real-time SDN testbed is a potential future goal to verify the validity 

of their findings. 

Hadem et al. [21] utilized an SVM and selective logging with IP traceback to accurately identify 

attacks in SDN using an IDS which also helped conserve memory resources. The NSL-KDD dataset utilized 

yielded a detection accuracy of 87.74%. However, the dataset is not sourced from non-IoT networks, and 

there is still potential for enhancing accuracy. 

Alzahrani and Alenazi [22] presented a NIDS for SDNs that uses the extreme gradient boosting 

(XGBoost) model to accurately categorize network intrusions. Five features were chosen from 41 in the  

NSL-KDD dataset. The given findings indicate a classification accuracy of 95.5% for XGBoost. 

Additionally, the authors emphasize that their approach may be used for SDN.  

Mohsin and Hamad [24] investigated the effectiveness of various supervised ML algorithms for 

detecting DDoS attacks across different SDN network topologies. They applied RF, k-nearest neighbors 

(KNN), NB, and LR to single, linear, and multi-controller architectures. Their results showed that while RF 

and KNN achieved strong detection performance, NB and LR suffered from low accuracy and a high rate of 

false predictions, limiting their suitability for practical deployment. 

Jose and Jose [27] investigated the efficacy of DNN, convolutional neural networks (CNN), and 

long short-term memory networks (LSTM) in IoT environments for the deployment of IDS utilizing the  

CIC-IDS 2017 dataset. The results indicated that DL models outperformed previous methods used in IoT-

based IDS. Specifically, LSTM and CNN achieved accuracies of 97.67% and 98.61%, respectively, while the 

overall DL approach reached 94.61% accuracy. 

The aforementioned studies together either imitate the behavior of conventional network traffic or 

employ the attributes of previous network traffic data to perform testing. The experiments confirm that it is 

possible to integrate such enhancements into the module that is in charge of detecting attacks in the SDN 

controller. However, IoT network traffic should be considered, as it is produced through the utilization of IoT 

devices inside the SDN framework, or by combining the flow of IoT traffic with conventional network traffic 

to evaluate the detection effectiveness of ML models. Furthermore, the performance of detecting or 

classifying in supervised or unsupervised ML models still needs enhancement in the SDN network. 

Nevertheless, some researchers investigated further the utilization of neural network models for the detection 

and categorization of network attacks in SDN such as:  

Chaganti et al [29] an LSTM-based architecture for intrusion detection in SDN-enabled IoT 

networks. Their model effectively identified and classified various network attacks, including port scanning, 

operating system fingerprinting, denial of service (DoS), and DDoS. The results highlight the model’s 

suitability for capturing temporal patterns and enhancing detection accuracy in complex SDN-IoT 

environments. 

Elsayed et al. [31] conducted a secured automatic two-level intrusion detection system (SATIDS) 

that employed an enhanced LSTM network and utilized ToN-IoT and InSDN datasets. The author stated that 

the proposed system effectively distinguished between malicious and harmless network traffic, accurately 

categorized the type of attack, and precisely identified the specific sub-attack. The research results 

demonstrated that the suggested system surpasses others in identifying a wide range of attacks. However, 

LSTM-based models need substantial memory capacity throughout the training process. The substantial 
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memory resource consumption might restrict the utilization of LSTM for IDS in SDN and IoT networks. 

Also, in a complex IoT network, the suggested architecture requires significant time to train the model due to 

the process of self-learning the features and adjusting the model weights. 

 

 

3. TECHNOLOGY BACKGROUND 

Before examining the proposed model, it is essential to get an understanding of the main technique 

and method utilized in this study. Which was selected through an evaluation of the prior studies that consider 

the development of an efficient IDS system and analyze the used tools. This section provides an overview of 

the technologies and methodologies utilized to implement NIDS on an SDN network as follows. 

 

3.1.  Software defined network  

Switches and routers were utilized in traditional networks to establish network connections and 

facilitate the transmission of data throughout the network. This networking technique may be vulnerable to a 

lack of confidentiality and susceptible to third-party attacks. SDN is a networking strategy that enhances the 

efficiency of a centralized environment by separating data transfer from dedicated devices [35]. This 

paradigm is structured around distinct planes, each with its own designated functions, i) data plane 

responsible for the forwarding of packets; ii) the control plane determines routing by leveraging a flow table 

that provides rules for efficiently managing incoming packets; and The application plan contains a range of 

services that are offered to users.  

However, new vulnerabilities may also be introduced from this separation. For example, the 

controller can be illustrated by exhausting the communication bandwidth between infrastructure layers such 

as the OpenFlow switch and SDN controller. Nevertheless, SDN can improve network security due to its 

programming capabilities that enable the creation of security applications such as IDS that detect network 

threats. Also, it is important to mention that flow rules may be modified based on requirements [36] by 

leveraging the ability to program and control offered by SDN in comparison to traditional networking 

systems [37]. Figure 1 illustrates the typical SDN architecture.  

 

 

 
 

Figure 1. SDN network architecture 

 

 

3.2.  Intrusion detection systems  

IDS is a crucial element in safeguarding systems by detecting and analyzing network traffic to 

identify security breaches and threats using one of the following techniques: signature-based or anomaly-

based. The first method relies on predetermined network patterns and is therefore unable to identify new 

attacks. In contrast, the latter method analyzes particular characteristics of network traffic, allowing any 

divergence from normal network activity to be recognized as a potential attack; a simple comparison between 

them is presented in Table 2, [38]. Nevertheless, some drawbacks were also introduced, such as the lack of 

identification of encrypted packets and, the incidence of false alarms may be elevated, leading to the need for 

human intervention to adjust the anomaly indicators and ultimately resulting in an inefficient security 

solution [39]. 
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Table 2. Detection technique comparison 
Factor Detection technique 

Signature Anomaly 

Alarm rate Low High 

Speed Hight Low 

Flexibility Low High 

Reliability High Moderate 

Scalability Low High 

Robustness Low High 

 

 

Recently, several ML approaches have been introduced to identify intrusion in SDN and IoT [15], 

[16], [19]-[21]. Also, the DL model was proposed in the context of SDN and the IoT to enhance intrusion 

attack detection [17], [22], [25]. Previous research on intrusion detection has demonstrated that the DL model 

provides superior performance when applied to large-scale network datasets [22], [25]. Despite the 

substantial impact of ML and DL on practical problem-solving, they are subject to many limitations, 

including: i) users must provide their data to a centralized server to train the model; ii) when network size 

increases, the performance diminishes and there is a risk of a single point of failure that might undermine the 

integrity and quality of services (QoS); iii) IDS needs rapid analysis, however, centralized processing is a 

time-consuming process; and iv) IoT devices frequently gather data from end-users, potentially exposing 

their sensitive information. To tackle these problems, it’s necessary to use methods that involve on-device 

learning. 

 

3.3.  Federated learning  

Google introduced the concept of FL to preserve data privacy on devices [5]‒[7] by allowing nodes 

to learn collaboratively without sharing data with a centralized server. FL is an iterative procedure in which 

the entire model is enhanced in each round until a specific number has been reached or the required level of 

performance is attained. In the beginning, the FL server selects a distinct group of clients to participate in the 

training process and distributes its global model to them [7]. Once the global model is obtained, each client 

employs its data for local training and transmits their acquired parameters back to the server, as illustrated in 

Figure 2. It offers a privacy protection technique that efficiently utilizes the processing resources of the parity 

device for model training, thereby preventing the leakage of private information during data transfer. 

Considering the enormous number of devices, there are a large number of relevant dataset resources that can 

be effectively utilized. 

 

 

 
 

Figure 2. FL overview 

 

 

Generally, FL may be categorized into three types based on the distribution of clients' data: vertical, 

horizontal, and transfer FL. Herts for learning (HFL) is an FL technique in which the datasets on the clients 

share the same feature but have separate observations. Vertical federated learning (VFL), often referred to as 

features-based FL, in which data from several domains is utilized to train a global model. In this context, the 

client dataset may contain identical observations but with varying characteristics. Aside from HFL and VFL, 

there is also the federated transfer learning (FTL) architecture presented in [40], which is applicable when the 

datasets on the devices differ not only in occurrences but also in characteristics. However, to ensure privacy, 

some problems must be addressed in the implementation of FL: i) it is imperative to guarantee that the 
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training model used does not disclose users' confidential information; ii) since the training process proceeds 

locally at each entity using its dataset. Therefore, it is crucial to guarantee that only allowed entities 

participate in the training process and the received model updates have been transmitted by them; iii) 

traditional ML models require a substantial amount of data to achieve outstanding performance. However, in 

a dispersed context, the accessible data on each device is minimal. Conversely, consolidating all data in a 

centralized way might lead to significant costs; and iv) the data stored on such devices may not exhibit 

distinct and symmetrical distribution (non-IID) characteristics; training these data sets poses a substantial 

challenge. 

 

3.4.  IoT-SDN dataset 

There is a lack of publicly accessible datasets that are explicitly designed for intrusion detection in 

SDN-based IoT. For this work, a custom-generated dataset was utilized. The dataset comprises eighty-six 

attributes within a size of (2.7 GB) collected from simulated SDN-based IoT networks within two flow 

profiles: normal and attack traffic such as botnet, brute force, DoS, DDoS, exploitation, malware, MIRAI, 

probe, R2L, UR2, web-based, spoofing, and recon, employed using Metasploit. Table 3 presents the collected 

traffic categories together with their corresponding record numbers. The network topology is implemented 

using Mininet WiFi on the Ubuntu 20.04 LTS operating system consent of two Ryu controllers who were 

responsible for managing the operation of the four OpenFlow switches that connected to four subdomains. 

Each subdomain comprises a pair of hosts a single access point, and three wireless stations. The first two 

subdomains encompass a variety of services, such as HTTP and FTP servers. In contrast, the last two 

comprise many wireless sensor devices. The network traffic is captured using Wireshark and classified 

according to its features extracted using CICFlowMeter. 

 

 

Table 3. Data records number for each traffic group 
Group Traffic type Records 

Normal HTTPS, HTTP, FTP, DNS, mail, browsing, and YouTube 367,396 

Attack DoS, DDoS, R2L, Brute-Force, Exploitation, Web-Based, Botnet Probe, Recon, Spoofing, Malware 5,878,336 

(367,396 for each) 

 

 

4. PROPOSED METHODOLOGY 

The technique employs a systematic approach that starts with the precise definition of the research 

issue. The combination of FL with DL techniques for anomaly incursion detection in SDN-based IoT 

networks is emerging as a potentially unique approach. This section delineates the projected architecture 

illustrated in Figure 3 which has been executed in two principal phases as follows.  

 

 

 
 

Figure 3. SDN-based IoT proposed system architecture 
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4.1.  Deploying an SDN infrastructure for an IoT network 

One of the significant vulnerabilities is the SDN network when the controller is exploited by 

overwhelming the communication capacity with excessive and undesired traffic, leading to a DDoS attack. 

However, network security can be enhanced by its programming capabilities, which allow for the 

development of security applications such as IDS that can identify network threats. Our suggested 

architecture comprises numerous objectives, which are i) a multi-controller SDN network was established 

utilizing Zookeeper and Redis. ZooKeeper will promptly organize and coordinate the change of controller 

role, whereas a backup copy from the flow table will be stored in Redis storage. This setup serves as a robust 

framework to prevent network failure. If the master controller becomes inactive, the other controller retrieves 

the flow entries from Redis storage and smoothly continues network operations, Figure 4 demonstrates the 

multi-controller implementation steps; ii) ingress and egress policies were employed to manage and control 

network traffic; iii) all packets received by the controller will be initially sent to the IDS server to predict 

whether the traffic received is an attack or normal traffic. However, by flooding the controller, the IDS server 

will also be flooded. To prevent this, DoS and DDoS attacks are mitigated once a threshold is reached; and 

iv) the slave controller is utilized to efficiently manage the huge amount of data received on the master 

controller by enabling Pushback police. Mininet WiFi used to construct a tree topology illustrated in Figure 4 

consists of four domains. Each domain is composed of two hosts, an access point, three stations, and three 

wireless sensors. IoT devices may experience communication resource limits that prevent them from 

interacting with a central base station due to the limitations in communication resources. 
 

 

 
 

Figure 4. ZooKeeper and Redis coordination system 
 

 

4.2.  Deploying anomaly-based network intrusion detection system 

Initially, the coordinator server uploads the global model presented in Table 4, to the IPFS network 

which is utilized to enhance secure model aggregation, ensuring that only authorized clients involved in the 

training process can access and download the global model based on a specific hash identifier. IPFS is a 

decentralized framework involving protocols, packages, and composable specifically designed to handle, 

direct, and transmit content-addressed data. The system is both resource-efficient and reliably converges to 

centralized FL frameworks with a drop of less than 1% [41]. The model consists of four dense layers with 

256, 128, 64, and 32 neurons, respectively in addition to the input and output layers. Each layer is followed 

by a batch normalization layer and a dropout rate of 0.5. The reason for adding these layers is to improve the 

performance and generalization of the network. The batch normalization stabilizes the learning process by 

normalizing the activations of the preceding layer. The dropout layer is utilized to mitigate overfitting in the 

model by enhancing its ability to generalize to new data and increasing its overall resilience. The rectified 

linear unit (ReLU) activation function was used in all the Dense layers due to its simplicity, efficiency, and 

ability to address the vanishing gradient problem. SoftMax activation function was used in the output layer 

for multi-class classification tasks to generate a probability distribution across different classes.  
 

 

Table 4. DL training model 
Algorithm Layers Neuron 

DNN 4 Dense, in addition to input and output layer 256, 128, 64, 32 

 4 Batch Normalization layer  

 4 Dropout layer  

Activation function ReLU, SoftMax  

Loss function Categorical cross-entropy  

Optimizer Adam  

Batch-size 256  

 

 

Table 5 illustrates the classification report of detecting each attack type after training the model. All 

of the metrics demonstrate a superior degree of effectiveness in all types of traffic, with a notable exception 
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being the user to root (U2R) category which can be explained by the fact that other categories frequently 

display more dissimilarity in comparison to normal traffic patterns. In contrast, the U2R attacking class has a 

notable similarity to the standard data traffic.  

The IDS model is deployed on a dedicated server to perform intrusion detection to the complete 

network, which offers substantial advantages in terms of performance, scalability, security, and maintenance. 

It guarantees that the controller can concentrate on its primary operations, while the IDS server is fine-tuned 

and expanded expressly for efficient intrusion detection. In an SDN, the process of packet forwarding is 

handled differently, when a host sends a request to another host, it is first forwarded to the Open vSwitch 

(OVS) switch. The switch checks if there is any instruction to proceed with. If not, the packet is forwarded to 

the controller to identify the optimal path. In our work, the master controller sends the packet to the NIDS 

server, which contains the trained model. This model predicts whether the packet is normal or intrusion. In 

the case of normal traffic, the controller identifies the optimal path to forward it to the destination, sends the 

instruction back to the switch, and adds a new flow entry in Redis storage. If it is an intrusion traffic the 

controller adds a flow entry to block the source host. 
 
 

Table 5. DNN training model 
Traffic Type Precision Recall F1-score 

Botnet 0.9984 0.9936 0.9960 

Brute-Force 0.9993 0.9815 0.9903 

DDoS-ICMP 1.0 1.0 1.0 

DDoS-UDP 0.9991 0.9994 0.9992 

DoS-SYN 1.0 1.0 1.0 

DoS-UDP 1.0 0.9998 0.9999 

Exploitation 0.9936 0.9975 0.9956 

Malware 0.9987 0.9944 0.9966 

Mirai 0.9999 0.9989 0.9994 

Normal 0.9994 0.9975 0.9985 

Probe 1.0 0.9991 0.9995 

R2L-IMAP 1.0 1.0 1.0 

Recon-PingSweep 0.9936 0.9984 0.9960 

Recon-Sniffing 0.9983 1.0 0.9991 

Spoofing 1.0 1.0 1.0 

U2R 0.9893 1.0 0.9946 

Web-Attack 0.9908 1.0 0.9953 

 

 

5. RESULTS AND DISCUSSION  

The systematic review presents a thorough study of many research sources to assess and synthesize 

information about federated DL anomaly intrusion detection in SDN-based IoT. The findings collected 

indicate a variety of techniques and practices in the execution of the proposed methodology. This section 

explains the research findings, which offer a summary of the present study.  
 

5.1.  Statistical metrics 

Several performance indicators have been defined for the multi-class confusion matrix to evaluate 

the effectiveness of the model. The multi-class confusion matrix is an N×N matrix, where N represents the 

number of unique class labels (C0, C1, ..., CN). Matrix cells are determined by the output consisting of the 

predicted label, which may be either positive or negative, that comes out of comparing the predicted label 

with the actual class label, which can be either normal or attack [42]. As a result, the traditional classification 

of true positive (TP), true negative (TN), false positive (FP), and false negative (FN) cases becomes 

irrelevant. Alternatively, a more appropriate approach entails focusing on certain classes. This technique 

allows for the formulation of class-specific metrics. By adeptly merging these measurements that are distinct 

to each class, a comprehensive collection of metrics for the whole confusion matrix can be obtained, as 

exemplified in (1) to (5) [43]. 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
∑ 𝑇𝑃(𝐶𝑖)𝑁

𝑖=1

∑ ∑ 𝐶𝑖,𝑗
𝑁
𝑗=1

𝑁
𝑖=1

 (1) 

 

𝐹1(𝐶𝑖) =  
2𝑇𝑃𝑅(𝐶𝑖)𝑃𝑃𝑉(𝐶𝑖)

𝑇𝑃𝑅(𝐶𝑖)+𝑃𝑃𝑉(𝐶𝑖)
 (2) 

 

𝑇𝑃𝑅(𝐶𝑖) =  
𝑇𝑃(𝐶𝑖)

𝑇𝑃(𝐶𝑖)+𝐹𝑁(𝐶𝑖)
 (3) 
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𝐹𝛽(𝐶𝑖) = (1 +  𝛽2) 
𝑇𝑃𝑅(𝐶𝑖)𝑃𝑃𝑉(𝐶𝑖)

𝛽2𝑇𝑃𝑅(𝐶𝑖)+𝑃𝑃𝑉(𝐶𝑖)
 (4) 

 

𝑃𝑃𝑉(𝐶𝑖) =  
𝑇𝑃(𝐶𝑖)

𝑇𝑃(𝐶𝑖)+𝐹𝑁(𝐶𝑖)
 (5) 

 

5.2.  Experimental results 

The implementation of the DL model utilized TensorFlow, Keras, and Scikit-Learn as the 

underlying technology and was executed under the graphics processing unit (GPU) T4 x2 environment. The 

process of FL was examined for 20 rounds the evaluation parameters for each round are illustrated in  

Table 6. In the first round, only one client was used which observed a high detection loss, reaching 2.8321 

and an accuracy of 0.0841. This can be attributed to the limited diversity and insufficient training data. 

Comparatively, running the model using three clients for just one round, decreased the loss to 0.0987, and 

increased the accuracy to 0.9749. For both scenarios, the tests were conducted for 50 epochs, with a batch 

size of 250 and Adam optimizer due to its adaptive learning rate features and durability. After completing the 

20 training rounds, there is a significant enhancement in accuracy, rising from 99.76 to 99.89%. In addition, a 

notable reduction demonstrated in loss decreased from 0.01 in the standard centralized training procedure to 

0.005 in the federated DL scenario. Figure 5 illustrates the results of each cycle, with Figure 5(a) showing an 

improvement in enhancement and Figure 5(b) indicating a loss reduction. 

 

 

Table 6. Federated DL training results 
Round Client 1 Client 2 Client 3  FedAvg 

Accuracy Loss Accuracy Loss Accuracy Loss Accuracy Loss 

1 0.9745 0.0986 0.9751 0.0984 0.9750 0.0984 0.9749 0.0987 

2 0.9964 0.0131 0.9955 0.0142 0.9959 0.0136 0.9959 0.0139 

3 0.9980 0.0093 0.9979 0.0093 0.9980 0.0093 0.9978 0.0094 

4 0.9982 0.0090 0.9981 0.0089 0.9981 0.0090 0.9980 0.0091 

5 0.9981 0.0089 0.9981 0.0086 0.9981 0.0088 0.9980 0.0088 

6 0.9984 0.0078 0.9984 0.0077 0.9984 0.0078 0.9983 0.0079 

7 0.9983 0.0079 0.9984 0.0077 0.9983 0.0079 0.9982 0.0079 

8 0.9987 0.0068 0.9987 0.0068 0.9987 0.0069 0.9986 0.0069 

9 0.9984 0.0073 0.9984 0.0071 0.9984 0.0072 0.9983 0.0073 

10 0.9987 0.0069 0.9987 0.0069 0.9987 0.0070 0.9986 0.0070 

11 0.9988 0.0064 0.9988 0.0064 0.9988 0.0064 0.9987 0.0065 

12 0.9987 0.0066 0.9987 0.0066 0.9987 0.0066 0.9986 0.0067 

13 0.9988 0.0060 0.9988 0.0060 0.9988 0.0060 0.9987 0.0061 

14 0.9987 0.0067 0.9987 0.0068 0.9987 0.0068 0.9986 0.0069 

15 0.9988 0.0060 0.9989 0.0061 0.9988 0.0061 0.9988 0.0061 

16 0.9989 0.0057 0.9989 0.0057 0.9989 0.0058 0.9988 0.0058 

17 0.9989 0.0056 0.9989 0.0056 0.9989 0.0057 0.9988 0.0057 

18 0.9989 0.0059 0.9989 0.0059 0.9989 0.0059 0.9988 0.0060 

19 0.9989 0.0059 0.9989 0.0059 0.9989 0.0059 0.9988 0.0060 

20 0.9989 0.0057 0.9989 0.0057 0.9989 0.0057 0.9988 0.0057 

 

 

  
(a) (b) 

 

Figure 5. Client training metrics results for (a) model accuracy metric for the clients and FedAvg and  

(b) model loss metric for the clients and FedAvg 
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6. CONCLUSION 

This work presents a federated DL for NIDS in an IoT context in a multi-controller SDN network, 

using IPFS as the underlying technology and the AES encryption algorithm to help improve the security of 

the aggregation and training. A custom-generated dataset of intra- and inter-attacks was utilized to extract 

internal feature representations to detect and classify attacks. The proposed architecture successfully 

mitigates DoS and DDoS attacks once the attack threshold is reached on the controller to avoid flooding the 

IDS server, where the suggested model possesses an accuracy of 99.89% in identifying several attack types 

demonstrated superior performance in both the detection and classification of attacks using FL, surpassing 

conventional DL for the same model. The result shows a drop in loss from 0.01 in the standard centralized 

training procedure that utilizes the DL model to 0.005 in the federated DL scenario. In addition, there is a 

significant enhancement in accuracy, rising from 99.76 to 99.89%. The suggested technique can apply to a 

wide range of situations and may be included as a component in a real-time SDN-IoT environment. Its 

purpose is to detect any attacks and classify them into certain types, causing an alarm. The current work is 

suboptimal. Instead of using a method that selects all the characteristics, it would be more effective to apply 

kernel-based methods to choose the ideal features. This may significantly enhance the effectiveness of the 

SDN-IoT IDS. In addition, doing a thorough examination and evaluation of the model and another model 

inside the environment is crucial, as the majority of ML and DL models are susceptible to adversarial attacks. 
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