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 In the digital age, recommendation systems navigate vast alternatives. 

Content-based, collaborative filtering, deep-driven, and cross-domain 

recommendation (CDR) have been studied significantly but face cold-start 

and data sparsity. Though CDR methods outperform others, they struggle to 

optimize user-item matrices. Recent graph-based CDR methods improve 

efficiency by leveraging additional user-item interactions; however, 

optimizing graph features remains an open research area. Moreover, current 

techniques do not consider the impact of noise items (unrelated) on 

recommendation accuracy. To address this gap, this paper develops a 

heterogeneous semantic graph-embedding (HSGE) edge-pruning model that 

leverages user ratings and item metadata in the source and target domains to 

recommend items to target domain users. To achieve it, at first Word2Vec 

method is applied to explicit and implicit details, followed by Node2Vec-

driven graph embedding matrix generation. Our HSGE method obtains user-

user, user-item, and item-item connections to achieve more semantic 

features. To improve accuracy, our model prunes edges that drop source 

domain items and allied edges unrelated to the target domain users. 

Subsequently, the retained HSGE matrices from both domains are processed 

for element-wise attention. A multi-layer perceptron with cosine similarity 

processed combined features matrices to generate top-N recommendations 

with superior hit-rate (HR) and normalized discounted cumulative gain 

(NDCG). 
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1. INTRODUCTION 

Over the past few years, there has been high growth in digital data and allied applications serving 

various purposes, including business communication, and recommendation systems. As rising digital data 

volume requires robust analytics to help users navigate numerous options, as the challenge of choosing the 

right one can often lead to unexpected decisions [1], [2]. Over the rising population and allied digital data, 

recommender systems have gained widespread attention to alleviate challenges as mentioned earlier [3] in 

online digital ecosystems [4]. Recommender systems often exploit users’ previous digital behavior, 

purchases, and preferences to recommend certain suitable items like products or services. Recommender 

systems are segmented into three primary categories [4]. These exist: i) collaborative filtering, ii) content-

based recommendation, and iii) hybrid recommendation. The collaborative filter methods [5], [6] derive 

https://creativecommons.org/licenses/by-sa/4.0/
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user’s preferences by exploiting their interaction with users and items without exploiting the user’s or item’s 

characteristics. On the contrary, content-based methods identify user preferences by assessing the similarity 

or shared features of the items that the user has brought or availed of [7]. Hybrid recommendation methods 

combine collaborative filtering and content-based recommenders, but achieving optimal solutions is 

challenging due to data sparsity issues [8], [9]. Presently, most at-hand recommender solutions rely on 

collaborative filtering methods [10] that hypothesize that users with similar interests or behaviors would have 

similar item choices. Though a history-based approach is easier to realize; yet, the allied data sparsity 

problem remains a bottleneck. Among the most employed item-based collaborative filtering methods [5] 

measure item similarity through item-user interactions. These methods rely on inner product  

(i.e., linear combination) between the user and item latent vector in a one-hot coding approach, which can 

limit performance and fail to capture complex interactions. Accuracy for new users is limited due to 

insufficient information about new entrants [7], a problem known as data sparsity. This issue can be 

addressed by amalgamating these methods, which employ both user reviews and item metadata for 

recommendation decisions. 

Recently, different methods like topic modeling [11] and deep networks [12] have been designed to 

exploit content information to make recommendation decisions. Unlike these methods, cross-domain 

recommendation (CDR) methods [13] exploit user preferences and item characteristics from other domains to 

improve data in the receiving domain for recommendation. For instance, CDR can recommend movies based 

on a user's book purchases or suggest hotels based on travel history. The cross-domain recommender can 

exploit supplementary details from the varied domains to alleviate the problem of cold start and data sparsity 

[14]. A few approaches applied transfer learning methods [15], which were later applied to derive cross-

domain collaborative filtering (CDCF) [16], [17] by transferring information from the originating domain to 

the receiving domain for an accurate recommendation based on matrix factorization (MF) [18], [19]. 

However, these methods primarily learn over the shallow and linear characteristics of the user and allied 

items. A few approaches apply deep learning methods for the latent feature extraction from users and items 

[1], [20]; yet, such methods employ one-hot vector as input and hence often fail in employing collaborative 

features between users and items. Such approaches are found suitable only for single-domain 

recommendation tasks [21]. Unlike single-domain recommendation models, CDRs are found more efficient 

in addressing data sparsity problems, where it can use various transfer learning methods [22], but they face 

challenges like costly, complex computation, and underutilization of in-domain data, affecting the 

recommender's accuracy. 

New developments like CDR have recently addressed these problems by using insights from related 

areas, like recommending hotels based on travel history or movie recommendations based on book purchases. 

Deep learning approaches provide more complex feature extraction, whereas transfer learning and MF aid in 

information transfer across domains. Nevertheless, the efficacy and precision of these suggestions are still 

affected by obstacles such as computational complexity and the underutilization of domain data. 

A literature review will examine previous work and key figures to highlight developments and 

issues in the field. The methodology section will describe the strategy and methods used, while the results 

section evaluates findings and potential improvements. Together, these sections clarify the present state and 

future of advanced recommendation systems.  

 

 

2. LITERATURE SURVEY 

The CDR methods are classified as semantic, factorial, tag, and graph-based [23]–[25]. However, 

among these approaches, the graph-based methods have shown better efficacy. In this method, users and 

items represent the nodes, and their inter-element (say, user-item) relationship is referred to as edges, where 

the inter-element relation and allied interactions can have a decisive impact on the recommendation accuracy. 

Some recent literature discusses the CDR systems exploiting reviews (text-data), transfer learning, deep 

learning, and graph-embedding approaches. 

 

2.1.  Text-data (review) based recommendation model 

To address the data-sparsity problems, utilizing text data is crucial in recommendation systems.  

Srifi et al. [26] have used topic modeling to uncover hidden topics in user review text. A MF model called 

TopicMF was proposed, which combined user ratings and reviews to obtain latent topics. Social MF [27] and 

topic MF were employed to assess data fusion effectiveness for better recommendations. A probabilistic 

method [28] combined an integrated latent topic model with a random walk and restart technique for 

recommendation. These methods often ignore text order and use a bag-of-words (BOW) method to derive 

latent topic variables. Instead, embedding methods created word vectors, learned via convolutional neural 

networks (CNN) for prediction. 
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2.2.  Deep-learning-based recommendation model 

In the past, numerous efforts have been made by applying deep-learning methods for 

recommendation. Zhao [29] applied denoising auto-encoders to learn over the user-item matrix for user and 

item profiling. Xue et al. [30] developed an improved neural network-driven MF model, where at first a user-

item matrix was generated over the explicit ratings and non-preference implicit review text. Once obtaining the 

user-item matrix, a deep neural network (DNN) was applied to learn the low-dimensional feature space (user-

item matrix). Applying a binary loss function, their proposed deep network performed the recommendation. 

Research by Zhang et al. [31], a long short-term memory (LSTM)-based approach was applied to generate text 

features for further recommendation decisions. Research by Chen et al. [32], a neural attentional regression 

was applied in conjunction with review-level explanations for recommendation decisions, focusing on review 

text but ignoring item metadata, and primarily addressed single-domain recommendations. 

 

2.3.  Cross-domain recommendation 

CDRs exploit the information from one domain to make recommendations in other domains. 

Cheema et al. [33] designed a latent user profiling approach that generates a user profile by gathering diverse 

user behaviors across multiple data domains. This domain-independent profile and contextual data enable 

relevant CDRs. The transfer learning method was applied to make serendipitous item recommendations [34]. 

A generalized cross domain-multi-dimension tensor factorization model to balance impact amongst domains 

effectively [35]. Hu et al. [36] applied a transfer meeting hybrid model for CDR by applying item reviews 

and article titles. They used attentively mined semantic features from review text to transfer vital information 

from an originating domain to perform learning and recommendation. Yet, these methods could not exploit 

user reviews and item metadata together. To alleviate the aforesaid limitation, the authors suggested 

transferring knowledge amongst the varied domains to make CDRs [3], [19]. An adaptive codebook transfer 

learning (ACTL) was proposed that identifies the suitable codebook scale to reduce computational cost and 

improve CDR [19]. Yu et al. [37] developed CDCF, for addressing data sparsity by utilizing rating 

information from two auxiliary domains: user-side and item-side, both characterized by dense rating data. 

The recommendation task is then reframed as a classification problem based on derived intrinsic features, 

which is solved using an SVM. The algorithm [38] addresses data sparsity in the receiving domain by 

augmenting user and item features with latent factors from both auxiliary domains, using Funk-singular value 

decomposition (SVD) to extract additional features. Two-sided CDCF algorithms [39], like two-stage stacked 

ensemble autoencoder (TSSEAE), enhance performance by combining user and item auxiliary domains, 

framing the CDCF problem as an ensemble of classifiers. The authors designed the framework in which one 

neural network was used to learn the reduced dimensional illustration from the one-hot coding of users and 

items, while another network leveraged auxiliary information in a different latent space [40]. 

Recently, a graph-based CDR method uses user-item interactions from the originating domain to 

recommend items in receiving. However, state-of-the-art graph-based recommenders may include irrelevant 

items from the originating domain, adding noise and reducing effectiveness. None of the existing methods 

could address the problem of noise items. To alleviate this, we propose a heterogeneous semantic graph-

embedding (HSGE)-assisted model that prunes irrelevant edges in the originating domain. Our proposed 

method uses the Word2Vec semantic embedding method for the user’s review, ratings, and item details. 

Then, the Node2Vec captures user-user, user-item, and item-item interactions from both domains. Here, the 

amalgamation of the different interactions constitutes the HSGE method. The model improves semantic 

feature embedding vectors by removing unrelated items from the originating domain for better learning and 

prediction. Using a multilayer feedforward neural network-multilayer perceptron (MFNN-MLP) with cosine 

similarity, it predicts top-N recommendations in the receiving domain, achieving better hit-rate (HR) and 

normalized discounted cumulative gain (NDCG) scores than other methods. 

 

 

3. METHOD 

The proposed method encompasses a heterogenous semantic graph embedding matrix, inter-domain 

relativeness-driven edge pruning, attention method, and MFNN-MLP for CDR. It processes user reviews and 

item details into input layers for each domain, creating semantic graph embeddings of user-user, user-item, 

and item-item interactions using Node2Vec. These embeddings are refined through edge pruning to remove 

unrelated items, followed by element-wise attention to form a combined feature model. This model is then 

used for learning and prediction via an MFNN-MLP with SoftMax for top-N recommendations at the output 

layer. The proposed model is depicted in Figure 1. 

The cross-domain prediction model encompasses two domains, 𝑝 (origin) and 𝑞 (receiving), each 

with users and items containing explicit (user’s rating and review) and implicit (item(s) details) details. By, 

the amalgamation of the review and the item’s metadata creates a profile for a user 𝑢 aimed at improving 

recommendation accuracy in the receiving domain. In real-time data models, there can be certain users that 
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overlap, which means certain users can exist in both the origin (say, p) and the receiving domain (say, q), 

serving as a bridge connecting both domains. This forms the basis for the cross-domain recommender design. 

The implementation schematic of the planned CDR model with five main components is shown in Figure 1. 

These are: i) input layer, ii) HSGE layer, iii) feature amalgamation layer, iv) MFNN-MLP layer, and  

v) prediction layer or the output layer. 

 

 

User (Review) Item (Content)

Word2Vec Word2Vec

Node2Vec Node2Vec

User-User User-Item Item-Item

Edge Pruning

Heterogeneous Semantic Graph Embedding 
Metrics

Element-Wise Attention

User (Review) Item (Content)

Word2Vec Word2Vec

Node2Vec Node2Vec

User-User User-Item Item-Item

Edge Pruning

Heterogeneous Semantic Graph Embedding 
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MFNN MLP Layer

Output Layer (Predicted top-N Recommended Items in the Target Domain)

Source Domain Target Domain

1

2

3

4

5

 
 

Figure 1. Proposed CDR model 

 

 

3.1.  Input layer 

This work uses both explicit user details, like reviews and ratings, and implicit item information, 

such as metadata and feedback, as input. The explicit information constructed a profile for each user in both 

source as well as receiving domains. The user-item details were then fed as input to the semantic graph 

embedding layer. 

 

3.2.  Heterogenous semantic graph embedding layer  

The user’s review and item details from the originating (𝑝) and the receiving domain (𝑞) are fed as 

input to the semantic graph embedding layer. Unlike traditional one-hot encoding, which suffers from 

sparsity and noise issues, this novel graph-embedding method leverages user-user, item-user, and item-item 

interactions for improved predictions. It can be vital for CDR in both domains (i.e., 𝑝 and 𝑞). Our proposed 

method uses heterogeneous graph embedding matrices for user-user, user-item, and item-item interactions in 

both source and receiving domains. Here, the user’s rating and the item’s content information related to each 

domain (i.e., 𝑝 and 𝑞) are leveraged to constitute heterogenous graph embedding metrics. Unlike one-hot 

coding, Word2Vec offers richer semantic, and low-dimensional embedding metrics. We used Gensim's 

Word2Vec with skip-gram and negative sampling (SGNS) to transform content-review information of both  

𝑝 and 𝑞 domains into corresponding semantic values, distinctly and also to transform each review or item 

metadata like titles, sub-titles, and descriptions into a semantic latent vector. 

The Node2Vec method extracted HSGE metrics from latent embedding vectors by leveraging 

heterogeneous interactions, improving CDRs while addressing data sparsity and cold-start issues. The 

Node2Vec method extracted HSGE metrics from latent embedding vectors by leveraging heterogeneous 

interactions, improving CDRs while addressing data sparsity and cold-start issues. HSGE was obtained for 

both source and receiving domains, resulting in two heterogeneous graph embedding matrices. Noticeably, 

the HSGE graphs obtained contained nodes signifying users and items in the originating domain, while 

weighted edges represented the user’s review and metadata content similarities obtained for the receiving 

domain, respectively. It improved the quality of user and item embedding matrices for learning and 

prediction. The homeland security and emergency management (HSEM) model consist of three functional 

elements: i) inter-domain relatedness-based edge pruning, ii) Doc2Vec (document) embedding, iii) semantic 

graph embedding and HSGE generation. The detail of these sub-components is given as follows.  
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3.2.1. Inter-domain relatedness-based edge pruning 

This work introduces an inter-domain correlation-driven edge pruning model to improve 

recommendation accuracy by removing unrelated user-item edges in the receiving domain, preventing false 

positive results. To project aforesaid features to the latent embedding matrix or vector, the proposed model 

estimates projection vectors in both the originating domain as well as the receiving domain (their 

corresponding documents, i.e., 𝑑𝑠 , 𝑑𝑡). Let, the projection matrices for originating and the receiving domain 

be 𝛷𝑠 ∈ ℝ𝑑𝑠×𝑑𝐶𝐶𝐴 and 𝛷𝑡 ∈ ℝ𝑑𝑡×𝑑𝐶𝐶𝐴 . These projection vectors are obtained by performing canonical 

correlation analysis (CCA) over user’s semantic embedding vector output (i.e., Word2Vec embedding vector 

for user) in both domains. In other words, let the user’s embedding vector in originating and receiving 

domains be (1) and (2), respectively.  

 

𝐸𝑢𝑠
= [𝑒𝑠

1, 𝑒𝑠
2, … , 𝑒𝑠

𝑈  ] ∈ ℝ𝑑𝑠×𝑈 (1) 

 

𝐸𝑢𝑡
= [𝑒𝑡

1, 𝑒𝑡
2, … , 𝑒𝑡

𝑈  ] ∈ ℝ𝑑𝑡×𝑈 (2) 

 

To achieve it, the proposed method performs maximization of the cost function defined in (3). 

 

(𝛷̂𝑠 , 𝛷̂𝑡) = arg max
𝛷𝑠 ,𝛷𝑡

𝛷𝑠
𝑇𝐶𝐸𝑈𝑠,𝐸𝑈𝑡

𝛷𝑡

√𝛷𝑠
𝑇𝐶𝐸𝑈𝑠,𝐸𝑈𝑠

𝛷𝑠 √𝛷𝑡
𝑇𝐶𝐸𝑈𝑡,𝐸𝑈𝑡

𝛷𝑡

 (3) 

 

In (3), the parameters 𝛷𝑠 and 𝛷𝑡 represents the projection embedding vectors, which can mathematically be 

derived as per (4) and (5), correspondingly. 

 

𝛷𝑠 = ℝ𝑑𝑠×𝑑𝐶𝐶𝐴 (4) 

 

𝛷𝑡 = ℝ𝑑𝑡×𝑑𝐶𝐶𝐴  (5) 

 

The projection embedding metrics for source and receiving domain documents were obtained by 

maximizing the objective function defined in (3). The objective function (3) solved eigenvalue problem that 

eventually yielded (4) and (5) for the original and the receiving domains, respectively. The embedding matrix 

per domain was obtained as per the (6) and (7), conditioned with the (8) and (9), correspondingly.  

 

𝑒̂𝑠
𝑖 ∈ ℝ𝑑𝐶𝐶𝐴 (6) 

 

𝑒̂𝑡
𝑖 ∈ ℝ𝑑𝐶𝐶𝐴 (7) 

 

𝑒̂𝑠
𝑖 = 𝛷𝑠

𝑇𝑒𝑠
𝑖 (8) 

 

𝑒̂𝑡
𝑖 = 𝛷𝑡

𝑇𝑒𝑡
𝑖 (9) 

 

The proposed model compared the items in originating and receiving domain in respective 

embedding latent space. Noticeably, only items with high correlation and similarity were retained. The noise 

proneness of the items in the originating domain applies the local density function over the semantic 

embedding metrics in source document 𝑑𝑠. In this manner, the difference between the local density of item 𝑖𝑠 

and the local density of the neighboring item 𝑜. The noise density for originating domain items is estimated 

as per (10).  

 

𝐿𝑅𝐷(𝑖𝑠) =
1

(
∑ 𝑅𝑒𝑎𝑐ℎ−𝑑𝑖𝑠𝑡𝑣(𝑖𝑠,𝑜)𝑜∈𝑁𝑣(𝑖𝑠)

|𝑁𝑣(𝑖𝑠)| )

 (10) 

 

In (10), 𝑁𝑣(𝑖𝑠) represents a set of 𝑣 adjoining items (in the vicinity of the source item 𝑖𝑠), while 𝐿𝑅𝐷(𝑖𝑠) be 

the inverse of the mean of the reachability distance via 𝑣 nearest neighbors. Additionally, 𝑅𝑒𝑎𝑐ℎ −
𝑑𝑖𝑠𝑡𝑣(𝑖𝑠, 𝑜) signifying the reachability distance between 𝑖𝑠 and 𝑜 is measured as per (11). 

 

𝑅𝑒𝑎𝑐ℎ − 𝑑𝑖𝑠𝑡𝑣(𝑖𝑠, 𝑜) = 𝑚𝑎𝑥(𝑣 − 𝑑𝑖𝑠𝑡(𝑖𝑠), 𝑑(𝑖𝑠, 𝑜)) (11) 

 

In (11), 𝑣 − 𝑑𝑖𝑠𝑡(𝑖𝑠) represents the distance in between item 𝑖𝑠 and the 𝑣-th neighboring items. Similarly, the 

distance between 𝑖𝑠 and 𝑜 items is given by 𝑑(𝑖𝑠, 𝑜). Assuming aforesaid outlier rank (10) as the (inter-item) 
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distance indicator (i.e., the distance between 𝑖𝑠 and the item set, then the local reachability density of the item 

𝑖𝑠 is measured as per (12).  

 

𝐼𝑂𝐹(𝑖𝑠) =
∑

𝐿𝑅𝐷(𝑜)

𝐿𝑅𝐷(𝑖𝑠)𝑜∈𝑁𝑣(𝑖𝑠)

|𝑁𝑣(𝑖𝑠)|
 (12) 

 

In (12), the parameter 𝐼𝑂𝐹(𝑖𝑠) retrieves the extent to which the item 𝑖𝑠 can be called as the noise or the 

outlier item having no significant relationship with the receiving domain user. Eventually, the semantic 

embedding feature for originating domain 𝑒̂𝑠
𝑖 ∈ ℝ𝑑𝐶𝐶𝐴  is obtained after pruning the noisy or irrelevant edges 

in originating domain. Now, once obtaining the pruned item semantic vector in the originating domain, the 

graph embedding vectors or matrices were obtained for the user-user, user-item, and item-item interactions.  

 

3.2.2. Doc2Vec embedding 

The proposed model combines user-user, user-item, and item-item interaction relationships in 

heterogeneous semantic embedding matrices and is preserved as documents, creating unit graphs for both 

source and receiving domains. Content similarity between users and items is estimated using multi-source 

content information. The retained embedding metrics are converted into unit documents for each domain, 

collecting a semantic embedding review for each user. Being a multi-source document embedding method, 

the semantic embedding review 𝐶𝑖∗ for a user 𝑢𝑖 is collected. For an 𝑖 −th user (say, 𝑢𝑖), the allied user 

profile 𝑢𝑝𝑖 is obtained and saved in a single document 𝑑𝑖 . For an item 𝑣𝑗, the reviews 𝐶∗𝑗 on the item and 

(item) detail 𝑖𝑑𝑗 are collected in the same document 𝑑𝑚+𝑗. Subsequently, the embedding vectors in aforesaid 

documents 𝐷 = {𝑑1, 𝑑2, … , 𝑑𝑚+𝑛 } are segmented by using 𝑆𝑡𝑎𝑛𝑓𝑜𝑟𝑑𝐶𝑜𝑟𝑒𝑁𝐿𝑃 tool [41], which extracts 

user and item vectors from the input documents in both source and receiving domains. The Doc2Vec method 

was applied to map 𝐷 into the text vectors 𝑈𝐶 and 𝑉𝐶 for users and items semantic embedded vectors. 

 

3.3.  Semantic graph construction 

In this work, the users and items were mapped by exploiting their interaction relationships. The 

relative weight of each interaction was measured in sync with the local reachability density (12), which is 

derived as the normalized ratings (13). 

 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑟𝑎𝑡𝑖𝑛𝑔 𝑓𝑜𝑟 𝑒𝑑𝑔𝑒𝑠 =
𝑅

𝑚𝑎𝑥(𝑅)
 (13) 

 

In reference to the targeted heterogenous (semantic) graph, the synthetic edges were obtained in between the 

two users or the two items based or corresponding normalized edge weights (13). In this manner, the 

likelihood 𝑃(𝑖, 𝑙) of the edge in between the two users 𝑢𝑖and 𝑢𝑗 is estimated by using (14).  

 

𝑃(𝑖, 𝑙) = 𝛼. 𝑠𝑖𝑚(𝑈𝐶𝑖 , 𝑈𝐶𝑙) (14) 

 

In (14), 𝛼 refers to a hyper-parameter controlling the sampling likelihood, while 𝑠𝑖𝑚(𝑈𝐶𝑖 , 𝑈𝐶𝑙) represents 

the normalized cosine similarity (NCS) in between 𝑈𝐶𝑖 and 𝑈𝐶𝑙. Be noted, here 𝑈𝐶𝑖 and 𝑈𝐶𝑙 represent the 

user profile documents for the 𝑖 − 𝑡ℎ and 𝑙 − 𝑡ℎ user. Similarly, the edges (probability) for item-item are also 

measured. Thus, based on the user-item, item-item and user-user interaction relationship, semantic 

heterogeneous graphs are obtained for both originating domain 𝐺𝑝 and the receiving domain 𝐺𝑞. 

 

3.4.  Feature amalgamation layer 

The semantic embedding matrix is estimated and combined using an element-wise attention 

mechanism. This creates an optimal weight set for common users learned across domains, with combined 

embeddings for the common users Ũ from each domain represents the features learned over the different 

fractions. In attention methods, a specific fraction of the feature representation is selected, which are 

subsequently given higher weights to generate the combined feature [42]. For a user ui, it gives more 

attention to the elements possessing higher information from each pair of items in Ui
p
 and Ui

q
. The proposed 

element-wise attention method generates two embedding matrices Ũ i
p
 and Ũ i

q
 for the common user ui for the 

original and the receiving domain, correspondingly. The combined HSEM embedding feature Ũ i
aafter 

attention mechanism for a user ui in originating domain is derived using (15). 

 

𝑈 𝑖
𝑝

= 𝑊𝑝 ⊙ 𝑈 𝑖
𝑝

+ (1 − 𝑊𝑝) ⊙ 𝑈𝑖
𝑞
 (15) 
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In (15), ⊙ represents the element-wise attention function, while 𝑊𝑝 ∈ ℝ𝑚𝑝×𝑘  refers to the weight matrix 

retrieved at the attention layer for domain 𝑝. Thus, we obtained the cumulative embedding matrix for a user 

𝑢𝑖  as 𝑈 𝑖
𝑞
 for the receiving domain 𝑞. The combined embedding matrices from both domains are fed as input 

to the MLP layers (Figure 1) for learning and prediction. An MLP layer snippet is shown as follow.  

 

3.5.  Multi-layer perceptron layer 

The study uses a fully-connected MLP to capture non-linear user-item interactions in each domain. 

This multi-layer feed-forward neural network learns complex interactions, unlike traditional methods that 

rely on linear element-wise attention. To learn over the latent features or HSEM embedding metrics of the 

users and items, the heterogeneous graph embedding matrix (features) from each domain is fed to the MLP 

that obtained the latent embedding matrix of the 𝑝 − 𝑡ℎ domain using (16). 

 

𝑋0
𝑝 = 𝑈𝑒

𝑝
  

𝑋1
𝑝 = 𝑓(𝑊1

𝑋 . 𝑋0
𝑝 + 𝐵1

𝑋)  

𝑋𝑙
𝑝 = 𝑓(𝑊𝑙

𝑋 . 𝑋𝑙−1
𝑝 + 𝐵𝑙

𝑋)  

𝑋𝑠 = 𝑓(𝑊𝐿𝑚
𝑋 . 𝑋𝐿𝑚−1

𝑝 + 𝐵𝐿𝑚
𝑋 ) (16) 

 

In (16), 𝑋1
𝑝

, … , 𝑋𝐿𝑚
𝑝

 and 𝐵1
𝑋 , … , 𝐵𝐿𝑚

𝑋  represent the weight and the bias matrices for the MLP. Here, 𝐿𝑚 states 

the total number of MLP layers, while 𝑓(∗) be the rectified linear unit (ReLU) activation function. In (16), 

𝑋𝑝 ∈ ℝ𝑚×𝑐  be the user’s latent feature matrix for the p-th domain learnt by the MLP method. Thus, the latent 

(semantic) embedding matrix for items pertaining to the 𝑝 − 𝑡ℎ domain is obtained as per (17). 

 

𝑌0
𝑝 = 𝑉𝑒

𝑝
  

𝑌1
𝑝 = 𝑓(𝑊1

𝑌 . 𝑌0
𝑝 + 𝐵1

𝑝
)  

𝑌𝑙
𝑝 = 𝑓(𝑊𝑙

𝑌 . 𝑌𝑙−1
𝑝 + 𝐵𝑙

𝑝
)  

𝑌𝑠 = 𝑓(𝑊𝐿𝑚
𝑌 . 𝑌𝐿𝑚−1

𝑝 + 𝐵𝐿𝑚
𝑝

) (17) 

 

In (17), 𝑊1
𝑌 , … , 𝑊𝐿𝑚

𝑌  and 𝐵1
𝑌 , … , 𝐵𝐿𝑚

𝑌  represent the weights and the bias matrices for the MLP network.  

𝑌𝑠 ∈ ℝ𝑛𝑝×𝑐 be the item latent embedding metrics for the 𝑝 − 𝑡ℎ domain.  

 

3.6.  Output layer 

This layer handles the user-item prediction for the receiving domains. The proposed model executes 

MLP training over the input combined user-item latent (say, HSGE) metrics, where the training model is 

designed based on the loss in between the predicted and the measured user-item interaction relationship. 

Thus, the proposed model is trained 𝑝 by using the following objective function to make predictions for the 

receiving domain 𝑞. In (18), 𝑙(𝑦, 𝑦̂) refers a loss function between the observed user-item interactions  

(say, 𝑦) and the predicted user-item interaction 𝑦̂. In (18), 𝑌𝑝+and 𝑌𝑝− represents the observed and the 

predicted user-item interactions over the originating domain 𝑝, correspondingly. ‖𝑃𝑝‖𝐹
2 + ‖𝑄‖𝐹

2  refers the 

regularize, while 𝜆 represents the hyper-parameter controlling the level of significance of the regularize. 

 

 min
𝑝𝑝,𝑄𝑝,⊝𝑝

∑ 𝑙(𝑦, 𝑦̂)𝑦∈𝑌𝑝+⋃𝑌𝑝− + 𝜆(‖𝑃𝑝‖𝐹
2 + ‖𝑄‖𝐹

2 ) (18) 

 

To alleviate over-fitting towards 𝑌+, a definite amount of the unobserved user-item interaction 

relationships is selected arbitrarily as the negative instances, given by 𝑌𝑠𝑎𝑚𝑝𝑙𝑒𝑑
− . 𝑌𝑠𝑎𝑚𝑝𝑙𝑒𝑑

−  was used to 

substitute 𝑌−, which helps achieving swift and accurate learning over non-linear input features. Thus, using 

user’s review, for a user 𝑢𝑖 and an item 𝑣𝑖, the corresponding user-item interactions 𝑦𝑖𝑗 was obtained (19). 

 

𝑦𝑖𝑗 = {

𝑟𝑖𝑗 𝑖𝑓 𝑦𝑖𝑗 ∈ 𝑌+

0 𝑖𝑓 𝑦𝑖𝑗 ∈ 𝑌𝑠𝑎𝑚𝑝𝑙𝑒𝑑
−

𝑛𝑢𝑙𝑙 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (19) 

 

In this work, a normalized cross-entropy loss function was applied to perform learning, which is 

derived as (20). 

 

𝑙(𝑦, 𝑦̂) =
𝑦

𝑚𝑎𝑥(𝑅)
log 𝑦̂ + (1 −

𝑦

𝑚𝑎𝑥(𝑅)
) log(1 − 𝑦̂) (20) 
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In (20), 𝑚𝑎𝑥(𝑅) represents the maximum rating on the originating domain 𝑎. In this work, MLP is used to 

represent a non-linear association amongst the users and items. Let, for the MLP network the input 

embedding matrices for the users and items over the originating domain be 𝑀𝑖𝑛
𝑝 = [𝑈𝑝; 𝑈𝑝𝑑] and 𝑄𝑖𝑛

𝑝 = 𝑉𝑝, 

correspondingly. Here, 𝑈𝑝 states the combined HSGE embedding matrix pertaining to the common users for 

the domain 𝑝, while the embedding matrix of the distinct users in domain 𝑝 be 𝑈𝑝𝑑. Thus, for user 𝑢𝑖 and 

item 𝑣𝑗, the corresponding embedding matrices in the output layer of the MLP are obtained as (21) and (22). 

 

𝑀𝑖
𝑝 = 𝑀𝑜𝑢𝑡𝑖

𝑝 = 𝑓 (… 𝑓 (𝑓 (𝑀𝑖𝑛𝑖

𝑝 . 𝑊𝑀1

𝑝 ) . 𝑊𝑀2

𝑝 )) (21) 

 

𝑁𝑗
𝑝 = 𝑁𝑜𝑢𝑡𝑗

𝑝 = 𝑓 (… 𝑓 (𝑓 (𝑁𝑖𝑛𝑗

𝑝 . 𝑊𝑁1

𝑝 ) . 𝑊𝑁2

𝑝 )) (22) 

 

In (21) and (22), ReLU activation function 𝑓(∗) was applied, while 𝑊𝑀1

𝑝
 and 𝑊𝑀2

𝑝
…, and 𝑊𝑀1

𝑝
, 𝑊𝑁2

𝑝
… be the 

weights of the multi-layer networks in varied layers in 𝑝 domain for 𝑀𝑖𝑛𝑖

𝑝
 and 𝑁𝑖𝑛𝑗

𝑝
, correspondingly. Finally, 

in output layer, the predicted user-item interaction 𝑦̂𝑖,𝑗 between the user 𝑢𝑖 and the item 𝑣𝑗 on domain 𝑝 is 

given by the (23).  
 

𝑦̂𝑖,𝑗
𝑝 = 𝑐𝑜𝑠𝑖𝑛𝑒(𝑀𝑖

𝑝, 𝑁𝑗
𝑝

) =
𝑀𝑖

𝑝
.𝑁𝑗

𝑝

‖𝑀
𝑖
𝑝

‖‖𝑁
𝑗
𝑝

‖
 (23) 

 

Similarly, the predicted interaction 𝑦̂𝑖,𝑗
𝑝

 on the receiving domain 𝑞 were obtained to perform top-N 

recommendation. Thus, the cross-domain recommender model was developed using the aforementioned 

methods, as shown in Figure 2, with simulation results and insights discussed in the subsequent section.  

 
 

Explicit Implicit Explicit Implicit

Layer 1 Layer 1 Layer 1 Layer 1

Layer 2 Layer 2 Layer 2 Layer 2

Layer 3 Layer 3 Layer 3 Layer 3

Layer X Layer X Layer X Layer X

ReLU ReLU ReLU ReLU

ReLU ReLU ReLU ReLU

ReLU ReLU ReLU ReLU

Source Domain p Target Domain q

Training Training Top-N
Prediction

Top-N
Prediction

Element-wise Attention

1

2

3

4

5

1 Input Layer 2 HSGM Layer 3 Attention Layer 4 MLP Layer 5 Output Layer
 

 

Figure 2. Proposed CDR model realization 
 

 

4. RESULTS AND DISCUSSION 

4.1.  Experimental datasets 

In alignment with the CDR task, this research considered two distinct benchmarks datasets. 

featuring real-time transaction details that varied significantly in data nature and item types. Specifically, the 

study focused on Douban datasets, which include book and movie subsets. We obtained the user and items 

with at least four interactions to exploit more behavioral aspects, reduce noise probability, and enhancing 

prediction accuracy in the originating domain by using the MFNN-MLP layer. A snippet of the dataset used 
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in this work is given in Table 1. As depicted in Table 1, the movie dataset encompassed a set of interactions 

with 2,718 users and 9,565 items that cumulatively gave rise to the data size of 1,133,420. Similarly, the 

book dataset possessed 2,718 users with 6,777 items with a total data size of 96,041. Our considered datasets 

encompassed both explicit data and implicit details, where the first embodies the reviews and ratings, while 

the latter contains item metadata. The proposed algorithm was developed in Python language, where the 

simulation environment encompassed Python 3.4, with the CPU armored with 8 GB memory running over 

Intel i5 processor. It also applied different Python libraries including NumPy, maths, SciPy, Gensim 

Word2Vec, and TensorFlow. The simulations were made on the Google Colab platform with the processor 

configured with the native graphical processing unit.  

 

 

Table 1. Data specifications 
Data User Items Data size 

Movie 2,718 9,565 1,133,420 

Books 2,718 6,777 96,041 

 

 

4.2.  Simulation parameters  

To ensure optimal performance, the proposed model employed numerous value additions in terms of 

the design parameters or the hyperparameter tuning. In the deployed recommender model, especially for 

HSEM, the sampling probability 𝛼 was assigned as 0.05. In Gensim Word2Vec embedding of the ratings and 

items, we assigned window size as 3. The Node2Vec and Doc2Vec models' hyper-parameters were adjusted, 

and an MFNN-driven MLP was designed and tuned for different layer architectures. Initialized parameters 

were Gaussian distribution, and training was done with 8 negative instances per positive instance,  

100 epochs, fixed learning rate, regularization parameter, and 64 batch sizes. Here, the key motive behind 

lower batch size was to improve (intrinsic) feature learning over the heterogenous embedding features which 

can have high non-linearity over millions of the user’s profiles. Furthermore, we performed feature 

embedding concerning the different dimensions including 4, 8, 16, 32, and 64. 

 

4.3.  Evaluation parameters 

The study focuses on a top-N recommendation task for users in a receiving domain, ranking target 

items based on interactions with uninteracted items. A leave-one-out approach is adopted, selecting recent 

interactions with a test item for each user. The performance parameters are HR and NDCG, which measure 

the recall rate and the quality of the ranking. The aim is to evaluate the effectiveness of this ranking-based 

method. The proposed cross-domain recommender model generates a (top-N) ranked list of items (in the 

receiving domain) for the target user. If a target item is in this list, it's a hit. We define hit rate (HR) as in 

(24). In (24), the denominator |𝑇| represents the total number of interactions in the test set. In this work, 

NDCG was applied to provide (or assess) the hit position by assigning higher scores to the hits (especially at 

the top K ranks). 

 

𝐻𝑅@𝐾 =
𝑁𝑜.𝑜𝑓 𝐻𝑖𝑡𝑠@𝐾

|𝑇|
 (24) 

 

Mathematically, we derived NDCG@K as per the (25). In (25), the parameter 𝑟𝑖 states the ranked 

relevance of the target item at the 𝑖-th position. Therefore, in this context, 𝑟𝑖 = 1.  

 

𝑁𝐷𝐶𝐺@𝐾 = ∑
2𝑟𝑖−1

log2(𝑖+1)
𝐾
𝑖=1  (25) 

 

In otherwise case, we label 𝑟𝑖 = 0. Additionally, we also estimated the root mean square error 

(RMSE) performance, which was derived as per the (26). In (26), 𝑇 represents the total number of test 

ratings, while 𝑅𝑠(𝑖, 𝑗) states the real rating and the measured or predicted rating be 𝑅̂𝑠(𝑖, 𝑗). 

 

𝑅𝑀𝑆𝐸 = √
1

𝑇
∑ (𝑅𝑠(𝑖, 𝑗) − 𝑅̂𝑠(𝑖, 𝑗))

2

𝑠,𝑖,𝑗  (26) 

 

This work characterizes overall performance and involves both intra- and inter-model assessments. 

Here, the intra-model assessment states the performance characterization with the different embedding 

dimensional (say, latent dimensions). These assessments are conducted across different input datasets to 

analyze performance trends. These assessments are conducted across different input datasets.  
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4.3.1. Intra-model assessment  

To evaluate the effectiveness of the inter-domain relatedness-driven edge pruning method, we 

simulated our model with and without edge pruning (by feeding direct HSGE metrics to the attention layer). In 

addition, we evaluated various latent dimensions (4, 8, 16, 32, and 64), with simulation results for the Douban 

book and movie datasets presented in Table 2. It is often hypothesized that the high dimensional features often 

yield superior results but increased computation. we simulated our CDR model using five embedding 

dimensions (k=4, 8, 16, 32, 64), where 𝑘 is the embedding dimensions. The simulation results in Table 2 show 

that as 𝑘 increases, the HR@K also rises. Training on various input data subsets, including Book and Movie, 

shows that increasing latent and intrinsic feature learning improves both HR and NDCG. As depicted in Table 

2, the average HR@4 was 0.5675, while NDCG@4 was observed as 0.3470. Similarly, in another test case with 

HSGE embedding dimension of 8, we measured average HR@8 as 0.5791, while NDCG@8 was found as 

0.3805. For k=16, we found HR@16 as 0.5799 and NDCG@16 as 0.3990. On the contrary, for 𝑘 = 32, the 

model yielded HR@32 as 0.5998 and NDCG@32 as 0.4171. Similarly, over simulation, it depicted HR@64 of 

0.6070 and NDCG@64 as 0.3796. Table 3 shows the average HR and NDCG across various embedding 

dimensions, with higher sizes leading to decreased RMSE, demonstrating the model's robustness and efficiency 

in providing accurate top-N recommendations. The results indicate that higher embedding dimensions lead to 

better HR and NDCG for reliable CDRs. A consistent efficiency pattern across datasets (books and movies) 

confirms the model's suitability for real-time recommendation tasks.  

To evaluate the impact of inter-domain edge pruning on top-N recommendations, we simulated our 

model with and without pruning. Results are shown in Table 4. The result in Table 4 can easily be inferred 

that the use of the proposed edge pruning method with HSGE mechanism enables superior HR and 

corresponding NDCG performance. The average HR performance increased from 0.5410 without edge-

pruning to 0.5866 with edge-pruning. It reveals that the use of our proposed edge pruning model with HSGE 

enables almost 9.2% better performance (i.e., HR). The results confirm that the edge pruning method with the 

HSGE model outperforms methods relying solely on user-item interactions, as it reduces noise, significantly 

improving both HR and RMSE shown in Tables 3 and 4. The HSGE-CDR model's performance was 

evaluated against other leading methods. The results are detailed in the subsequent section. 

 

 

Table 2. Performance over the different latent embedding dimensions 
Latent dimensions or embedding size (K) Data HR@K NDCG@K RMSE 

4 Book 0.4531 0.2831 1.409 
Movie 0.6820 0.4109 1.389 

8 Book 0.4861 0.2994 1.091 
Movie 0.6721 0.4617 1.077 

16 Book 0.4824 0.2993 0.987 
Movie 0.6775 0.4987 0.988 

32 Book 0.5015 0.3740 0.938 
Movie 0.6982 0.4603 0.874 

64 Book 0.5126 0.3779 0.880 
Movie 0.7014 0.4813 0.871 

 

 

Table 3. Average HR and NDCG performance over the different latent dimensions 
Latent dimensions or embedding size (K) Average 

 HR NDCG RMSE 

4 0.5675 0.3470 1.399 

8 0.5791 0.3805 1.084 

16 0.5799 0.3990 0.987 

32 0.5998 0.4171 0.906 

64 0.6070 0.4296 0.875 

 

 

Table 4. Efficacy of edge pruning on HSGE driven CDR 
Latent dimensions or embedding size (K) Data Without edge pruning With edge-pruning 

HR@K NDCG@K RMSE HR@K NDCG@K RMSE 

4 Book 0.3831 0.2189 1.998 0.4531 0.2831 1.409 
Movie 0.5993 0.3776 1.849 0.6820 0.4109 1.389 

8 Book 0.4473 0.2851 1.248 0.4861 0.2994 1.091 
Movie 0.6110 0.4294 1.216 0.6721 0.4617 1.077 

16 Book 0.4361 0.2840 1.198 0.4824 0.2993 0.987 

Movie 0.6485 0.4401 1.233 0.6775 0.4987 0.988 
32 Book 0.4791 0.3392 1.194 0.5015 0.3740 0.938 

Movie 0.6620 0.4261 1.130 0.6982 0.4603 0.874 
64 Book 0.4899 0.3482 1.078 0.5126 0.3779 0.880 

Movie 0.6538 0.3399 1.004 0.7014 0.4813 0.871 
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4.3.2. Inter-model assessment 

To assess the performance of the proposed CDR approach, we analyzed results from various state-

of-the-art methods at embedding sizes of 8, 16, 32, and 64. The considered reference methods employ cosine 

similarity to perform top-N recommendations in cross-domain applications. Typically, the cosine similarity 

method the final component in interaction association analysis for a recommendation, where it provides 𝐾 

estimates of most similar items, whereas the cosine similarity method is applied to measure similarity 

amongst the items. We assessed performance using HR and NDCG metrics. Before discussing the empirical 

results and their implications, we briefly outline these methods: 

‒ GMF [20]: it represents a generalized form of the MF method, utilizing a sophisticated neural network 

model that learns user-item interaction relationships by employing certain activation functions over the 

linear combination of the element-wise multiplication of the input vectors. This approach receives user 

identification and corresponding items as one-hot vectors (that often impose computational exhaustion). 

According to Ma et al. [2], the retrieved one-hot vectors of the users and items are projected as input to 

the dense vectors, which are used as input to the neural network to obtain the prediction scores for the 

user-item pairs.  

‒ Deep matrix factorization (DMF) [30]: the method generates an implicit user-item embedding matrix, 

which is input to a DNN for high-dimensional user and item vectors. The vectors are projected to a low-

dimensional latent space, and the cosine similarity method is applied for recommendation results.  

Xue et al. [30] employed a dual-layer DMF method to generate recommendation results.  

‒ 𝑁𝑒𝑢𝑀𝐹𝐶: it is an extended approach of 𝑁𝑒𝑢𝑀𝐹 model that employs clustering as a component to make 

recommendation results.  

‒ 𝑁𝑒𝑢𝑀𝐹𝑚𝑝 : this approach applies Word2Vec on user-item details to generate a semantic vector, which is 

then applied as input to the neural network to perform recommendation results. Unlike 𝑁𝑒𝑢𝑀𝐹, this 

method applies Word2Vec embedded feature vector as input to the 𝑁𝑒𝑢𝑀𝐹 to perform 

recommendation. 

Table 5 presents the HR@K performance over the different embedding dimensions, indicating that 

larger embedding sizes improve HR performance, with HR@64 showing superior over the other embedding 

sizes. The GMF-based CDR model performs the maximum HR for HR@64 as 0.2901 and 2997 for book and 

movies data subsets, respectively. On the other hand, the DMF-based model exhibits maximum performance 

for HR@64 and was found as 0.3004 and 0.2899 with Book and Movie datasets, respectively. The 𝑁𝑒𝑢𝑀𝐹𝐶  

method too exhibits superior with K=64, where it achieves 0.2832 and 0.3421, correspondingly with book 

and movie datasets. 𝑁𝑒𝑢𝑀𝐹𝑚𝑝  as an improved solution than the 𝑁𝑒𝑢𝑀𝐹𝐶  method. The simulation reveals 

that the 𝑁𝑒𝑢𝑀𝐹𝑚𝑝  method exhibits HR@64 of 0.5126 and 0.7014 for book and movie datasets, respectively. 

In comparison to the state-of-art methods (i.e., GMF, DMF, 𝑁𝑒𝑢𝑀𝐹𝐶 , and 𝑁𝑒𝑢𝑀𝐹𝑚𝑝), our proposed method 

shows superior results of HR@64 as 0.3779 and 0.4813 for book and movie. Similar performances were 

obtained with other embedding sizes as well. The NDCG performance in Table 6 reveals a similar 

performance as that of HT@K. As depicted in the following result in Table 6, the NDCG@K performance 

reveals that the proposed CDR model performance is superior over other approaches (NDCG@64 of 0.3779 

and 0.4813, respectively over book and movie datasets). Interestingly, the depth assessment also reveals that, 

unlike K=64, our proposed method exhibits superior outputs even with lower K (i.e., K=4, 8, 16). The results 

in Table 5 indicate that the average HR@K for K=4, 8, and 16 exhibits 0.5675, 0.5791 and 0.5799, 

respectively. Considering K=8 as a moderate embedding size (assumption), our depth analysis reveals that 

the GMF and DMF methods show.  
 

 

Table 5. Relative HR@K efficacy analysis 
Method Data HR@K 

K=4 K=8 K=16 K=32 K=64 

GMF Book 0.0985 0.1094 0.1375 0.2017 0.2901 

Movie 0.1246 0.1898 0.2311 0.2458 0.2997 

DMF Book 0.1304 0.1969 0.2119 0.2499 0.3004 

Movie 0.1332 0.2331 0.2398 0.2503 0.2899 

𝑁𝑒𝑢𝑀𝐹𝐶  Book 0.1731 0.2316 0.2390 0.2570 0.2832 

Movie 0.1996 0.2402 0.2441 0.2898 0.3421 

𝑁𝑒𝑢𝑀𝐹𝑚𝑝 Book 0.2742 0.4362 0.2973 0.3117 0.3568 

Movie 0.2995 0.4962 0.3991 0.3996 0.5310 

Proposed Method Book 0.4531 0.4861 0.4824 0.5015 0.5126 
Movie 0.6820 0.6721 0.6775 0.6982 0.7014 

 

 

Average NDCG@8 as 0.2776, and 0.2604, respectively. While 𝑁𝑒𝑢𝑀𝐹𝐶  and 𝑁𝑒𝑢𝑀𝐹𝑚𝑝  methods 

output NDCG@8 as 0.2947 and 0.301, respectively. In comparison to these results, our proposed model 
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exhibits an average NDCG of 0.3805, which is higher than any other existing approaches and hence confirms 

the superiority of the suggested solution over other state-of-the-art approaches About the HR@8 as well, 

GMF, DMF, 𝑁𝑒𝑢𝑀𝐹𝐶 , and 𝑁𝑒𝑢𝑀𝐹𝑚𝑝  show outputs as 0.1496, 0.215, 0.2359, and 0.4662. On the contrary, 

our proposed CDR model exhibits an average HT@8 of 0.5791, which outperforms any other method. Thus, 

it confirms the superiority of the proposed model over other state-of-the-art models. 

 
 

Table 6. Relative NDCG efficacy analysis 
Method Data NDCG@K 

K=4 K=8 K=16 K=32 K=64 

GMF Book 0.2300 0.2413 0.3318 0.3384 0.3460 

Movie 0.3167 0.3139 0.3660 0.3341 0.3952 

DMF Book 0.2416 0.2508 0.2440 0.3312 0.3229 
Movie 0.2667 0.2701 0.2510 0.2351 0.3550 

𝑁𝑒𝑢𝑀𝐹𝐶  Book 0.2412 0.2811 0.2615 0.3691 0.3212 

Movie 0.3046 0.3084 0.2801 0.3416 0.3666 

𝑁𝑒𝑢𝑀𝐹𝑚𝑝 Book 0.2615 0.2893 0.2729 0.3711 0.3991 

Movie 0.3247 0.3127 0.2842 0.3415 0.3779 
Proposed method Book 0.2831 0.2994 0.2993 0.3740 0.3779 

Movie 0.4109 0.4617 0.4987 0.4603 0.4813 

 
 

5. CONCLUSION 

This paper presents a novel HSGE-assisted edge-sensitive learning approach for cross-domain 

recommender design. The model uses user ratings and item metadata in both original and receiver domains to 

recommend items for target users. The model employs the Word2Vec method for explicit and implicit 

details, followed by Node2Vec-driven graph embedding matrix generation. The HSGE method obtains user-

user, user-item, and item-item interactions for additional representative semantic features. The model also 

employs an inter-domain relatedness-sensitive edge pruning method to improve accuracy. The model's 

superior HR and NDCG results make it ideal for real-time cross-domain recommender tasks without cold-

start and sparsity problems. The model can alleviate cold-start and sparsity problems and maintain high CDR 

efficiency with low computational cost or complexity. Further, the enhanced CDR can be optimized through 

advancements in transfer learning techniques, emphasizing the development of more sophisticated models 

that effectively capture inter-domain relationships. Exploring domain adaptation techniques and employing 

graph neural networks to model complex cross-domain interactions may improve recommendation accuracy. 
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