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 This study proposes a machine vision-based defect inspection system for 

pharmaceutical vials, aiming to ensure the quality and safety of medicinal 

fluids. The system employs a series of image processing techniques, 

including denoising, feature extraction using the Gabor wavelet transform, 

segmentation, clustering with the K-means algorithm, and precise defect 

identification using the Canny edge operator. Experimental results 

demonstrate high performance, with recall, precision, accuracy, and F1-score 

exceeding 98%. Additionally, the proposed method achieves area under the 

curve-receiver-operating characteristic curve (AUC-ROC) and AUC-

precision-recall (PR) values of approximately 98%. The system's average 

computational time is 355 microseconds, indicating its potential for real-time 

defect detection. Overall, this approach offers an effective solution for 

identifying various cosmetic defects such as scratches, bruises, cracks, and 

black spots, in pharmaceutical vials without the need for vial classification 

training.  
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1. INTRODUCTION 

Safe, high-quality vials are vital for maintaining sterile conditions and preserving medicine integrity 

in pharmaceuticals. They shield fluids from contamination, leaks, and degradation. Advanced inspection 

methods like machine vision, optical inspection, and automated defect detection ensure compliance with 

quality standards like good manufacturing practices (GMP) and good laboratory practices (GLP). By 

leveraging technology, these methods detect subtle defects, enabling corrective actions and preventing 

defective vials from entering the market. Evolving quality assurance (QA) protocols and technology 

integration, particularly machine learning (ML) with computer vision (CV), enhance pharmaceutical 

container reliability and safety by identifying issues like cracks, black spots, scratches, and bubbles. Figure 1 

shows a typical vial used in pharmaceutical packing.  
 

 

 
 

Figure 1. Commonly used pharmaceutical vial 

https://creativecommons.org/licenses/by-sa/4.0/
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Various methodologies have been applied to detect flaws in glass vials and bottles. The low-angle and 

large divergence angle (LALDA) vision system [1] enhances pharmaceutical bottle cap inspection by improving 

defect contrast and mitigating overexposure, addressing occlusions and inconsistent illumination. using HSV-

based multi-channel segmentation (MCS), it achieves over 95% accuracy. X-ray-based inspection system [2] 

detects non-metallic contaminants but relies on costly defective samples. This study achieves 97.4% accuracy 

for glass fragments, improving sensitivity to 1.0 and F1-score to 0.980. Heuristic segmentation for vial defect 

detection [3] showed high accuracy but required validation on larger datasets. Farhangi et al. [4] proposed a 

thresholding-based system for detecting cap defects, seal integrity, and liquid level variations in edible oil and 

beverage bottles, achieving 95.6% accuracy using a complementary metal oxide semiconductor (CMOS) 

camera. However, worn labels and weak seals pose challenges. Liu et al. [5] achieved more than 98% accuracy 

in detecting vial defects, but faced challenges in adapting to different lighting conditions. The black top-hat 

transform algorithm [6] combined with hybrid image processing addressed localization issues but had high 

computational costs, impacting real-time deployment. Other approaches, such as Canny edge detection [7] and 

clustering methods [8], performed well but struggled with specific defects, while advanced multiview systems 

[9] encountered segmentation challenges due to uneven lighting. Plastic bottle defect detection [10] presented 

challenges with data and computational needs, while zonal and time-sharing computational imaging (ZTSCI) 

techniques [11] laid a foundation for gray image flaw detection. Convolutional neural networks (CNNs) and 

deep learning models [12], [13] improved detection capabilities on large datasets, while field-programmable 

gate array (FPGA)-based systems [14] accelerated bottle cap inspection, though still faced server strain.  

Xu et al. [15] proposed a defect detection system for filled vials that integrates traditional image 

processing and deep learning. Defect detection of surface and contents in vials (DDSCNet), built on 

YOLOv8 with quadra fusion and attention (QUFUAtt) for feature fusion, ACmix for defect focus, and  

linear deformable convolution for weak feature extraction, achieves 76.7% mAP on VialG1_DET, 65.9% on 

VialG2_DET, and 86.9% on VialG3_DET with 9.3 GFLOPS, outperforming YOLOv11 by 3.5%.  

YOLO-based models [16]–[22] demonstrated efficient defect detection across different surfaces, but some 

struggled with small targets or high computational costs. Lastly, methods using robotic technologies and AI 

[23], [24] enhanced inspection accuracy, though challenges with sensor calibration and scalability persisted. 

The proposed study addresses these gaps by aiming for comprehensive defect detection across the entire vial 

surface, enhancing reliability without relying on complex deep learning architectures. The curated dataset 

tailored for vial defect inspection overcomes limitations seen in existing methods. 

The motivation for using Gabor wavelets is their ability to detect vial defects via machine vision 

without human intervention [25]. In this study, Gabor wavelets denoise and extract vial image features, 

which are then segmented by the K-means clustering algorithm based on feature similarities. The Canny edge 

operator highlights defects across the vial's surface, neck, top, and bottom with high precision. Python, along 

with the scikit image library, is used for implementation. Key features of the method include its applicability 

to any defect in any vial region, making it highly versatile. It does not require a training stage or defect-free 

samples, thereby eliminating the need for thresholding. The defect detection process is fully automated 

through K-means clustering, allowing for the specific detection of various defects such as scratches, bubbles, 

and cracks, rather than merely categorizing vials.  

The paper is organized in the following way: section 2 briefly explains the proposed model for 

defect detection using Gabor wavelets and K-means clustering. Section 3 presents experiment on various real 

defective vial images. The conclusions are discussed in section 4. 
 

 

2. METHOD 

Machine vision is used in place of human vision to detect defects using computer algorithms and 

processors. The proposed machine vision system comprises four steps. First, an image is acquired using a 

high-resolution industrial camera. In the second step, the image undergoes preprocessing, where it is  

de-noised, and features such as energy, contrast, and variance in multiple orientations and scales are extracted 

using the Gabor wavelet transform. The third step involves clustering and segmentation of the extracted 

features to highlight defects. Finally, a decision is made based on the segmented output. Figure 2 shows the 

block diagram of these steps.  
 

2.1.  Gabor wavelets 

The Gabor wavelet is a mathematical function used to analyze images in both spatial and frequency 

domains, filtering images via real parts to extract patterns [26]. In vial defect detection, Gabor wavelets are 

applied to vial images for feature extraction. The filter scans pixel values in all directions, identifying edge 

data points by detecting maximum values in gradient intensity matrix, enabling pattern identification and 

defect detection. 
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Five factors can affect filtering when using Gabor wavelets. To comprehend this, consider a sine 

wave overlaid on a two-dimensional Gaussian bell curve. Since it's a two-dimensional bell curve, the sine 

wave is directional and can possess various orientations, thus influencing the filter with the following factors: 

i) Direction (θ): it indicates the direction of the sine wave  

ii) Offset (φ): indicates the phase offset of the sine wave 

iii) Standard deviation (σ): the smaller the values of this attribute, the closer the values are to the center 

iv) Ellipticity (γ): determines the ellipticity of the 2D image  

v) Wavelength (λ): indicates the distance between the highest points 

The wavelets are applied at different orientations and scales. Features such as energy, contrast, and 

variance are obtained. The output of the Gabor wavelet transformation is a set of feature vectors used in the 

clustering step for defect detection. Because of the biological relevance of Gabor waves, they are used 

frequently, and their mathematical properties are defined as in (1): 
 

𝜑𝜃,𝜔(𝑥) =
𝑘𝜃,𝜔

2

𝜎2 exp (−
𝑘𝜃,𝜔

2 𝑥2

2𝜎2 ) [exp(𝑖𝑘𝜃,𝜔) − exp (−
𝜎2

2
)]  (1) 

 

Where the orientation of the Gabor wavelet and the scale are given by θ and 𝜔 respectively, by x = (p, q) 

representing the spatial domain of the Gabor wavelet kθ,𝜔 is the wave vector and is given as in (2): 
 

𝑘𝜃,𝜔 = 𝑘𝜔 exp(𝑖𝜃)  (2) 
 

where 𝑘𝜔 =
𝑘𝑚𝑎𝑥

𝑓𝑣
, 𝑘𝑚𝑎𝑥 =

𝜋

2
, 𝑓 = √2.  

Gabor wavelets are used due to their similarity to the human visual system and because they don’t 

require defect-free samples or threshold settings [10]. They extract image features like edges and points for 

classification based on spatial, spectral, or texture properties, reducing dimensionality and removing 

unnecessary data for easier processing. Figure 3 illustrates the application of Gabor wavelets to a 2D image. 

Figure 3(a) depicts the real wavelets, while Figure 3(b) presents the imaginary wavelets at orientations of 0, 

π/4, π/2, and 3π/4 radians, and scales ranging from 0.2 to 0.6. 
 

 

 
 

Figure 2. Block diagram of the proposed method 
 

 

  
(a) (b) 

 

Figure 3. Gabor wavelets for a 2D image of (a) real wavelets and (b) imaginary wavelets 
 

 

2.2.  K-means clustering 

K-means clustering is an unsupervised algorithm that divides data into subgroups called clusters 

based on characteristics like size, shape, orientation, and scale. The number of clusters (K) is determined 
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using the Elbow method. K-means minimizes the sum of distances between data points and their nearest 

centroids, grouping similar data points into clusters without requiring training. The process repeats until no 

further clustering is possible, ensuring that each dataset belongs to the cluster with the nearest centroid. 
 

2.3.  Description of the algorithm 

In K-means clustering, the value of K indicates the number of clusters. For instance, if the value of 

K is set to 2, two clusters will be created; if it is set to 3, three clusters will be created. The formation of  

K clusters ensures that a dataset is divided into groups based on the similarity of attributes. The K-means 

clustering algorithm operates as shown in Algorithm 1. 
 

Algorithm 1. K-means clustering 

1) Choose the number of K clusters you want to create. 

2) Initialize K centroids randomly from the data points. 

3) Assign each pixel to the closest centroid on the basis of its Euclidean distance. The Euclidean distance 

is calculated using the formula given in (3).  
 

Euclidean distance = √∑ (xi − yi
n
i=1 )2  (3) 

 

4) Recalculate the centroid as the mean of all pixels assigned to it. 

5) Repeat steps 3 and 4 until convergence (when the centroid positions stop changing significantly). 

6) Assign each pixel to the cluster to which its centroid belongs. 

7) Re-shape the clustered data back into the original image shape. 

8) Optionally, apply post-processing to the segmented image (e.g., smoothing or morphological operations). 

9) Use the segmented image to detect and classify defects in the vial. 
 

In this process, the input sample is defined as S = {p1, p2, . . . , pm}. The variable K denotes the 

number of clusters, and N signifies the maximum number of repetitions allowed. The output is denoted by 

C = {C1, C2, . . . , CK}. The procedure involves the following steps: 

i) From sample S, select randomly k numbers of samples which are initial center vectors of k clusters 

represented as: {μ1, μ2, . . . , μk}. 

ii) For the number n=1, 2, ..., N, apply the following.  

a) C is initialized as Ct = ∅iijNt = 1, 2, … . k where C is class division 

b) Distance between pi (for all i=1, 2, ..., m) and every cluster center μj (for all j=1, 2, ..., k) is calculated 

as in (4) and (5).  
 

sij =  pi −  μj2
2 (4) 

 

Cαi
=  Cαi

∪ {pi} (5) 
 

For the sample pi having the smallest distance from μj is termed as sij and its category is represented as 

αi, so that the output category is updated as in (6): Cαi
=  Cαi

∪ {pi},  
 

μj =
1

|Cj|
∑ ppϵCj

 (6) 

 

c) For the output class Cj, divide all those sample points by (4) for all j=1, 2, 3...., k to obtain the new 

cluster centers as in (7). 
 

μj =
1

|Cj|
∑ ppϵCj

  (7) 

 

d) Repeat step (c) for all k samples.  

Now for pi the smallest distance from the center of the cluster center is marked as sij whose category is 

given by αi, with this update output as in (8): Cαi
=  Cαi

∪ {pi} 
 

μj =
1

|Cj|
∑ ppϵCj

  (8) 

 

iii) The procedure is repeated for all the values of j=1, 2, 3...., k for all the values of the k samples, the 

center vectors of the group have not changed, and the final class division output C = {C1, C2, . . . , CK}  
is obtained. 
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The success of the K-means algorithm depends on the value of k that we choose. There are various 

ways to derive an optimal number of clusters. One such way is to use the Elbow method. This method uses 

within-cluster sum of squares (WCSS) to get the optimal number of clusters. WCSS is defined as in (9): 

 

∑ Pi in Cluster1 distance(PiC1)2 + ∑ Pi in Cluster2 distance(PiC2)2 +  

∑ Pi in Cluster3 distance(PiC3)2 (9) 

 

 

3. RESULTS AND DISCUSSION 

Dataset description, the study uses a custom-curated dataset specifically designed for vial defect 

inspection, addressing limitations of publicly available datasets, as noted by Hu et al. [24]. This tailored 

dataset enhances defect detection accuracy by closely reflecting real-world scenarios. Augmentation 

techniques like rotation and scaling expanded the dataset, while rigorous validation ensured robustness 

without traditional training. 

The image acquisition setup as shown in Figure 4 includes a Nebula LED backlight (Nebula-80R) 

for adjustable brightness, a Tamron machine vision camera (5 MP, VCXG-52MR) with a 50 mm Baumer 

lens (M118FM50), and a conveyor system. Figure 4(a) shows the camera positioned to capture the vial 

surface region, while Figure 4(b) illustrates the camera setup for capturing the vial bottom region. Figure 4(c) 

depicts the vial placed with the backlight for image acquisition. The computer features a 2.8 GHz 5th gen 

core i5 processor, 8 GB RAM, Nvidia RTX 3070 GPU, and 1 TB storage. This configuration supports 

precise image capture and effective defect detection. 

 

 

   
(a) (b) (c) 

 

Figure 4. System setup for image acquisition of (a) camera positioned for capturing vial surface region,  

(b) camera positioned for capturing vial bottom region, and (c) vial placed with backlight for image acquisition 

 

 

The study uses vials with defects such as black spots, dust, scratches, dents, bubbles, mouth cracks, 

neck cracks, and mouth and rim chipping. Most of these defects are caused during the vial manufacturing 

process. To demonstrate the algorithm, a sample vial image with a mouth crack as a defect is taken, as shown 

in Figure 5. The resultant images of the vial after the application of Gabor wavelets with a kernel size of 

256×256 are shown in Figure 6. Figure 6(a) depicts the real wavelet response, while Figure 6(b) shows the 

imaginary wavelet response. In both subfigures, the orientations are 0, π/4, π/2, and 3π/4 radians from left to 

right and the different scales are 0.2, 0.3, 0.4, 0.5, and 0.6 from top to bottom.  

The Elbow method involves executing K-means clustering on the dataset for K values ranging from 

1 to 10, followed by calculating the WCSS for each K value. A curve is then plotted between the calculated 

WCSS values and the corresponding K values. The optimal K for clustering is determined by identifying the 

sharp bend, or "Elbow," in the plotted curve, which indicates the point at which adding more clusters does 

not significantly improve the model's performance. 

The image with scratches in the bottom (or base) region undergoes noise removal and feature 

extraction using Gabor wavelets, as illustrated in Figure 7. Figure 7(a) shows the input image with scratches 

in the bottom region. Figure 7(b) presents the processed image after feature extraction, where features such as 

energy, contrast, and variance are extracted. A Gabor wavelet kernel size of 32 captures features at multiple 

scales, while 16 orientations enhance defect detection from various angles. The image is then segmented 

using K-means clustering with k=3 clusters, as shown in Figure 7(c). This partitioning distinguishes actual 

defects from noise. Although increasing the number of clusters could improve segmentation, it also raises 

computational complexity. Therefore, selecting an optimal k value is crucial for balancing efficiency and data 

variation capture. Finally, the Canny edge operator is applied to highlight defects in the segmented vial 

image, as depicted in Figure 7(d).  
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Figure 5. A sample vial image with a mouth crack defect 
 

 

  

(a) (b) 

 

Figure 6. Resulting vial images after applying Gabor wavelets of (a) real and (b) imaginary 
 

 

    
(a) (b) (c) (d) 

 

Figure 7. Stepwise processing of a vial image with scratches in the bottom region of (a) input image with 

scratches in the bottom region, (b) denoising and feature extraction using Gabor wavelet, (c) segmented 

image using K-means, and (d) identified cluster edges in the output image 
 

 

The proposed method inspects various defects commonly found in pharmaceutical vials to ensure 

comprehensive quality assessment. A total of 254 defective vials were analyzed, encompassing a diverse 

range of defects, including black spots (35 occurrences), cracks (60 occurrences), scratches (80 occurrences), 

chippings (65 occurrences), as well as other less frequent defects such as bubbles (10 occurrences) and 

miscellaneous types like flat slim rings, dents, and others (4 occurrences). This dataset allows for a thorough 

examination of defect detection capabilities across different categories. 

The algorithms implemented exhibit varying time and space complexities. Canny edge detection 

operates in 𝑂(𝑁) time, where 𝑁 is the number of pixels, while the Gabor wavelet and K-means clustering 

exhibit time complexities of 𝑂(𝑁. 𝑘2. 𝐹) and 𝑂(𝑛. 𝑘. 𝐼. 𝑑) respectively, where 𝐹 represents the number of 

Gabor filters, 𝐼 denotes the number of iterations, and 𝑑 signifies the number of dimensions. The space 

complexities for most operations are 𝑂(𝑁), except for K-means clustering, which has a space complexity of 

𝑂(𝑛. 𝑑), where 𝑑 is the number of dimensions. The performance of the implemented system is evaluated 

using a confusion matrix, which is one of the popular measures used for the analysis of performance 

parameters such as recall, precision, accuracy, and F1-score. Performance parameters are computed using 

terminologies such as true positive (TP), true negative (TN), false positive (FP), and false negative (FN). 
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Figure 8 presents the confusion matrix summarizing the experimental results. The recall, precision, accuracy, 

and F1-score can be calculated as in (10) to (15).  
 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (10) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 (11) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝑆𝑎𝑚𝑝𝑙𝑒
 (12) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙
  (13) 

 

 

 
 

Figure 8. Confusion matrix of experimental results 
 

 

The area under the curve-receiver operating characteristic (AUC-ROC) curve and the AUC the 

precision-recall (PR) curve are common metrics used to evaluate the performance of binary classification 

models as given in (14) and (15). 
 

𝐴𝑈𝐶_𝑅𝑂𝐶 = ∫ 𝑇𝑃𝑅(𝐹𝑃𝑅−1(𝑘))𝑑𝑘
1

0
 (14) 

 

𝐴𝑈𝐶_𝑃𝑅 = ∫ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑘)
1

0
∙ 𝛥𝑅𝑒𝑐𝑎𝑙𝑙(𝑘)𝑑𝑘 (15) 

 

Where K represents the number of clusters. The AUC-ROC is calculated considering the TP rate (sensitivity) 

and the FP rate. The TP rate would represent the proportion of correctly identified defective vials, whereas the 

FP rate would represent the proportion of non-defective vials incorrectly identified as defective. The AUC-PR 

measures the balance between precision and recall. Precision would represent the accuracy of the identification 

of the defect among all the vials identified as defective, while recall (or sensitivity) would represent the 

proportion of actual defective vials correctly identified. The proposed method has produced 98.81% recall, 

98.03% precision, 98.28% accuracy, and the F1-score obtained is 98.42%. The AUC-ROC and AUC-PR 

values obtained are 98.30 and 98.96%, respectively, when the value of k is set to 3 and is shown in Figure 9.  

The performance of the proposed methodology across various segmentation settings is assessed  

by integrating different k values, as shown in Figure 10. Figure 10(a) presents the ROC curve, while  

Figure 10(b) illustrates the PR curve for different k values. The analysis reveals that varying K impacts 

model performance, with K=3 yielding optimal sensitivity, specificity, precision, and recall. This indicates 

that defect detection is most effective when K is set to 3, highlighting the importance of selecting an 

appropriate K value for superior performance. 

The proposed method for vial defect detection takes an average computational time of around  

355 microseconds for all types of defects, and suggests a relatively efficient processing speed. The 

comparison of various techniques or methodologies and the one used in this study is given in Table 1, which 

provides empirical evidence that demonstrates the superior performance of the proposed method compared to 

alternative defect detection algorithms. The paper presents results from comparative experiments that 

highlight the method's higher accuracy. Overall, the preference for the proposed method using Gabor wavelet 

clustering and K-means clustering is justified by its ability to effectively extract relevant features that 
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distinguish between defective and non-defective regions of vials. The graph of the comparison of accuracy 

across different methods is shown in Figure 11.  
 
 

 
 

Figure 9. The AUC-ROC and AUC-PR curves 
 

 

  
(a) (b) 

 

Figure 10. Performance evaluation metrics of (a) receiver operating characteristic curve and  

(b) precision-recall curve 
 

 

 
 

Figure 11. Comparison of precision across different methods 
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Table 1. The performance of various methods 
Sl. No. Methodology  Accuracy (%) 

1 Multi-channel segmentation [1] 95 

2 X-ray anomaly detection [2] 97.4 

3 Heuristic method [3] 94.9 

4 Thresholding [4] 95.6 

5 Horizontal intercept projection [5] 98 
6 FTADSP and WTMF [6] 95.00 

7 Canny edge detection [7] 95.33 (avg) 

8 Clustering [8] 94.12 

9 HAMV [9] 95.00 

10 Canny edge detector [10] 95.00 
11 DDSCNet [15] 86.9 (highest) 

12 YOLOv3 [16] 97.66 

13 YOLOv5s [17] 67.5 

14 LF-YOLOv4 [18] 97.83 

15 Improved YOLOv3 [19] 91.12 
16 Proposed method 98.28 

 

 

4. CONCLUSION 

This study adopts a novel approach by focusing on the development and evaluation of an algorithm 

for defect detection in vials. The algorithm is designed to analyze individual vial images to identify and 

localize the presence of defects, without training a model for vial classification. Gabor wavelets are a 

powerful tool in image processing that can be used to detect defects in vials by extracting meaningful 

features from the image data. Combining Gabor wavelets with clustering of K-means enables accurate and 

efficient detection of defective vials, utilizing features such as energy, contrast, and variance for superior 

results. Robust to variations in illumination, orientation, and scale, Gabor wavelets ensure reliability across 

diverse manufacturing environments. Unlike predefined models, K-means clustering adapts to varying 

characteristics, operates in an unsupervised manner, and accommodates changes in manufacturing processes 

or product specifications. This holistic approach enhances the method's ability to identify various types of 

defects, including subtle anomalies that may be challenging to detect using traditional algorithms. With an 

average computational time of 355 microseconds, the proposed method demonstrates the potential for  

real-time defect detection, detecting scratches, dents, black spots, chipping, cracks, and more. Comparative 

analysis indicates better accuracy in all regions of the vial tested for defects, highlighting the method's 

potential for adoption in the pharmaceutical industry. The method described operates on individual vial 

images sequentially. For high-throughput manufacturing environments, where multiple vials are inspected 

simultaneously, this approach may not be scalable. Future research could investigate parallel processing or 

batch inspection techniques to improve throughput and aim at exploring the integration of optimized ML 

algorithms, such as CNNs, SVMs, random forests, and deep learning methods such as R-CNNs, U-Net, and 

GANs, to improve automated defect classification. 
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