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 Hyperparameter tuning is a key optimization strategy in machine learning 

(ML), often used with GridSearchCV to find optimal hyperparameter 

combinations. This study aimed to predict the half-maximal inhibitory 

concentration (IC50) of small molecules targeting the SARS-CoV-2 replicase 

polyprotein 1ab (pp1ab) by optimizing three ML algorithms: histogram 

gradient boosting regressor (HGBR), light gradient boosting regressor 

(LGBR), and random forest regressor (RFR). Bioactivity data, including 

duplicates, were processed using three approaches: untreated, aggregation of 

quantitative bioactivity, and duplicate removal. Molecular features were 

encoded using twelve types of molecular fingerprints. To optimize the 

models, hyperparameter tuning with GridSearchCV was applied across a 

broad parameter space. The results showed that the performance of the 

models was inconsistent, despite comprehensive hyperparameter tuning. 

Further analysis showed that the distribution of Murcko fragments was 

uneven between the training and testing datasets. Key fragments were 

underrepresented in the testing phase, leading to a mismatch in model 

predictions. The study demonstrates that hyperparameter tuning alone may 

not be sufficient to achieve high predictive performance when the 

distribution of molecular fragments is unbalanced between training and 

testing datasets. Ensuring fragment diversity across datasets is crucial for 

improving model reliability in drug discovery applications. 
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1. INTRODUCTION 

The COVID-19 pandemic was one of the forces that drove the surge in computer-aided drug 

discovery (CADD adoption). Related studies during this period target either the host target, such as the 

transmembrane protease serine 2 (TMPRSS2) [1], or the part of the virus, such as the 3-chymotrypsin-like 

protease (3CLpro) or the main protease (Mpro) [2]–[9]. Huang et al. [1] utilized molecular docking to 

examine the drugs with positively charged guanidinobenzoyl and/or aminidinobenzoyl groups to inhibit 

TMPRSS2 at the host. Molecular docking was also used to assess the potential to repurpose approved drugs, 

https://creativecommons.org/licenses/by-sa/4.0/
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such as quinoline [2] as well as isavuconazonium, α-LI, and pentagastrin [6] to inhibit the virus's main 

protease. While also targeting the main protease, natural products were assessed with molecular docking as 

alternative pharmacotherapy options [4], [8], [9]. 

The adoption of machine learning (ML) is a variation in CADD, known as machine learning-aided 

drug discovery (MLDD). Classification is a common task in MLDD, where the target of the classification 

uses either a known interaction, coded as a binary value [10]–[12] or categories based on the discretized  

half-maximal inhibitory concentration (IC50) value [7], [13], [14]. Despite the discretization of the IC50 being 

a common approach as demonstrated in the mentioned studies, however, this approach is discouraged in 

general epidemiology studies due to the loss of information within the numeric variable [15]. Based on two 

meta-analyses, it is found that continuous, rather than discrete, measurements could improve validity and 

reliability [16]. For instance, Gao et al. [17] build regression models using random forest (RF), and support 

vector machine (SVM) with some optimization to predict the IC50 of the [1,2,3] triazolo [4,5-d] pyrimidine 

derivatives (1,2,3-TPD) to inhibit the replication of the MGC-803, the gastric cancer cell in humans. In 

contrast to the work in [13], [18] utilized SVM, artificial neural network (ANN), k nearest neighbor (KNN), 

and RF to build regression models for predicting the IC50 towards multiple hepatitis C virus (HCV)  

non-structural proteins. Similarly, the work of Fiat et al. [19] used random forest regression (RFR) and 

gradient boosting regression (GBR) to develop ML models to predict the IC50, targeting the HCV genotype 1a 

(Isolate 1). Support vector regression (SVR) is used in predicting the inhibition of small molecules to  

beta-secretase 1 (BACE1), which is an enzyme related to Alzheimer’s disease (AD) [20]. In another study, 

multiple linear regressions (MLR) was found as the best algorithm compared to SVR, classification and 

regression (CART), and ANN in predicting the compound binding free energy (BFE) towards the  

SARS-CoV-2 main protease [21]. 

In our previous study [22], we experimented with 42 ML regression algorithms to predict the IC50 of 

bioactive compounds, targeting the polyprotein 1ab (pp1ab) of the SARS-CoV-2, which comprises the virus’s 

non-structural protein (NSP) 12 to NSP16 [23], [24]. The default hyperparameters were used without any 

tuning process involved. The features were derived from the compounds by using PubChem fingerprints.  

Out of the 42 experimented algorithms, three algorithms: RFR, light gradient boosting machine regression 

(LGBR), and histogram gradient boosting machine regression (HGBR) were found as the most stable for this 

combination based on the R2 values. Hyperparameter tuning is a technique in ML that is used to optimize the 

model performance by tweaking the hyperparameters of the algorithm [25]–[28]. It is commonly used with 

GridSearchCV, which combines a large hyperparameter search space and cross-validation to obtain the 

optimal generalizable model for the algorithm. Therefore, in this study, we extended the experiment with 

these algorithms, which also fall into the ensemble tree-based category, and investigated the impacts of data 

distribution, especially the Murcko fragments of the compounds, on the model performance.  

The rest of this article is organized as follows: in section 2, we present the dataset as well as the 

methods we used for data curation, treatments in pre-processing, model training, validation, and performance 

evaluation. Then, in section 3, we compare the performance between the treatments, as well as investigate the 

distribution of compound characteristics in training and testing datasets. Last, in section 4, this paper is 

concluded, and directions for future work are presented. 

 

 

2. METHOD 

The research methodology mainly follows the core activities of data science methodology, as shown 

in Figure 1 mainly consists of three parts. The preprocessing part is related to fashioning the compounds' 

bioactivity data for ML training. The pipeline part is where we use custom pipelines that feed into the 

hyperparameter tuning process. The pipelined approach will ensure no data leakage, hence guaranteeing that 

the model has never seen the data used for its performance evaluation. Last, in the result analysis and 

documentation part, the experiment results are analyzed and compared. Mainly, we used Python version 3.10 

and scikit-learn [29] version 1.5.1 in the modeling and analysis phases. 

 

2.1.  Preprocessing 

The data preparation phase begins with data acquisition, specifically inhibitory bioactivity data.  

By using the ChEMBL web service [30], we acquired, in total, 1,455 compounds with known IC50 to the 

SARS-CoV-2 pp1ab (CHEMBL4523582), heavily increased from our previous study [22]. In this dataset, 

compounds are represented in simplified molecular input line entry system (SMILES) format. The data 

cleaning also includes standardizing the SMILES notation of each compound and converting the IC50 to the 

respective negative logarithmic scale, pIC50, hence narrowing the scale. Following the cleaning steps, we 

continue with treating the duplicates. In drug discovery experiments, different approaches and different 

laboratory settings might yield different IC50 values, despite the use of the same compound. In our 
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experiments, we tried several approaches to handle the duplicated data. First, we left them as is; second, we 

aggregated them by taking the average of the pIC50 value; and last, we dropped all duplicated compounds. 

 

 

 
 

Figure 1. Course of research 

 

 

After the duplicates were treated, we continued by transforming the chemical compounds  

(in SMILES) into molecular fingerprints (descriptors), resulting in a table for each fingerprint we used. The 

molecular fingerprints represent the characteristics of a chemical compound. For each compound, a 

fingerprint is a series of bits, where each bit is a Boolean, representing a specific chemical characteristic, and, 

as a whole, describes the compound. For instance, the PubChem fingerprint, the first bit shows whether the 

respective compound possesses four or more hydrogen atoms. The transformations to the fingerprints are 

done using PaDEL software [31]. In total, there are 12 variants of feature sets. The description of each 

fingerprint and the number of molecular features it has are provided in Table 1. Since 12 types of molecular 

fingerprints are in use and three treatments for duplicates, 36 datasets are used for the experiments. Then, 

using an 80:20 ratio of training and testing data, respectively, each dataset is split using the function available 

in scikit-learn. 

 

2.2.  Pipeline and hyperparameter tuning 

To ensure the reliability and the continuity of model training and, later, utilize them for inferencing, 

the feature selection processes are coupled with the regressors as pipelines. The first feature selection method 

is the variance threshold. This feature selection method drops features with variance under the specified 

level. The rest of the features are then fed into the second feature selection method, the mutual information 

(entropy). We set the features selector to use only the top certain percentile, according to the features' entropy 

score. The post-feature selection dataset will then be used to train the regressor. As described earlier, three 

ML regression algorithms were explored alternately: HGBR, RFR, and LGBR. 

As a development from our previous approach in [22], the current method employs hyperparameter 

tuning using GridSearchCV, to exhaustively test each combination of the hyperparameters in the search 

space. To ensure the generalizability of the hyperparameters with the best performance during training, 5-fold 

cross-validation is used. Table 1 lists the steps and modules in the pipelines, and the search space used for 

hyperparameter tuning. 

 

2.3.  Analysis and documentation 

In this part of the research, we evaluate the performance of the models by comparing the 

performance of the trained models and applying it to infer the labels in the testing dataset. Performance 

metrics used are R2 and the root mean squared error (RMSE). Statistical analyses and figures are done using 

the R statistical software version 4.4.1 [32]. 
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Table 1. Hyperparameter tuning pipeline steps, module, and hyperparameter search space 
Pipeline step Module Hyperparameter search space 

Feature selection Variance threshold threshold: 0.8(1-0.8) =0.16; 0.9(1-0.9) =0.09 

 Select percentile (scoring by mutual information) percentile: 10, 20, 50, 100 

Regressor HGBR max_iter: [100, 1000, 10000, 99999999], 

max_depth: [None, 10, 20, 30, 40, 50], 

min_samples_leaf: [1, 2, 4, 8, 16, 32, 64], 
l2_regularization: [0, 0.1, 0.01], 

learning_rate: [0.01], 

warm_start: [True, False], 

early_stopping: [True], 

n_iter_no_change: [10, 100], 
random_state: [22], 

 LGBR boosting_type': ['gbdt','rf'], 

n_estimators': [99999999], 

max_depth': [-1, 15, 31, 63], 

learning_rate: [0.01], 
random_state: [22], 

num_leaves: [7, 31, 127, 1027, 2047, 4095] 

early_stopping_rounds: [20] 

 RFR n_estimators: [10, 100, 1000], 

min_samples_leaf: [1, 2, 4, 8, 16], 
max_depth: [None, 10, 20, 30, 40, 50], 

oob_score: [True, False], 

random_state: [22], 

warm_start: [True, False], 

min_samples_split: [2, 3, 4, 8, 16], 
max_features: ["sqrt", "log2", None] 

 

 

3. RESULTS AND DISCUSSION 

Using the best hyperparameters found for each combination of molecular fingerprints and algorithm 

for every treatment of duplicated data, we trained models and applied them to the testing dataset. Tables 2 to 4 

show the best hyperparameters for HGBR, LGBR, and RFR algorithms, respectively, for each molecular 

fingerprint. 

 

3.1.  Performance metrics 

Figure 2 shows the boxplots of the performance metrics, R2, and RMSE of the models with the 

hyperparameters that gave the best performance during the tuning with the 5-fold cross-validation step. It is 

obvious that by entirely dropping the duplicated bioactivity data, the models performed extremely differently 

from the other two treatments. When the duplicated data was dropped, the R2 values dropped and commonly 

fell under zero with a higher variation, either during training or testing, as can be seen in Figure 2(a). 

Meanwhile, when these duplicates were left untouched, the R2 during training was slightly lower than the 

averaged pIC50 treatment, but the condition was reversed in testing. The boxplot of the loss function, RMSE, 

in Figure 2(b) indicates the same thing. Performance metrics for each combination of molecular fingerprint 

and algorithm with the best hyperparameters are shown in Figures 1 and 2. 
 

 

 
(a) 

 
(b) 

 

Figure 2. Boxplots of performance metrics across treatments and modeling stages of (a) R2 and (b) RMSE 
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Before statistically comparing the performance metrics, the Shapiro-Wilk test was applied to check 

the distribution normality of each performance metric. For this test, the data are grouped according to 

treatments, algorithms, and modeling stages. Therefore, a single distribution tested has 12 performance data. 

Table 2 shows the p-values of the Shapiro-Wilk test. With α=0.05, it is clear that some of the data are not 

normally distributed, hence non-parametric test should be used for further analysis.  
 
 

Table 2. P-values of the Shapiro-Wilk test for normality distribution of the performance metrics, grouped by 

the treatment for duplicates and algorithms. The italicized numbers are those under the α=0.05 
Treatment Algorithm Train R2 Test R2 Train RMSE Test RMSE 

Untreated HGBR 0.038 0.167 0.083 0.124 

Untreated RFR 0.017 0.197 0.047 0.035 

Untreated LGBR 0.018 0.202 0.051 0.036 
Averaged HGBR 0.017 0.574 0.089 0.879 

Averaged RFR 0.012 0.475 0.047 0.842 

Averaged LGBR 0.012 0.360 0.048 0.681 

Dropped HGBR 0.001 <0.001 0.841 0.205 

Dropped RFR 0.255 0.537 0.210 0.649 
Dropped LGBR 0.282 0.629 0.132 0.812 

 

 

We used the Friedman test for one-way repeated measures analysis of variance to compare each 

performance metric between the treatments with the same algorithm, by using the molecular fingerprint as 

the identifier. The results, as shown in Table 3, show that in all comparisons, at least one group of duplicate 

data treatment has a significantly different distribution of a particular performance metric. Following the one-

way repeated measures Friedman test, we carried out the Pairwise Wilcoxon test to compare performance 

metrics between different treatments of the same algorithms. The Benjamini-Hochberg (BH) method is used 

for p-value adjustment. The results in Table 4 shows that in most cases, with α=0.05, it can be seen that 

treatments for duplicate data significantly affect the performance. The R2 during training with HGBR of the 

untreated and averaged treatments is the only comparison that is not significantly different. However, its 

counterpart in testing is significantly different. 
 
 

Table 3. Results of the repeated measures Friedman test of the performance metrics between treatments 
Algorithm Metrics n F Degree of freedom p-value 

HGBR Train R2 12 18.667 2 <0.001 

RFR Train R2 12 22.167 2 <0.001 

LGBR Train R2 12 22.167 2 <0.001 
HGBR Test R2 12 20.667 2 <0.001 

RFR Test R2 12 22.167 2 <0.001 

LGBR Test R2 12 22.167 2 <0.001 

HGBR Train RMSE 12 19.500 2 <0.001 

RFR Train RMSE 12 24.000 2 <0.001 
LGBR Train RMSE 12 24.000 2 <0.001 

HGBR Test RMSE 12 24.000 2 <0.001 

RFR Test RMSE 12 24.000 2 <0.001 

LGBR Test RMSE 12 24.000 2 <0.001 

 
 

3.2.  Murcko fragments 

In drug discovery, since different fragments lead to different bioactivity between the small 

molecules and the target, decomposing the compounds into fragments is a common task [33]. The Murcko 

fragments, proposed by Bemis and Murcko in 1996 [34], is a widely adopted technique, including in MLDD 

[35], [36]. The method works by ring systems, linkers, and the side chains of the molecules. The Murcko 

fragments consist of a combination of rings and linkers between them, with all terminal substituents 

removed. In this part, we compare the characteristics of the Murcko fragments between treatments and 

modeling stages to identify the cause of the low-performance metrics even after adopting hyperparameter 

tuning. The Murcko fragments are extracted from the compounds using the R chemistry development kit 

(RCDK) package version 3.8.1 [37]. The minimum fragment size used in the extraction is three. In total,  

551 fragments can be identified from the bioactivity dataset. The fragments are numbered from F001 to F551 

according to their frequencies in the dataset. Out of the 551 fragments, 12 with the highest frequencies were 

selected for further analysis. 

In regards to pIC50 as the regression target and the nature of the Murcko fragments as a fragment 

that appears in related compounds, which in turn affects the compounds’ characteristics, then their molecular 

fingerprints which are used as features for the regression algorithms, imply that compounds with the same 

Murcko fragment should have similar pIC50. Figure 3 shows the distributions of the pIC50 of the selected 
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Murcko fragments for training and testing in all three treatments. From the 12 sampled Murcko fragments, it 

can be seen from Figure 3 some fragments have different pIC50 distributions, so the trend is more pronounced 

when the duplicate bioactivity data are dropped. For instance, the Murcko fragments F001, F002, F003, and 

F005 have different pIC50 distributions. Still in the dropped row, since it has fewer data, there are cases 

where certain Murcko fragments only exist in either dataset, such as happened with F010 and F011. Despite 

the Murcko fragment F010 also only appearing in one of two datasets in the averaged treatment, it can be 

seen that the boxplots in the respective row have similar pIC50 distributions. 
 
 

Table 4. Results of the two-sided Pairwise Wilcoxon test with the BH adjustment on the performance metrics 

between treatments 
Algorithm Metrics Treatment group 1 Treatment group 2 n1 n2 W p-value Adjusted p-value 

HGBR Train R2 Untreated Averaged 12 12 32 0.622 0.622 

HGBR Train R2 Untreated Dropped 12 12 78 <0.001 <0.001 

HGBR Train R2 Averaged Dropped 12 12 78 <0.001 <0.001 
RFR Train R2 Untreated Averaged 12 12 1 0.001 0.001 

RFR Train R2 Untreated Dropped 12 12 78 <0.001 <0.001 

RFR Train R2 Averaged Dropped 12 12 78 <0.001 <0.001 

LGBR Train R2 Untreated Averaged 12 12 1 0.001 0.001 

LGBR Train R2 Untreated Dropped 12 12 78 <0.001 <0.001 
LGBR Train R2 Averaged Dropped 12 12 78 <0.001 <0.001 

HGBR Test R2 Untreated Averaged 12 12 71 0.009 0.009 

HGBR Test R2 Untreated Dropped 12 12 78 <0.001 <0.001 

HGBR Test R2 Averaged Dropped 12 12 78 <0.001 <0.001 

RFR Test R2 Untreated Averaged 12 12 76 0.001 0.001 
RFR Test R2 Untreated Dropped 12 12 78 <0.001 <0.001 

RFR Test R2 Averaged Dropped 12 12 78 <0.001 <0.001 

LGBR Test R2 Untreated Averaged 12 12 76 0.001 0.001 

LGBR Test R2 Untreated Dropped 12 12 78 <0.001 <0.001 
LGBR Test R2 Averaged Dropped 12 12 78 <0.001 <0.001 

HGBR Train RMSE Untreated Averaged 12 12 67 0.027 0.027 

HGBR Train RMSE Untreated Dropped 12 12 0 <0.001 0.001 

HGBR Train RMSE Averaged Dropped 12 12 0 <0.001 0.001 

RFR Train RMSE Untreated Averaged 12 12 78 <0.001 <0.001 
RFR Train RMSE Untreated Dropped 12 12 0 <0.001 <0.001 

RFR Train RMSE Averaged Dropped 12 12 0 <0.001 <0.001 

LGBR Train RMSE Untreated Averaged 12 12 78 <0.001 <0.001 

LGBR Train RMSE Untreated Dropped 12 12 0 <0.001 <0.001 

LGBR Train RMSE Averaged Dropped 12 12 0 <0.001 <0.001 
HGBR Test RMSE Untreated Averaged 12 12 0 <0.001 <0.001 

HGBR Test RMSE Untreated Dropped 12 12 0 <0.001 <0.001 

HGBR Test RMSE Averaged Dropped 12 12 0 <0.001 <0.001 

RFR Test RMSE Untreated Averaged 12 12 0 <0.001 <0.001 

RFR Test RMSE Untreated Dropped 12 12 0 <0.001 <0.001 
RFR Test RMSE Averaged Dropped 12 12 0 <0.001 <0.001 

LGBR Test RMSE Untreated Averaged 12 12 0 <0.001 <0.001 

LGBR Test RMSE Untreated Dropped 12 12 0 <0.001 <0.001 

LGBR Test RMSE Averaged Dropped 12 12 0 <0.001 <0.001 

 

 

 
 

Figure 3. The boxplots of the pIC50 distributions for the selected Murcko fragments 
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Figure 4 shows the 12 selected Murcko fragments plotted as line structure, followed by the name, 

and statistics for each treatment. As the splitting strategy used an 80:20 proportion for training and testing, 

respectively, it can be seen that not all of these selected fragments are evenly distributed regarding the 

proportion. For instance, in each treatment, there 30 compounds share Murcko fragment F001. In the 

untreated duplicates dataset, the split is exactly 80:20 (24:6), but in the averaged and dropped, the splits are 

slightly shifted to 86.67:13.33 (26:4). F002 is another frequent Murcko fragment, that split with a ratio 

78.94:21.06 (30:8), 80:20 (20:5), and 90:10 (18:2) at the untreated, averaged, and dropped duplicate 

treatments, respectively. The ratio for the Murcko fragment F002 at the dropped treatment has a major 

deviation from the expected split ratio. The deviations of the split ratio are even more noticeable for the 

selected Murcko fragments with less frequency, such as F010 and F011. Murcko fragment F010 was 

distributed with a ratio of 75:5 (21:7) for the untreated duplicate and 100:0 for the other two treatments. 

 

 

 
 

Figure 4. Selected Murcko fragments 

 

 

The first line in each cell shows the fragment number (F###). Then the second, third, and fourth 

lines show the proportion and pIC50 statistics in untreated duplicates, averaged pIC50, and dropped duplicates, 

respectively. In each line, the numbers show frequencies and proportions of the respective fragment in the 

training/testing dataset, followed by the respective average and standard deviation of pIC50 in the 

training/testing dataset. 

 

3.3.  Discussions 

Typically, hyperparameter tuning is applied to gain higher ML model performance such as 

demonstrated in previous studies [38]. However, even with a large hyperparameters search space, in this 

particular study, we found the regressors’ performances were not as expected. Therefore, by conducting 

further analyses, we applied statistical tests to the performance data, grouped by the treatments for duplicated 

bioactivity data. The results of the repeated measures Friedman test show that the differences in the data 

preparation significantly impact model performance, regardless of the algorithms. This finding is consistent 
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with previous studies on hyperparameter optimization. A study by Schratz et al. [39] on hyperparameter 

tuning in the field of ecological modeling, it was found that the results of hyperparameter tuning might be 

negligible for RF. Similarly, Sipper [40] evaluated many algorithms and datasets and found that considerable 

gains could not always be expected from hyperparameter tuning. The study also found that RFR, which was 

also used in our study, is one algorithm expected to gain less from hyperparameter tuning. 

Splitting the dataset for training and testing is a standard practice in ML. In classification tasks, 

ensuring the balance between the labels or classes is an important consideration in data preparation since the 

diversity of the samples in each class brings considerable influence to the model performance [41]. In another 

study of heart disease classification with ensemble algorithms, the preserved distribution in train-test  

splitting brought considerable impacts to the overall performance [42]. Prediction tasks such as regressions 

do not share this dataset imbalance problem due to the different nature of the target. However, the 

representativeness of the data characteristics distribution in both training and testing datasets has to be 

considered. This implies that the fairness of data characteristics in the train-test split has to be considered, as 

proposed in the study by Salazar et al. [43]. In this study, regardless of the hyperparameter tuning with an 

exhaustive search space on various combinations of treatments of duplicates, feature extraction using various 

molecular fingerprints as descriptors, and several algorithms, the best models still have low performance. As 

the Murcko fragment represents the core structural framework of a molecule, including its rings and linkers, 

with the side chains or terminal substituents excluded, it is central to the molecular structure and often 

considered as the scaffold on which various functional groups are attached. Our investigation of the Murcko 

fragments distributions in the train and test datasets found that some of them were not equally distributed in 

both datasets, resulting in a fragments imbalance between the datasets, therefore, the features learned by the 

models are different from those in the test dataset. This issue should be considered further with an expanded 

list of algorithms and bioactivity targets. 

 

 

4. CONCLUSION 

In this study, we investigated the low performance of the ensemble tree-based regressor algorithms 

in predicting the IC50 of small molecules, targeting the SARS-CoV-2 pp1ab. Despite the exhaustive 

hyperparameter search space, various combinations of treatments of duplicate bioactivity data and molecular 

fingerprint descriptors as features, none of the resulting models gained a satisfactory number of R2 and 

RMSE. Treatment-wise, dropping all the duplicated bioactivity data yielded the worst performance compared 

to the other two treatments. The R2 values across modeling stages (train, cross-validation, and test) tend to 

have similar trends regardless of the molecular fingerprints and algorithms. However, a deeper comparison of 

the RMSE in each molecular fingerprint shows that the experiments with untreated duplicates tend to yield 

higher RMSE in test cross-validation than in the real training dataset. At the same time, as a loss function, it 

should be the other way around. Hence, based on our experiments, treating the duplicates by averaging the 

pIC50
 brought more reasonable results. The balanced distribution between labels is an important factor in 

overall model performance in classification tasks. By having balanced label distribution in both training and 

testing datasets, the consistency of the data could be preserved, hence, the characteristics faced by the 

algorithm during model training could also be found when evaluating the model with the testing dataset. 

Regardless of the nature of the task, the representativeness of the characteristics in the training and testing 

datasets also influences the model performance. In our study, our investigation of the Murcko fragments 

distributions in the datasets used for training and testing was not balanced. There are cases where some of the 

frequent Murcko fragments in the whole dataset were not evenly distributed or did not exist in the testing 

dataset. This is considered the main cause of the models, despite hyperparameters being tuned with an 

exhaustive list of search space, which tends to overfit. Future studies should consider the issue of Murcko 

fragment distribution. When investigating the effect of Murcko fragment distributions in quantitative 

structure-activity relationship (QSAR) modeling, a wide range of algorithms, targets, tasks, and split ratios 

must be considered. 
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