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1. INTRODUCTION

Particle accelerators accelerate charged particles at atomic and subatomic sizes [l]. Particle
accelerators play crucial role in industrial applications, scientific research, and healthcare, including production
of radioisotopes [2], nuclear forensics [3], genetic mutation [4], [5], accelerator-driven systems [6]-[8], nuclear
laboratories, materials research [9]-[12], and boron neutron capture therapy. Protons and electrons, which are
charged with atomic particles, comprise most of the particle stream. Generally, particle accelerators are
developed according to their specific purposes, and the type of application depends on accelerator's energy.

Some particle accelerators have complex experimental installations and produce directed beams of
high-energy particles toward targets. The main components of an accelerator consist of the charged particle
beam source or injector, acceleration system, vacuum tube system, optic system, target system, and
instrumentation and control system. The interrelationships among the systems result in high complexity.
Considering the complexity of each subsystem and the unpredictability of interactions among them, it is
pretty challenging to avoid failures and operational errors [13]. Navigating the nonlinear functions of the
components and dynamic machine settings in accelerator optimization is a significant challenge affecting
particle beam design, operation, and control [14].

Particle accelerators are nonlinear systems, and further research is necessary due to their complexity
[15]. There are many intrinsic nonlinear interactions between its system components. It is challenging to
navigate through the nonlinear functions of thousands of components and dynamic machine settings in
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particle accelerator optimization [16]. These factors affect particle beam design, operation, and control.
Conventional methods have not been successful in this domain, leading to constant and costly system
monitoring by human operators. Artificial intelligence (Al) itself has been widely applied in several
applications [17]-[19]. Al algorithms are essential for control, tuning [20], diagnostics [21], and modeling of
accelerators. Various machine learning (ML) methods have been utilized for accelerator development.

Designing accelerators more efficiently may be accomplished by utilizing ML techniques. Using
sophisticated optimization methods and data-intensive approaches, ML may boost productivity, accelerate
design, and enhance the accelerator's performance. The algorithms might examine large datasets from
previous accelerator designs and simulations to find trends and optimize settings for desired results. Using
massive datasets containing past performance and experimental outcomes, researchers may train ML models
to find patterns and associations that help guide the design and management of vital accelerator parts. For
instance, ML algorithms can assist in optimizing the design cavity's form and material composition to
increase particle acceleration efficiency.

Moreover, ML can support particle accelerator systems' stability and control. ML algorithms can
enhance the control settings for strength and performance, resulting in more efficient operation, by evaluating
real-time sensor data and using predictive modeling. The techniques follow the goals to be achieved. This
paper reviews various ML techniques and applications for accelerators. By conducting a review, it is
expected that knowledge will be obtained, namely knowing what techniques exist in ML, grouping ML
methods based on problems faced in particle accelerators, the advantages of these methods, and the
requirements that must be met to optimize using ML.

2. METHOD

The research questions for ML in particle accelerators revolve around optimizing parameters,
identifying utilized ML methods, and understanding trends in accelerator ML applications. Keyword and
literature search is vital for identifying relevant literature through appropriate keywords and search strategies,
using Boolean operators to refine searches. We review retrieved document titles and abstracts to assess
relevance to the research question, documenting the search process meticulously for transparency and
reproducibility. Knowledge extraction involves synthesizing pertinent insights from various sources to
address research objectives and organizing and interpreting information systematically to derive meaningful
insights. Critical evaluation ensures the integrity of extracted knowledge, facilitating subsequent analysis and
interpretation. Knowledge differentiation categorizes and organizes extracted knowledge based on themes,
patterns, or variations, deepening understanding and enabling more effective analysis.

Figure 1 shows the analysis using VOSviewer. There is a strong connection between the fields of
particle accelerator technology and Al analysis using VOSviewer. This is because neural networks and other
Al techniques are increasingly used to control and optimize particle accelerators. The use of neural networks
and other Al methods in particle accelerator technology is a rapidly growing field. As Al techniques continue
to develop, we can expect to see even more innovative applications in this field.
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Figure 1. Trends of ML applications for particle accelerator optimization
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3. MACHINE LEARNING ALGORITHM

ML becomes attractive due to the abundance of data. It can learn complex patterns, predict
outcomes, and automate processes. ML generally learns relationships between input and output from existing
data [22]. Tasks performed by ML include regression, classification, clustering, and anomaly detection
problems [23], [24]. Several ML methods, often combined with optimization techniques, are explained in the
following sub-sections.

3.1. Artificial neural networks

One of the most famous and commonly used ML algorithms is artificial neural networks (ANN)
[25]. ANN is well-suited for learning tasks where data includes noise, complex signals, and target output
functions that may consist of multiple parameters. A neural network can be defined as a collection of
functions with weighted connections among them. These weighted connections can be adjusted or trained
through an automated optimization process until the desired output behavior is achieved. Training may also
involve changes to the structural components of the network, such as the number of nodes and layers [26].
Neural networks can be trained using simulation data, measurable data, or a combination of both. Many
training approaches and architectures are available, each suitable for specific problem classes.

ANN is widely used in various fields, from safety to critical areas such as accelerators [27]. ANN
belongs to familiar ML methods that are frequently used in accelerator applications. Several studies have
been conducted on the use of neural networks [28]. ANN, especially deep learning models, are powerful
tools for learning complex patterns and relationships from data. They can be used for tasks such as surrogate
modelling, where the neural network learns to approximate the performance of particle accelerator
components based on input parameters. ANN can also be integrated into optimization algorithms to guide the
search process more effectively. The applications of ANN include beam dynamics optimization [29], control
[30], surrogate model particle accelerators [31], phase space diagnostics [32], and optics reconstruction.

3.2. Random forest

Random forest is an algorithm that can be used for regression and classification analysis. Random
forest is a versatile ML method that can be effectively applied to various aspects of particle accelerator
optimization, including surrogate modelling, feature importance analysis, anomaly detection, and ensemble
optimization. The random forest method is effective for instrumentation error detection, for example, for
identifying and correcting errors in magnets.

3.3. Reinforcement learning

Reinforcement learning (RL) is a framework in which artificial agents learn by interacting with their
environment. RL can be used to develop surrogate models that reproduce real-world systems' behaviors and
train online agents to take control actions in those systems [33]. These online agents will ultimately control
the actual accelerator system. RL has been applied in control, orbit correction [34], and real-time feedback
control loop [35].

3.4. Genetic algorithm

Genetic algorithm (GA) is an evolutionary optimization technique inspired by natural selection.
They are well-suited for problems with an ample search space and complex, nonlinear relationships. GA can
efficiently explore the design space of particle accelerators and identify optimal configurations for
components such as cavities, magnets, and radio frequency (RF) systems.

3.5. Bayesian optimization

Bayesian optimization is a probabilistic optimization technique that uses surrogate models to
approximate the objective function [36], [37]. It efficiently balances exploration and exploitation to find the
global optimum while minimizing the number of evaluations. Bayesian optimization is effective for
optimizing black-box functions, making it suitable for optimizing complex simulations of particle accelerator
systems.

4. MACHINE LEARNING IMPLEMENTATION FOR PARTICLE ACCELERATOR

Particle accelerators are necessary for many scientific projects, but optimizing their performance
and reliability presents significant challenges. ML techniques offer promising solutions for enhancing
design components, parameter optimization, control, diagnostics, and modelling particle accelerators.
Particle accelerators benefit significantly from applying ML techniques, offering promising solutions to
better design components, prediction, anomaly detection, parameter tuning, real-time adaptive control,
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and beam dynamics. Figure 2 shows several ML methods and their applications for particle accelerator
optimization.
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Figure 2. ML methods and their applications for particle accelerator optimization

4.1. Design components

Ensuring adequate particle acceleration necessitates optimizing accelerator components, including
the detector, high-voltage pulse transformers, magnetic components [38], RF, cavity, acceleration systems,
and control monitoring systems. ML models can examine past data, simulations, and experimental outcomes
to determine the best designs for the components. Utilizing ML techniques to design the components
and develop surrogate models is expected to improve particle accelerator efficiency, performance, and
reliability.

4.2. Prediction and anomaly detection

The particle accelerator behavior can be predicted using ML methods. This includes the
prediction of low-energy beam transport tuning, time series forecasting using classification approaches [39],
beam loss modelling [40], prediction of low-energy beam transport tuning, and longitudinal phase space [41].
ML can automate and expedite diagnostic processes, producing more reliable, high-performance accelerators.
Other ML applications for particle accelerator diagnostics include anomaly detection [42]. Anomaly
detection techniques have also been applied to clean measured data by comparing it with clustering
techniques.

4.3. Parameter tuning

ML algorithms can facilitate real-time optimization of parameter control strategies based on data-
driven insights. By analyzing large datasets of operational parameters and performance metrics, ML models
can identify correlations, patterns, and optimal control strategies for ion sources and other critical
components. This enables adaptive control mechanisms that dynamically adjust operational parameters to
optimize accelerator performance under various conditions. Beam parameter optimization uses lasso
regression for online tune correction and neural networks for beta function simulation correction [43].
Detection of magnetic field errors using autoencoder neural networks, linear regression, and tuned feedback
storage rings [44].
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4.4. Particle accelerator control and diagnostics

ML in the control of particle accelerators can be utilized for system failure prediction, anomaly
detection, control optimization, and automatic control. Some applications of ML in accelerator control
include detector control and calibration [45], automatic beam position control [46], predictive accelerator
control, beam matching control, adaptive control for beam diagnostics [47], electron bunch profile detection,
and beam dynamic control [48]. Particle accelerator diagnostics is a complex and time-consuming process
that identifies and addresses issues in the accelerator. ML can help automate and expedite diagnostic
processes, resulting in more reliable and high-performance accelerators. Some ML applications for particle
accelerator diagnostics include multivariable diagnostics and virtual diagnostics of beam longitudinal
properties [49], [50].

4.5. Modelling

Particle accelerator modelling is the process of simulating particle behavior within the accelerator.
This process is essential for designing, optimizing, and commissioning accelerators. ML can help improve
the accuracy and efficiency of particle accelerator modelling. Here are some ML applications for particle
accelerator modelling: prediction of low-energy beam transport tuning, time series forecasting using
classification approaches, modelling of beam loss, prediction of low-energy beam transport tuning,
uncertainty analysis, beam dynamics [51], [52], development of other applications. The study of particle
beam motion in accelerators covers particle interactions, electromagnetic fields, and other elements. ML
methods can model, predict, and optimize particle beam behavior.

5.  CONCLUSION

ML presents a powerful toolset for advancing particle accelerator technologies, offering control,
tuning, diagnostics, and modelling improvements. The design and analysis of accelerator beam dynamics can
use a GA, prediction, and anomaly detection using neural networks and random forests. In addition, linear
and nonlinear regression can help analyze system parameters, and parameter tuning can use Bayesian
optimization and control using RL. The combination of these techniques allows for more sophisticated
optimization and responsiveness to changing operational conditions, improving the overall efficiency and
performance of the accelerator. Several requirements must be addressed to implement ML-based
optimization for particle accelerators. Firstly, high-quality and representative datasets are essential for
training accurate ML models. The datasets should encompass various operational conditions and
performance metrics, ensuring robust model training and validation. Additionally, collaboration between
domain experts, data scientists, and ML specialists is necessary to develop effective optimization strategies
that address the unique challenges of particle accelerator systems. Continued research and development in
ML applications promises to enhance particle accelerators' performance and reliability further, driving
scientific discovery and innovation.
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