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This study addresses the evaluation of indoor air quality, with a focus on
mitigating respiratory diseases and sick building syndrome (SBS).
Recognizing that different pollutants exhibit variable behavior depending on
environmental factors and human activity, the objective was to develop a
fuzzy logic-based classification system that integrates environmental
variables such as temperature, relative humidity, and pollutant
concentrations—particulate matter (PM10, PM2.5), carbon dioxide (CO.),
and total volatile organic compound (TVOC)-into a unified model. The
method involved defining risk levels as low, moderate, high, and very high,
and implementing 56 fuzzy rules to dynamically and accurately categorize
these risks, based on measurements taken between 2022 and 2024 in the
states of Morelos and Puebla under various relative humidity and
temperature scenarios. The analysis of the results demonstrated robust
system performance, with an overall accuracy of 94.08%, but also revealed
challenges in distinguishing between adjacent risk classes. This research
contributes to a better understanding of the complex impacts of air quality
on health and reinforces efforts to mitigate respiratory problems and SBS in
densely populated indoor environments.
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1. INTRODUCTION

The growing awareness of the impacts of indoor air quality on human health has intensified research
in this area, particularly concerning the prevention of respiratory diseases and sick building syndrome (SBS).
Building on previous studies, this research serves as a continuation of Portillo et al. [1], which identified
variables such as carbon dioxide (CO.), total volatile organic compound (TVOC), and particulate matter
(PM2.5, and PM10) as pollutants that increase the risk of respiratory diseases in indoor spaces and contribute
to SBS; Barrera et al. [2], which demonstrated a correlation between human activity and environmental
variables in indoor spaces affecting pollutant concentration fluctuations; Barrera et al. [3], which evaluated
the feasibility of forecasting pollutant changes based on human activity. Additionally, Barrera et al. [4]
focused on forecasting CO: concentrations—used as the defining indicator of indoor air quality in that
study—using a broader set of experimental data and machine learning models applied to a specific room.
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CO: was identified as the most complex variable to predict due to its sensitivity to occupant behavior and
ventilation patterns. Collectively, these studies highlight the critical role of indoor air quality in public health
and emphasize the need for effective monitoring and management methods.

Mexico, with its diverse climatic and environmental conditions, provides a particularly relevant
setting for studying the impacts of air quality. Research conducted along the Mexico-U.S. border in [5] and at
Universidad Iberoamericana Torredn in [6] highlighted the importance of adaptive strategies for pollution
management, underscoring the need for a more integrated and dynamic approach to air quality assessment.
In this context, the present study introduces a fuzzy logic-based assessment system for predicting risks
associated with indoor air quality. Utilizing data collected in Morelos and Puebla, the system integrates
environmental variables such as temperature, relative humidity, and pollutant concentrations (CO2, TVOC,
PM2.5, and PM10) into a unified risk assessment model. Fuzzy logic was chosen for its capacity to manage
uncertainty and imprecision in classifying environmental variables, offering a flexible approach for the
continuous assessment of air quality and the identification of conditions that may affect occupants' health in
indoor environments. The primary objective of this study is to develop and implement a fuzzy system that
accurately classifies risk levels related to indoor air quality, thereby contributing to the prevention of
respiratory diseases and SBS. This research distinguishes itself by applying a comprehensive fuzzy model
that evaluates air quality based on multiple variables while considering the specific environmental factors and
human activities influencing these pollutants.

The contribution of this work lies in the creation of a risk assessment model that enhances existing
air quality monitoring practices. It underscores the importance of an integrated and adaptive approach to
managing indoor air quality and preventing respiratory diseases, based on data from central Mexico.
Furthermore, the study highlights the need for continuous adjustments to the membership functions and fuzzy
rules to improve classification accuracy, particularly among adjacent risk categories.

This article is structured as follows: section 2 reviews related works that provide the context and
theoretical foundation for this research. Section 3 describes the data collected, outlines the methodology applied,
and explains the construction and implementation of the fuzzy model. Section 4 presents the results and discusses
their practical implications. Finally, section 5 concludes the study and offers directions for future research.

2. RELATED WORKS

Related studies on indoor air quality reveal a wide range of variables that are fundamental for the
analysis and management of air quality. Research has highlighted the importance of specific pollutants such
as PM2.5, PM10, CO2, and TVOC, as well as environmental factors like relative humidity and temperature.
In a study conducted by [7], the combination of PM2.5, PM10, carbon monoxide (CO), relative humidity,
and temperature was found to provide a comprehensive view of air quality and its impact on health. Another
study [8] expanded this analysis to include sulphur dioxide (SO:), nitrogen dioxide (NO), and CO,
emphasizing the importance of considering multiple pollutants for a complete assessment. Additionally,
Ho et al. [9] focused on CO., PM2.5, TVOC, and relative humidity, suggesting that these variables are crucial
for understanding the risks associated with indoor air quality. Other studies, such as [10], [11], confirmed the
relevance of relative humidity and temperature, while expanding the analysis to include other pollutants like
nitric oxide (NO), CO, and ozone (0s). The breadth of these variables highlights the complexity of managing
indoor air quality and underscores the need for integrated methods for effective assessment.

In the last decade, there has been an increasing application of fuzzy logic in the analysis of indoor
air quality. Various studies have documented the effectiveness of fuzzy logic-based systems for monitoring
and classifying air quality. Works such as those by [12]-[15] have demonstrated that fuzzy logic controllers
are effective for dynamic monitoring and classification of indoor air quality. Liang et al. [16] introduced
fuzzy assessment methods to evaluate the impact of chemical pollutants, showcasing the flexibility and
adaptability of fuzzy logic in handling complex variables. Furthermore, the adaptive dynamic fuzzy inference
system tree (ADFIST) model, integrated with 1oT and fuzzy logic, as described in [17], underscores the
application of fuzzy logic in more advanced environmental monitoring systems.

Monitoring techniques have also evolved, as exemplified in study [18], where a real-time monitoring
system was implemented using a comprehensive framework. Other approaches, such as the technique for order
preference by similarity to ideal solution (TOPSIS)-based method for assessing indoor environmental
quality [19] and type-2 fuzzy controllers for automatic control [20], demonstrate the versatility of fuzzy logic
across different control and monitoring contexts. Finally, the Mamdani-type fuzzy inference system [21] has
been employed to monitor air quality and temperature, showcasing the robustness and adaptability of fuzzy
logic in a wide range of applications. This literature review provides a solid foundation for the development of
the fuzzy logic-based assessment model presented in this article, highlighting the relevance of an integrated
and adaptive approach to managing indoor air quality and preventing respiratory diseases.
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3. METHODOLOGY AND FUZZY MODEL IMPLEMENTATION

The dataset used in this analysis was obtained from the study presented in [3]. Data collection
involved the use of the Databot and PMS5003 sensors, as described in [22], [23], respectively. The Databot
sensor recorded environmental variables, including humidity, temperature, CO:- levels, and TVOC, while the
PMS5003 measured particulate matter concentrations, specifically PM2.5 and PM10. Additional data were
captured using the IAQM-128W air quality monitor [24], which also included similar measurements.

In addition to environmental variables, metadata related to the type of ventilation system, door
status, number of occupants, and room volume were collected across various locations in the cities of Puebla
and Morelos, Mexico. Before analyzing the data, simultaneous comparisons were made between the readings
from the Databot [22], PMS5003 [23], and the IAQM-128W air quality monitor [24] under different
environmental conditions. These comparisons revealed no significant differences between the systems. The
complete dataset comprised 74,826 distinct scenarios collected over periods ranging from 1 to 6 hours,
utilizing both sensor technologies.

The dataset provides detailed observations on various environmental and occupancy metrics, with an
emphasis on temperature, CO- levels, TVOC, and humidity. CO- concentrations, as described in [25], were
measured in parts per million (ppm), ranging from 400 to 1,534 ppm, with an average of 513.37 ppm. TVOC
levels, reported in parts per billion (ppb) [26], ranged from 0 to 2,184 ppb, with an average of 239.21 ppb.
Humidity levels varied between 9.47% and 40.52%, with an average of 16.61%. The dataset also includes
counts of occupants present, ranging from 0 to 33, with an average of 11.28. Measurements of particulate
matter, specifically PM2.5 and PM10 [27], were documented in micrograms per cubic meter (ug/m?), with
averages of 9.42 pg/m?® and 11.35 pg/m?, respectively. Occupant density, door status, and ventilation conditions
were recorded during measurements, monitoring the specific room where these metrics were recorded.

3.1. Data description

The dataset used in this study comprises 100,275 rows and 12 columns. The columns in the database
include a combination of numerical and categorical attributes. The numerical columns are: temperature, CO-,
TVOC, humidity, people density, people, PM2.5, PM10, normal ventilation, natural ventilation, and door
open. The categorical column is risk_label, which represents the target class.

All data in the dataset is complete, with no null values, indicating the integrity of the records. The
risk_label column, which is the target variable, contains four distinct classes with the following distribution:
moderate, with 48,260 records (48.13% of the total); high, with 27,240 records (27.17%); low, with 17,318
records (17.27%); and very high, with 7,457 records (7.44%). This class distribution reveals an imbalance,
with the moderate class being the most prevalent and the very high class being the least represented.

3.2. Feature selection

Feature selection is a crucial step in the machine learning model-building process. It directly
influences the quality and efficiency of the model. Different approaches were utilized to select the most
relevant attributes, each offering specific advantages in terms of accuracy, interpretability, and computational
performance.

The filter approach is one of the simplest and fastest methods for feature selection, as it relies
exclusively on the statistical properties of the data, independent of the predictive model. Among the methods
used in this approach, analysis of variance (ANOVA) stands out, as it assesses the statistical significance of
categorical variables in relation to the variable of interest. The chi-square test was also employed, being
particularly useful for categorical variables, as it measures the independence between two variables. Pearson
correlation was used to identify the linear relationship between continuous variables, allowing for the
exclusion of redundant attributes that are strongly correlated.

The wrapper approach involves using a predictive model to evaluate the quality of subsets of
attributes, which can provide higher accuracy but at a greater computational cost. In the context of this study,
two main methods were applied. Forward feature selection iteratively adds attributes that improve the
model's performance, starting with an empty set and inserting features until no significant improvements are
observed. Recursive feature elimination (RFE) works in the opposite direction, iteratively removing the least
important attributes until the most efficient subset for modeling is reached.

The embedded approach combines the benefits of the filter and wrapper approaches by integrating
the feature selection process directly into the model training. In this study, decision trees were utilized as the
main method in this approach. Decision trees automatically select the most important attributes during the
model-building process, establishing a balance between predictive accuracy and model simplicity. This
method not only performs classification but also ranks the attributes by their relevance, facilitating the
interpretation and explanation of the model.

The comprehensive analysis of the attributes highlights the integrated importance of various features
and the selection approaches utilized in this study. By employing methods such as ANOVA, chi-squared, and
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decision trees across different approaches—filter, wrapper, and embedded—we were able to effectively identify
and prioritize the most relevant attributes. This rigorous methodology not only enhances the interpretability of
the machine learning models developed but also ensures their efficiency in processing the dataset.

The analysis of the attribute selection methods revealed that TVOC consistently emerged as the
most important attribute across all applied methods, reinforcing its high final importance. Additionally, the
variables PM2.5, CO-, and PM10 also showed significant relevance across various methods, confirming their
importance in the selection process. The importance values assigned to each variable were normalized and
combined to reflect the cumulative influence of each selection method. This approach enabled the creation of
a final consolidated and ordered list, represented in Table 1, providing a comprehensive overview of the
relative importance of the attributes. This proved useful for subsequent modeling and other analyses.

3.3. Fuzzy controller

The fuzzy risk assessment system for indoor air quality and respiratory disease prevention is illustrated
in Figure 1, which highlights its main components: the fuzzification interface, the inference mechanism, the
knowledge base, and the defuzzification interface. The process begins with the fuzzification stage, where
linguistic variables, subjectively defined, are transformed into fuzzy sets. These fuzzy sets are then fed into the
inference mechanism, which uses the knowledge base to activate the corresponding linguistic rules. For this
system, the variables TVOC, CO., PM2.5, and PM10 were selected based on their importance as shown in
Table 1, and the membership functions for these variables were modeled using a trapezoidal shape.

After inference, the system moves to the defuzzification phase, where the inferred fuzzy values are
connected to the process to be controlled. In this step, the resulting fuzzy regions from the inference are converted
into real values. The defuzzification method used is the centroid or center of gravity (COG), also known as the
center of area (COA). This method calculates the center of the area under the resulting membership function
curve, providing a value that represents the fuzzy system's output. In addition to fuzzification and defuzzification,
the overall system involves data collection through sensors, information processing within the fuzzy system, and
interaction with actuators that control processes based on the inferred output.

Table 1. Consolidated importance of attributes across selection methods

Attribute ANOVA  Chi-squared Pearson Forward RFE Decision tree  Integrated importance
TVOC 0.83 0.95 0.25 0.63 0.75 0.75 0.69
PM2.5 0.02 0.01 0.12 0.07 0.25 0.25 0.12
PM10 0.02 0.01 0.16 0.06 0.00 0.00 0.04
C0O2 0.06 0.04 0.08 0.04 0.01 0.01 0.04
Temperature 0.01 0.00 0.15 0.05 0.00 0.00 0.03
People density 0.01 0.00 0.10 0.04 0.00 0.00 0.02
Humidity 0.02 0.00 0.01 0.08 0.00 0.00 0.02
People 0.00 0.00 0.07 0.02 0.00 0.00 0.02
Door open 0.01 0.00 0.06 0.00 0.00 0.00 0.01
Natural ventilation 0.02 0.00 0.02 0.01 0.00 0.00 0.01
Normal ventilation 0.00 0.00 0.02 0.00 0.00 0.00 0.00
Sum 1.0 1.0 1.0 1.0 1.0 1.0 1.0
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Figure 1. Diagram of the fuzzy risk assessment system for indoor air quality and respiratory disease prevention
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3.4. Membership functions

The membership functions for the variables TVOC, CO., PM2.5, PM10, and risk were defined using
trapezoidal functions. A 15% overlap was applied to provide a smooth and representative transition between
different levels of membership. This approach ensures clarity in the classification of membership levels.
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For the TVOC variable, the range is defined from 0 to 5,500 ppb. The membership functions are as
follows: 'Low" covers the range [0, 0, 64, 74] ppb, where values below 64 ppb are considered safe for indoor
environments. The 'Moderate' category is represented by [42, 65, 220, 243] ppb, indicating that prolonged
exposure may cause discomfort. The 'High' function spans [215, 221, 600, 610] ppb, signaling an increased
health risk, especially for sensitive individuals. Finally, "Very high' is defined as [590, 601, 5,500, 5,510] ppb,
where levels are potentially dangerous and require immediate intervention.

For CO: concentration, the range is 250 to 5,000 ppm. The 'Low' function is established for
[250, 275, 538, 625] ppm, with values below 275 ppm indicating good ventilation. The 'Moderate' category
covers [275, 625, 875, 1,050] ppm, where levels up to 625 ppm are acceptable but may cause discomfort for
some individuals. 'High' spans [625, 1,050, 1,500, 2,100] ppm, suggesting poor ventilation and an increased
risk of fatigue. Lastly, 'Very high' is defined as [1,050, 2,100, 3,750, 5,000] ppm, where levels can cause
headaches and drowsiness, potentially leading to asphyxiation at higher concentrations.

For PM2.5, with a range of O to 500 pg/ms, the membership functions are defined as follows:
'‘Low' for [0, 0, 12.75, 15] ug/m3, where concentrations below 12 pg/m3 are safe. 'Moderate' encompasses
[12.75, 15, 34, 40] pg/ms3, representing acceptable air quality with risks for sensitive individuals. The 'High'
function is defined for [34, 40, 51, 60] pg/m3, indicating unhealthy air quality for sensitive groups. Finally,
‘Very high' is defined as [51, 60, 250, 500] pg/ms, representing levels dangerous to public health.

For PM10, with a range of 0 to 999 pg/ms, the membership functions are configured as follows: 'Low'
for [0, 0, 51, 60] pg/m3, where concentrations below 51 pg/ms3 are considered safe. 'Moderate' encompasses
[51, 60, 144.5, 170] pg/m3, representing acceptable air quality with some risks for sensitive individuals. The
'High' function spans [144.5, 170, 229.5, 270] ug/m3, indicating unhealthy air quality for sensitive groups.
Finally, 'Very high' covers [229.5, 270, 600, 999] pug/ms3, characterizing levels dangerous to public health.

Lastly, for the risk variable, with a range of 0% to 100%, the membership functions are defined as
follows: 'Low' for [0, 0, 21.25, 25%], where the risk of contamination or health issues is low. The '‘Moderate'
function covers [21.25, 25, 46.75, 55%], indicating a moderate risk with the possibility of discomfort. 'High'
is defined for [46.75, 55, 76.25, 85%], representing a high risk of adverse health effects, especially for
sensitive groups. Finally, "Very high' is defined as [76.25, 85, 90, 100%], where the risk is very high and
requires immediate action to mitigate exposure.

These membership functions were adjusted to ensure smooth transitions between categories. This
enables accurate and effective assessment of pollution and risk levels. The assessments are conducted in
monitored environments.

3.5. Fuzzy rules

The fuzzy rules defined for the risk assessment system incorporate a comprehensive set of
conditions. These conditions combine the levels of TVOC, CO., PM2.5, and PM10 to determine the overall
level of risk. These rules are critical for modeling the fuzzy logic system, enabling a detailed assessment of
environmental conditions and their impact on health.

For the "Low" risk class, 8 rules were established. These rules are triggered when all parameters—
TVOC, CO2, PM2.5, and PM10—are at low levels, ensuring that the overall risk is assessed as low. This set
includes combinations of different levels for PM2.5 and PM10, while TVOC and CO: remain low.

For the "Moderate" risk class, 15 rules were defined. These rules cover a combination of conditions
where at least one parameter is at moderate levels, while the others may be at low or moderate levels. They
account for variations in the concentrations of TVOC, COz, PM2.5, and PM10, reflecting a moderate risk in
environments where some factors may begin to cause discomfort.

The "High" class is represented by 18 rules. These rules are activated in situations where at least one
parameter is at a high level and others may be at low or moderate levels. The combination of high levels of
TVOC, CO., PM2.5, and PM10 may indicate significant health risks, necessitating special attention to
conditions affecting air quality.

Finally, for the "Very high" risk class, 15 rules were specified. These rules apply when at least one
parameter is very high, reflecting the most critical health condition. They cover scenarios where TVOC, COs,
PM2.5, and PM10 are at dangerous levels, indicating the need for immediate intervention to protect health.

In total, the fuzzy logic system consists of 56 rules. These rules are distributed among the different
risk classes. This ensures a detailed and adaptable approach to air quality assessment and management.

4. RESULTS AND DISCUSSION

The analysis of the results obtained from the fuzzy logic-based classification system reveals a robust
overall performance, with an accuracy of 94.08%. However, a detailed analysis of the metrics by class, both
in absolute and percentage terms, is essential to better understand the magnitude of correct and incorrect
predictions and identify possible areas for improvement. Table 2 presents the confusion matrix in
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percentages. Table 3 presents the classification report, which includes the precision, recall, and F1-score
metrics by class, as well as the corresponding support values.

Table 2. Confusion matrix in percentages

Real risk Predicted risk
Low (%) Moderate (%) High (%) Very high (%) Support (%)
Low 84.00 16.00 0.00 0.00 84.00
Moderate 0.10 98.00 1.90 0.00 0.10
High 0.00 6.30 92.20 1.50 0.00
Very high 0.00 0.00 1.00 99.00 0.00

Table 3. Classification report: precision, recall, F1-score, and support by class

Class Precision  Recall Fl-score  Support
Low 1.00 0.84 0.91 17,318
Moderate 0.91 0.98 0.95 48,260
High 0.96 0.92 0.94 27,240
Very high 0.95 0.99 0.97 7,457
Accuracy 0.94 100,275
Macro avg 0.96 0.93 0.94 100,275

Weighted avg 0.94 0.94 0.94 100,275

Class low: the low class exhibited a precision of 1.00, indicating that all 14,544 instances classified
as low by the system indeed belonged to this class. This result is extremely positive, as it demonstrates that
the system made no incorrect predictions for this specific category. However, the recall was 84%, suggesting
that out of the 17,318 actual instances of the low class, the system correctly identified 14,544 but failed to
capture the remaining 2,774 instances, which were classified as moderate. While 2,774 may seem like a high
number of errors, it is essential to contextualize this value concerning the total number of samples in the low
class. These errors represent approximately 16% of the actual low instances. Therefore, although there is
some confusion between the low and moderate classes, the system still manages to correctly identify the
majority of low instances. The perfect precision, combined with a recall of 84%, results in an F1-score of
0.91, reflecting overall good performance, although there is room for improvement in distinguishing between
low and moderate.

Class moderate: the moderate class contains the largest number of samples, with a total of 48,260
actual instances. The fuzzy system successfully identified 47,289 of these instances, resulting in a recall of
98%. However, there were 971 instances that were incorrectly classified, with 39 confused with low and 932
with high. While the confusion with low is minimal, the confusion with high is more significant. With 932
moderate instances classified as high, the system demonstrated some difficulty in differentiating these two
classes, which corresponds to approximately 2% of the actual moderate instances. Nevertheless, the precision of
0.91, combined with the high recall, leads to an F1-score of 0.95. Indicating that despite the confusions, the
system performs robustly in correctly classifying the majority of moderate instances.

Class high: the high class, with a total of 27,240 actual instances, was correctly identified by the
system in 25,122 cases, resulting in a recall of 92%. However, there was a notable confusion with the
moderate and very high classes, with 1,718 instances of high being classified as moderate and 400 instances
classified as very high. In percentage terms, these errors represent approximately 6.3% of the actual high
instances confused with moderate and 1.5% confused with very high. These results indicate that while the
precision of 0.96 is high. Suggesting that the system makes good predictions when indicating high, the recall
of 92% shows that there is a small but significant degree of confusion. This confusion may be attributed to
the proximity of the characteristics that define moderate and high, or high and very high, indicating a
potential need for adjustments in the membership functions for these classes.

Class very high: the very high class was the smallest in terms of samples, with 7,457 actual
instances. The system performed exceptionally well, with a recall of 99%, correctly identifying 7,382 of
these instances. Only 75 instances were confused with high, representing approximately 1% of the actual
very high instances. The precision of 0.95, coupled with a recall of 99%, results in an F1-score of 0.97.
Highlighting that the fuzzy system is particularly well-suited to identifying the very high class. The minimal
confusion with high suggests that for the majority of cases, the system can distinguish very high risks with
high accuracy.
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5. CONCLUSION

The analysis of the results obtained from the fuzzy logic-based classification system reveals a robust
overall performance, with an accuracy of 94.08%. The system demonstrated satisfactory results, particularly
in terms of high precision and recall for most classes. However, the greatest difficulty lies in distinguishing
between adjacent classes, such as low and moderate or moderate and high, where the overlap in the
membership functions leads to confusion. Although the magnitude of these errors, expressed in absolute
terms, may seem significant, the relative percentages indicate that the system still correctly classifies the
majority of instances within each class. These results demonstrate that the fuzzy system is capable of making
accurate and reliable classifications in most cases. However, to further enhance performance, it is essential to
refine the membership functions and fuzzy rules. Such improvements could provide better differentiation
between adjacent risk levels, thereby increasing the effectiveness of the system in precise classification and
risk-based decision-making. The contributions of this work include the validation of the use of fuzzy logic in
risk classification systems, demonstrating its ability to handle uncertainties and variations in data.
Furthermore, the study offers a solid foundation for future research, which could focus on exploring
advanced techniques for optimizing membership functions and the application of hybrid methods that
integrate other machine learning models with fuzzy logic. It is also suggested to conduct tests on different
datasets and application scenarios to validate the system's versatility and robustness, ensuring its adaptability
in various contexts.
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