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 Efficient object detection is crucial for enabling autonomous indoor robot 

navigation. This paper reviews current methodologies and challenges in the 

field, with a focus on deep learning-based techniques. Methods like you only 

look once (YOLO), region-based convolutional neural networks (R-CNN), 

and Faster R-CNN are explored for their suitability in real-time detection in 

dynamic indoor environments. Deep learning models are emphasized for 

their ability to improve detection accuracy and adaptability to varying 

conditions. Key performance metrics such as accuracy, speed, and scalability 

across different object types and environmental scenarios are discussed. 

Additionally, the integration of object detection with navigation systems is 

examined, highlighting the importance of accurate perception for safe and 

effective robot movement. This study provides insights into future research 

directions aimed at advancing the capabilities of indoor robot navigation 

through enhanced deep learning-based object detection techniques. 
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1. INTRODUCTION 

The field of robotics, particularly indoor navigation, has evolved significantly over the past decade, 

with a critical emphasis on developing robust object detection systems that enhance the ability of robots to 

navigate complex environments. This literature review explores key advancements in object detection 

technologies and their implications for indoor robot navigation, drawing insights from relevant studies. The 

development of autonomous mobile robots (AMRs) has revolutionized various industries, including 

humanitarian assistance, automotive, agriculture, education, and healthcare [1]. AMRs are designed to 

operate in unpredictable and partially unknown environments, requiring them to navigate complex spaces 

while avoiding obstacles. However, one of the main challenges confronting AMRs is their ability to perceive 

and interact effectively with their surroundings [2]. Object detection plays an essential role in AMR’s vision 

systems, empowering robots to carry out intricate tasks and navigate various challenges [3]. For instance, 

grasp detection is essential for robots to collect objects in front of them, whereas dynamic obstacle detection 

is vital for real-time navigation [4]. To achieve accurate detection, AMRs rely on a combination of sensors, 

including navigation, localization, and detection systems. Current research indicates that sensor technology, 

including sensor fusion and the use of multiple sensors, can significantly impact the quality of information 

perceived by AMRs [5]. Computer vision is essential for numerous applications in automation and robotics, 

particularly in object detection. Furthermore, explainability is a critical requirement for algorithms in robotics 

https://creativecommons.org/licenses/by-sa/4.0/


Int J Artif Intell  ISSN: 2252-8938  

 

Object detection for indoor mobile robot: deep learning approaches review (Hind Messbah) 

3521 

applications, as it aids in identifying and resolving potential issues [6]. Object detection techniques like face, 

pedestrian, and obstacle detection rely on supervised learning in artificial intelligence (AI), typically deep 

learning methods. The methods employed include single-stage detectors like you only look once (YOLO), 

single shot multibox detector (SSD), and RetinaNet, as well as two-stage detectors, such as convolutional 

neural networks (CNN) and Faster region-based convolutional neural networks (R-CNN) [7], [8]. The 

performance of sensors and deep learning algorithms in AMRs remains a topic of ongoing discussion. 

Contemporary research in deep learning has significantly influenced the design of object detection 

systems for indoor AMRs, particularly in terms of accuracy, adaptability, and deployment efficiency.  

A refined approach targeting small object detection under cluttered and complex scenes, known as YOLOv8-

QSD, was proposed in [9], addressing key challenges in autonomous indoor systems. YOLOv8’s capabilities 

were further extended through its application to light detection and ranging (LiDAR) point cloud data, 

demonstrating improved spatial precision for object detection in three-dimensional environments [10].  

An optimized implementation of YOLOv8 was proposed to balance speed and computational constraints 

without sacrificing detection reliability [11]. Multi-scale feature fusion techniques have been introduced to 

improve the detection of variably sized objects in cluttered environments by leveraging semantic information 

across different spatial resolutions [12]. Depth-awareness has also been integrated into object detection 

pipelines to enhance performance in scenarios with occlusions and varying object distances [13]. Lightweight 

detectors such as EfficientDet and MobileNet offer efficient trade-offs between accuracy and processing 

requirements, making them suitable for embedded systems [14]. Finally, self-supervised learning strategies 

have been employed to improve model generalization in indoor environments while reducing the reliance on 

annotated datasets-an essential step for scalable deployment of autonomous robots [15]. 

This study seeks to evaluate the performance and the detection accuracy of deep learning techniques 

applied to AMRs. The literature review and results analysis are discussed in detail, providing insights into the 

current state of object detection techniques in AMRs. This study follows a structured approach consisting of 

three sections. Section 1 introduces the concept of object detection in AMRs. Section 2 analyzes the current 

state of object-detection techniques in AMRs. Section 3 provides insights into the challenges and 

opportunities facing the development of object detection techniques in AMRs. Finally, section 4 concludes 

the discussion. 
 

 

2. METHOD 

Advancements in object detection technologies have significantly impacted various fields, 

particularly in remote sensing. A key focus has been on detecting small objects within vast images, which 

presents unique challenges due to factors like resolution and object orientation [16]. Recent developments in 

deep learning techniques, such as the YOLO series and SSD [17], have notably improved the performance of 

these detection algorithms [18]. Small object detection is categorized into multiple strategies, including 

multi-scale predictions and enhanced feature resolutions [16]. Researchers are also addressing irregularities 

in remote sensing images that complicate detection efforts. Gaining insight into these methodologies not only 

improves the effectiveness of object detection but also highlights potential future research avenues in  

high-resolution environments, where detecting small objects remains a significant challenge [19]. 
 

2.1.  Traditional computer vision techniques 

Traditional computer vision methods have been employed for object detection in various fields, 

including remote sensing. These traditional techniques rely on image processing and feature extraction to 

identify objects within images [20]. Table 1 provides an overview of the most widely adopted traditional 

computer vision techniques employed in object detection tasks. 
 

 

Table 1. Traditional computer vision methods overview [21]–[25] 
Technique Description Examples Limitations 

Edge detection Identifies object edges within an image. Sobel operator, Canny algorithm Affected by image noise and 

illumination variations. 

Template matching Compares a given image with stored 

templates to detect objects. 

Cross-correlation, normalized 

correlation coefficient (NCC) 

Computationally expensive, 

poor performance with large 
databases. 

Feature extraction Extracts relevant features from an image 

to describe objects (texture, color, shape). 

Histogram of oriented gradients 

(HOG), scale-invariant feature 

transform (SIFT) 

Computationally expensive 

with large image databases. 

HOG and SIFT HOG describes object texture, while SIFT 
describes object shape and orientation for 

object recognition. 

HOG for pedestrian detection, 
SIFT for object tracking 

May not perform well on 
large datasets, and high 

computational cost. 
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2.2.  Deep learning approaches 

Recent advancements leverage CNNs and deep learning paradigms. Notable frameworks include 

YOLO, SSD, and Faster R-CNN, which have enabled real-time object detection with significant accuracy [26]. 

 

2.2.1. Single-stage models 

Single-stage object detectors, such as YOLO and SSD, perform detection in a single forward pass. 

They are optimized for speed and are suitable for real-time applications within indoor environments [27]:  

i) YOLO known for its ability to perform real-time object detection. It segments the image into a grid and 

predicts bounding boxes along with corresponding class probabilities directly. YOLO’s fast inference time 

makes it suitable for applications requiring real-time decisions, such as indoor robotics [28] and ii) SSD 

similar to YOLO, SSD performs object detection in a single forward pass, but it divides the image at multiple 

scales. This enhances its accuracy, particularly for smaller objects, which is crucial in indoor environments [29]. 

 

2.2.2. Two-stage models 

Two-stage models, such as Faster R-CNN, first propose regions of interest and then classify those 

regions. These models offer higher accuracy but generally require more computational resources [30]:  

i) CNNs have become the foundation for object detection models due to their ability to learn features from 

images automatically. Architectures such as AlexNet, VGG, and ResNet have set the stage for more 

sophisticated detection models [31] and ii) R-CNN their variants (Fast R-CNN, Faster R-CNN) first generate 

region proposals and then perform classification and bounding box regression. These models are known for 

high accuracy but are computationally intensive, which may limit their real-time applicability [32]. 

 

2.3.  Attention mechanism and transfer learning 

A recent advancement in object detection and recognition technologies is the use of transfer learning 

combined with attention mechanisms. This cutting-edge approach enhances the model's ability to focus on 

important parts of an image by dynamically weighting the significance of different features, enabling more 

accurate and efficient object detection [33]. Transfer learning allows models pre-trained on large datasets to 

be fine-tuned for specific tasks, significantly reducing training time and improving performance, especially in 

limited data scenarios [34]. The integration of attention mechanisms within these architectures represents a 

major leap forward, improving the precision and speed of recognition systems in both real-time and complex 

environments [35]. Object detection refers to the ability to identify and locate objects within an image. 

Traditional methods often relied on hand-crafted features; however, with the advent of deep learning, CNNs 

have become the standard approach due to their ability to automatically learn features from data. 

 

 

3. RESULTS AND DISCUSSION 

Computer vision has evolved dramatically, moving from conventional approaches to the advanced 

techniques of deep learning. Traditional computer vision, which involves teaching computers to understand 

images through specific, programmed rules, has been largely replaced by deep learning techniques that 

enable computers to learn from large amounts of data, while traditional methods relied on detecting specific 

features like edges, shapes, or textures using algorithms, deep learning has revolutionized image 

interpretation by empowering computers to learn from data and adjust to a broad range of tasks. The key 

differences between traditional computer vision and deep learning lie in their data dependency, 

computational power, flexibility, and accuracy, as shown in Figure 1. Deep learning models, which are based 

on neural networks, can handle complex patterns and large-scale image data, and can automatically adjust to 

diverse tasks without being explicitly programmed for each new problem. In contrast, traditional methods 

require more human guidance to define features and are often less accurate than deep learning for complex 

vision tasks, such as image recognition and object detection in varied conditions [36]. 

Traditional computer vision and deep learning are not mutually exclusive, but rather complementary 

fields that can inform and enhance each other [37]. By studying traditional computer vision techniques, one 

can gain a deeper understanding of the fundamental principles of image processing and feature extraction, 

which are essential for deep learning models. Conversely, knowledge of deep learning can provide new 

insights and techniques for improving traditional computer vision methods. Ultimately, the intersection of 

traditional computer vision and deep learning can lead to more effective and efficient computer vision 

solutions, making one a more skilled and versatile expert in the field. 

Modern approaches to object detection can be categorized into single-stage and two-stage detectors 

[7]. Single-stage detectors, such as YOLO and SSD, perform detection in a single step, combining 

classification and bounding box regression. These models are typically faster and simpler, making them 

suitable for real-time applications, but they may compromise on accuracy due to their streamlined 
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architecture [38]. In contrast, two-stage detectors, like R-CNN and Faster R-CNN, operate in two phases: 

first, they generate region of interest (RoI) proposals, and then these regions are further classified and 

refined. While this method provides higher accuracy, particularly through RoI pooling, it comes at the cost of 

increased computational time and complexity [30]. 

Object detection is defined as identifying object instances from predefined categories within a given 

region, as discussed by [39]. This approach emphasizes detecting a wide variety of natural objects, avoiding 

limitations to specific categories like faces, trees, or vehicles. Despite the range of potential objects, research 

efforts have largely focused on highly structured objects (e.g., faces, airplanes) and articulated objects such 

as animals. Object detection supports various applications, including facial recognition, autonomous driving, 

and behavior analysis [40]. 

In large-scale surveillance systems, accurate object tracking relies on effective motion estimation 

and compensation techniques, as noted by [41]. The study proposed a hardware architecture incorporating 

real-time motion detection, estimation, and compensation, utilizing a Kogge-Stone adder to enhance 

operational speed. Although the method projected a 4.21% false detection rate, experimental results indicated 

an 11.91% rate. Additionally, Zheng et al. [42] proposed a cost-effective, integrated robotic system using 

Cartesian and articulated configurations for object detection in agricultural environments. However, the design 

faces challenges due to limited accuracy, necessitating human collaboration to achieve optimal performance. 

Table 2 provides a summary of the advantages, disadvantages, and examples of single-stage, two-

stage detectors, and transfer learning with attention; highlighting their respective trade-offs in speed, 

accuracy, and computational cost, particularly in indoor navigation tasks. While both approaches have their 

respective drawbacks, two-stage detectors typically offer superior accuracy. On the other hand, single-stage 

detectors are generally faster, as they avoid the complexity of multiple stages. The improved accuracy of 

two-stage detectors can be attributed to the inclusion of region proposal networks (RPN) or RoI pooling.  

 

 

 
 

Figure 1. Deep learning vs. traditional computer vision approaches [37] 

 

 

Table 2. Comparison between single-stage and two-stage detector [43], [44] 
Type How it works Advantages Disadvantages Examples 

Single-stage 

detector 

A single-layer feed-forward network 

that performs object classification and 

regression to the bounding boxes. 

Simpler and faster 

for detection. 

May have reduced 

computational 

accuracy. 

YOLO, 

YOLOv3, SSD, 

RetinaNet 

Two-stage 
detector 

Uses two networks. The first generates a 
sparse RoI, followed by classification 

and regression. 

Offers improved 
accuracy through the 

use of RoI pooling. 

Increased 
computational time 

due to multiple stages. 

R-CNN, Cascade 
R-CNN, Faster 

R-CNN 

Transfer 

learning with 

attention 

Utilizes a pre-trained model, fine-tuned 

on a specific task, combined with 

attention mechanisms to highlight 
important regions of an image. 

Reduces training 

time and requires 

fewer data; attention 
enhances focus on 

key image areas for 

improved accuracy. 

May still require 

substantial 

computational 
resources; complex 

architecture. 

Detection 

transformer 

(DETR), 
EfficientDet 

 

 

3.1.  Challenges 

Indoor environments present unique challenges for object detection due to the following factors [45]: 

− Occlusions: objects may be partially hidden behind other objects, making detection difficult. 
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− Varying lighting conditions: Indoor lighting can change dramatically based on time of day, artificial 

light sources, and shadowing effects. 

− Dynamic objects: objects in motion, such as people or robots, create additional challenges for detection 

algorithms, particularly in environments where robots must avoid collisions. 

− Real-time processing: deploying advanced models on mobile robots requires optimization for limited 

computational resources without sacrificing accuracy. 

In summary, while deep learning approaches such as CNN-based architectures (e.g., YOLO, RCNN) 

have revolutionized object detection, they come with the drawback of significant computational complexity. 

This demand for high processing power makes their deployment on embedded systems, often used in indoor 

AMRs, impractical due to limited hardware resources. As a result, a more feasible solution is the integration 

of classical methods, such as feature extraction, with deep learning techniques. This combination enables the 

use of object detection models on resource-constrained embedded systems, providing a balance between 

performance and efficiency while overcoming hardware limitations. Addressing these challenges requires 

models capable of high generalization, as well as the use of sensor fusion techniques (e.g., combining camera 

data with LIDAR or depth sensors) to improve detection reliability [46]. 

 

3.2.  Performance of object detection models 

Object detection models are commonly evaluated based on precision, recall, and other metrics,  

with Faster R-CNN and SSD among the most accurate for indoor applications. However, there are inherent 

trade-offs between accuracy and inference time, which are especially critical for real-time AMRs. Models 

like YOLO, although slightly less accurate, often strike the best balance for real-time applications, making 

them well-suited for indoor environments where quick decisions are necessary [47]. 

In addition to precision and recall, other important performance metrics include mean average 

precision (mAP), which assesses accuracy across various classes, and intersection over union (IoU), which 

measures the overlap between predicted and ground truth bounding boxes. Furthermore, the F1 score, which 

combines precision and recall, serves as a balanced indicator of the system's overall performance. These 

metrics provide a comprehensive assessment of the accuracy, robustness, and reliability of object detection 

systems in AMRs [48]. 

Moreover, scalability and adaptability are important considerations. While SSD and YOLO 

efficiently detect objects in diverse environments, ensuring high performance across different lighting 

conditions, varying object orientations, and potential occlusions remains a challenge. Advanced techniques 

such as contextual reasoning and multi-scale feature extraction can improve detection accuracy, particularly 

in complex indoor settings [38]. 

Lastly, the impact of hardware limitations on performance must be acknowledged. Real-time 

detection systems must balance between lightweight models for deployment on embedded devices and 

heavier, more accurate models for server-based processing. This balance is especially important in resource-

constrained environments where inference speed is crucial for decision-making. 

 

3.3.  Future directions 

The future of object detection in indoor AMRs may involve [49]: 

− Fusion of sensors: combining data from cameras, LiDAR, and depth sensors can provide richer 

contextual information, improving detection robustness. 

− Self-supervised learning: approaching the issue of limited labeled datasets through self-supervised or 

semi-supervised learning techniques could enhance model training. 

− Interpretability: as robots operate close to humans, enhancing the interpretability of machine learning 

models becomes necessary for trust in decision-making processes. 

 

 

4. CONCLUSION 

This paper has provided a comprehensive review of deep learning-based object detection techniques 

for indoor mobile robot navigation. It examined the transition from traditional computer vision methods to 

state-of-the-art deep learning models, with a particular emphasis on the YOLO family, transformer-based 

architectures, and multi-sensor fusion strategies. While these approaches have led to notable advancements in 

detection accuracy, real-time performance, and deployment feasibility, several limitations remain, 

particularly in handling dynamic indoor environments, limited annotated datasets, and computational 

constraints on embedded platforms. In our future work, we aim to prioritize the development of lightweight 

yet high-performance object detection models suitable for resource-constrained indoor environments. We 

will also explore self-supervised learning techniques to reduce dependence on annotated datasets and 
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investigate advanced multimodal sensor fusion to improve perceptual robustness. Furthermore, we plan to 

design simplified and generalizable frameworks that enable reliable deployment in dynamic real-world 

indoor settings, thereby bridging the gap between theoretical advancements and practical applications. 
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