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 Globally, lung disease occupies a significant position as one of the main 

contributors to mortality rates. The characteristics of human respiratory 

sound signals can show a wide spectrum, ranging from normal patterns to 

indications of lung abnormalities. The proposed lung sound classification 

system is based on YAMNet as a pre-trained neural network model for 

medical audio recognition, which is then refined using artificial neural 

networks (ANN). This study presents the integration of multiple datasets and 

advanced pre-processing approaches. A total of 1,363 lung sound recordings 

from Kaggle, ICBHI, and Mendeley. This reflects the variety of clinical 

conditions, and differences in recording devices are combined. In order to 

increase the diversity of lung sound signal input, the pre-processing process 

is carried out through several stages, including adjusting the sampling 

frequency to 4 kHz, segmenting for 6 seconds, signal filtering with wavelet, 

min–max normalization, and data augmentation using window warping, 

jittering, cropping, and padding. A fold cross-validation scheme is employed 

to comprehensively evaluate the model's effectiveness. The evaluation 

results indicate that the model achieves an accuracy of 93.64%, a precision 

of 93.60%, a recall of 93.64%, and an F1-score of 93.52%, collectively 

reflecting outstanding classification performance. This work may 

incorporate deep learning technology into clinical practice, ultimately 

improving diagnosis accuracy and efficiency in the hospital setting. 
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1. INTRODUCTION 

Globally, lung disease is a major health issue, and mortality continues to increase every year. 

Accurate diagnosis of pathological conditions is very important. The sounds produced by the respiratory tract 

and lungs have important information about the physiological and pathological conditions of humans. 

Medical professionals often diagnose lung disease by analyzing breath sounds. Movement in the narrowed 

airways can provide early indications of respiratory distress, such as crackles, wheezes, and rhonchi [1].  

The World Health Organization (WHO) projects that chronic obstructive lung disease will be the third 

greatest cause of mortality by 2030, based on data available to 2022 [2]. A stethoscope is a measuring 

instrument that can listen to lung sounds and is used by medical personnel [3]. Breath sounds can serve 

https://creativecommons.org/licenses/by-sa/4.0/
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multiple functions, including consultation, education, and research [4]. Traditional stethoscopes don't record 

breath sounds for diagnostic purposes. Research on lung sound classification has several challenges, 

including lung sounds are influenced by various factors such as noise [5], [6], imperfect recording techniques 

[7], patient physiological conditions, variations in lung sounds between individuals when recording 

techniques are performed at different times. This condition adds to the complexity and difficulty of 

classifying lung sounds. A further concern is selecting a deep learning model that aligns with the attributes of 

the lung sound signal. The selected deep learning model must be able to capture important features of the 

lung sounds that are the object of research. The development of deep learning technology has provided an 

alternative solution to the problem of human health examinations. Research on lung sound detection and 

classification through technology can improve accuracy predictions for lung disease quickly and can be 

anticipated earlier [8].  

Researchers have used artificial intelligence (AI) technology support to classify breathing sounds 

[9]. The neural network used is deep neural networks (DNN) with the convolution neural networks (CNN) 

model. The research obtained classification results with an accuracy of 83% for three classes: normal, 

crackles, and rhonchi. The research proposed by the author aims to classify five categories of lung sounds, 

namely normal sounds, crepitations (crackles), wheezes, rhonchi, and a combination of crepitations and 

wheezes. Normal lung sounds can be defined as sounds obtained from the respiratory tract passing through 

the bronchi and alveoli. This sound is soft and has a low frequency. Crackle lung sounds are abnormal lung 

sounds, and the characteristics of crackle lung sounds are short and intermittent bursts. These crackles sounds 

are often associated with pneumonia, indicating the presence of fluid or mucus during the inspiration process. 

Wheezes lung sounds sound high-pitched or high. Asthma, chronic bronchitis, and chronic obstructive 

pulmonary disease (COPD) are frequently associated with wheezing and lung sounds [10], [11]. These 

rhonchi lung sounds have the characteristics of a low and growling sound. This sound is caused by the flow 

of air in the large airways containing a lot of fluid or mucus. These crackles-wheezes lung sounds are a 

combination of the two, namely crackles and wheezes. These crackles, wheezes, and lung sounds have the 

complexity of lung disease involving obstruction and changes that occur in the patient's lung parenchyma 

[12]. This proposed study uses YAMNet as a feature extractor and an artificial neural network (ANN) to 

classify five categories, including normal lung sounds, crepitations, wheezes, rhonchi, and a mix of 

crepitations and wheezes. YAMNet implementations are available in various deep learning frameworks, 

including TensorFlow [13].  

YAMnet is trained using the AudioSet dataset, which allows it to learn lung sound signal patterns. 

This model has good generalization capacity. This indicates that the model can transform audio signal 

characteristics, namely lung sound signals, into more precise features. The specific objective of this study is 

to obtain the best value from the evaluation of the YAMNet model through various metrics such as accuracy, 

precision, F1-score, and confusion matrix. The real contribution of this study is to modify the pre-processing 

technique from previous studies [14]. The stages of the pre-processing technique include frequency sampling, 

segmentation, smoothing wavelet, and min-max normalization. The pre-processing technique used can 

prepare lung sound data to be more ready and appropriate before being used in the deep learning model. 

Adding stages of data augmentation techniques from previous studies [15]. The stages of data augmentation 

include window warping, jittering, cropping, and padding. This augmentation technique has a very important 

role, especially if you have a limited and unbalanced dataset. 

Our novel contribution lies in the integration of multiple lung sound datasets. A total of 1,363 lung 

sound recordings from Kaggle, ICBHI, and Mendeley. This combination of data encompasses a wide range 

of clinical conditions and various types of recording devices. Advanced pre-processing involved setting the 

sampling rate to 4 kHz, segmenting the sounds into 6 second intervals, applying a wavelet transform for 

signal smoothing, and performing min-max normalization. Data augmentation used window warping, 

jittering, cropping, and padding. We used a twenty-five-fold cross-validation strategy for model training, 

optimizing data usage, and ensuring dataset coverage in the classification process. Other contributions, such 

as embedding from YAMNet, are used as a lung sound feature extractor, and a neural network is used as the 

main classifier. 

 

 

2. METHOD 

2.1.  Database 

This study presents the integration of multiple datasets. A total of 1,363 lung sound recordings from 

Kaggle [16], ICBHI 2017 [17], and Mendeley [18]. The lung dataset collections are openly accessible online 

for research reasons. The data set from Kaggle was captured using a digital stethoscope connected to a laptop 

using an amplifier. The lung sound recording data is represented as mono audio data with a bit rate of  

705 kbps, a sampling frequency of 44,100 Hz, and a bit depth of 16 bits per sample. The datasets obtained by 



Int J Artif Intell  ISSN: 2252-8938  

 

Lung sound classification using YAMNet, neural network, and augmentation (Jaenal Arifin) 

4103 

Kaggle can be used to identify, categorize, and diagnose lung diseases. The lung sound dataset from the 

ICBHI 2017 challenge dataset has various health conditions, such as asthma, bronchitis, and pneumonia. The 

types of lungs sound owned are normal breathing sounds, crackles, wheezes, and a combination of crackles 

and wheezes. This dataset was initially compiled to facilitate a scientific challenge at the 2017 International 

Conference on Biomedical Health Informatics (ICBHI). The limitation of the ICHBI 2017 dataset is that it 

was collected from two different locations with different equipment, so there is a possibility of variability 

that can affect the results. The effect of using different equipment can affect the quality of the recording. The 

quality of the resulting recording can vary. With this limitation, it can be a challenge for researchers to 

process this signal, such as by using a strategy to overcome signal variability, namely by normalization. This 

can help balance the differences caused by variations in the equipment used during recording. 

This dataset has the potential and opportunity to be used as research material, especially with the 

theme of lung sound classification. The author uses this dataset considering that it can be obtained online, 

and several researchers have used it for research and publication purposes [19], [20]. The lung sound dataset 

was acquired at Fortis Hospital, Vasant Kunj, New Delhi, India, by interfacing an electronic stethoscope with 

a laptop through an amplifier. The amplifier used was designed to amplify lung sound frequencies of  

70-2,000 Hz. This range is considered important to ensure that wheezes and crackles can be detected. The 

amplifier supports frequency and amplifier settings to adjust the frequency and amplifier gain. The lung 

sound recording process was fed into the laptop via the audio input on the electronic stethoscope. The 

sampling rate used during the recording was 44,100 Hz, with a single channel with 16 bits per sample and a 

bit rate of 705 kbps. A total of 1,363 lung sound audio recordings in .wav format were collected from three 

separate datasets as a database for the experiments in this study. The lung sound datasets utilized in this 

investigation are summarized in Table 1. 

 

 

Table 1. Lung sounds multiple datasets 
Lung sounds Sources of data acquisition Samples 

Crackles wheezes  ICBHI and Kaggle 116 

Wheezes Kaggle and ICBHI 232 

Crackles Kaggle and ICBHI 514 
Normal  Kaggle 449 

Rhonchi  Mendeley data 52 

Total 1363 

 

 

The author uses multiple datasets with the aim of increasing model generalization, larger dataset 

sizes, and the diversity of clinical conditions. By using datasets from various sources, we will have a wider 

variety of data. Reducing dataset bias. Using three different datasets can reduce dataset bias and ensure the 

model is more robust to real conditions. By combining several datasets, it is possible to have more training 

data. Each dataset in the clinical domain encompasses a range of lung disorders, including asthma, bronchitis, 

COPD, and pulmonary fibrosis, reflecting their diverse nature. By merging three datasets, the number of 

samples for each condition increases, enabling the model to more precisely detect and categorize different 

lung illnesses based on sound patterns.  

The stages of this study comprise data acquisition, data preparation, pre-processing, data 

augmentation, and fold cross-validation, followed by the use of the YAMNet and neural network models. 

Normal breath sounds, wheezes, crackles, and rhonchi, as well as the coexistence of wheezes and crackles, 

represent the output classes of the classification process. The application of twenty-five-fold cross-validation 

is used for model training. The dataset has been partitioned into 25 folds, where in each iteration of the  

cross-validation process, 24 folds are used for training, while one-fold is allocated for testing.  

The primary purpose of using the 25-fold cross-validation scheme in this lung sound classification 

study is to ensure that the model built can be thoroughly and fairly tested on the entire dataset. The benefit of 

using 25-fold cross-validation is to maximize data utilization and identify performance imbalances between 

folds. Accuracy, precision, recall, and F1-score metrics are implemented to assess the model's functionality. 

The model's capabilities are further enhanced by the visualization of the confusion matrix and the analysis of 

the training and prediction results. A confusion matrix can be used as a primary indicator in assessing the 

effectiveness of deep learning models, providing a comprehensive picture of the levels of accuracy, 

precision, recall, and F1-score achieved. This study proposes an innovative contribution to signal processing, 

especially in the field of biomedical audio, by utilizing YAMNet as a feature extractor and ANN as a 

classifier. The proposed investigation adopts a comprehensive methodological framework, in this displayed 

in Figure 1. 
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Figure 1. The proposed investigation adopts a comprehensive methodological framework 

 

 

2.2.  Data preparation and pre-processing 

The preprocessing workflow comprises four discrete stages, beginning with signal resampling to  

4 kHz and segmentation into six second, applying wavelet smoothing, and performing min-max 

normalization. This text provides comprehensive information about the preprocessing of human lung sound 

data. Lung sounds predominantly exhibit frequency components in the range of 100 Hz to 2 kHz. According 

to the Nyquist-Shannon sampling theorem, an analog signal can be reconstructed if the sampling frequency 𝑓𝑠 

is more than twice the highest frequency of the signal 𝑓𝑚𝑎𝑥 [21]. If the highest frequency in a signal is ƒ, then 

the sampling frequency is at least 2ƒ. The (1) is by the Nyquist-Shannon sampling theorem. 

 

𝑓𝑠  ≥ 𝑓𝑚𝑎𝑥 (1) 

 

Where 𝑓𝑠 is sampling frequency and 2𝑓𝑚𝑎𝑥 is the maximum frequency present in the signal. 

The application of this formula that the sampling frequency (𝑓𝑠) must be at least twice the maximum 

frequency (𝑓𝑚𝑎𝑥) is to avoid alliances. Figure 2 illustrates the sampling of lung sound at 4 kHz in this 

investigation. The segmentation in this study employed a time interval of 6 seconds. Lung sound 

segmentation refers to the process of splitting lung sound recordings into distinct and shorter pieces. 

Segmentation seeks to streamline data management and facilitate analysis. Segmentation is considered 

essential in deep learning, as it ensures that the input data aligns with the size of the segmentation outcomes, 

a requirement for deep learning algorithms. Lung sound segmentation of 6 seconds in this study is displayed 

in Figure 3. 

 

 

 
 

Figure 2. Lung sound frequency sampling 4 kHz 



Int J Artif Intell  ISSN: 2252-8938  

 

Lung sound classification using YAMNet, neural network, and augmentation (Jaenal Arifin) 

4105 

 
 

Figure 3. Lung sound segmentation 6 second 

 

 

Wavelet smoothing is employed in this investigation. Wavelet smoothing is employed to attenuate 

the noise in the lung sound signal and achieve a smoother signal. There are two main forms of wavelet 

transform, namely discrete wavelet transform (DWT) and continuous wavelet transform (CWT) [22]. 

Mathematically, CWT is described as (2). 

 

𝑊𝑓(𝑎, 𝑏) = ∫
1

√𝑎

∞

−∞
ƒ (t) ᵩ (

𝑡−𝑏

𝑎
) dt (2) 

 

Where ᵩ is the conjugate complex of the mother wavelet ᵩ, an is the scale factor, and b is the translation 

factor. CWT is used for detailed signal analysis that requires good accuracy. The process of CWT requires 

high computing. Mathematically, DWT is described as (3).  

 

DWT [j, k] = ∑ 𝑓(𝑡)𝜑𝑗,𝑘𝑡 (𝑡) (3) 

 

Where DWT [j,k] is the wavelet coefficient at scale j and translation k. ƒ (t) signal function to be 

transformed. 𝜑𝑗,𝑘 (𝑡) asis wavelet function that depends on the scale j and translation k. The basis wavelet 

functions 𝜑𝑗,𝑘 (𝑡) defined as (4). 

 

𝜑𝑗,𝑘 (𝑡) =  
1

√2𝑗
𝜑 (

𝑡−𝑘2𝑗

2𝑗 ) (4) 

 

Where 𝜑 (t) is mother wavelet. Parameters j and k are used to control the scale and position of the wavelet. 

DWT can be used to analyze signals. The mother wavelet selection uses the Daubechies-5 (db5) wavelet [23]. 

The technique employed in this research is min-max normalization. This technique standardizes the signal by 

ensuring that it has a consistent range of values [24]. The range is defined as a continuum from 0 to 1, which 

facilitates the process of comparing signals. Min-max normalization is used to mitigate the potential issues that 

can arise from having a wide range of values [25]. The min-max normalization formula can be given as (5).  

 

𝑋′ =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
 (5) 

 

X is the real value, X' is the normalized value, Xmin is the minimum value and Xmax is the maximum value. 

One of the advantages of min-max normalization in the context of using deep learning is that it has a fixed 

range scaling. Fixed scaling is set with a range between 0 and 1. Maintains relationships between data. The 

values used are after normalization. Using the min-max normalization technique in lung sound signal 

research is beneficial. The min-max normalization technique can bring all these signals to a uniform range 

(signal standardization). Min-max normalization normal lung sound in this study is displayed in Figure 4. 

 

2.3.  Data augmentation 

Improvement of training data can be achieved through the application of data augmentation, 

especially those with limited and imbalanced datasets. Some reasons that data augmentation techniques can 

be used are to enlarge the dimensions of the data set, improve model performance, avoid overfitting 

problems, and fix data imbalance. The subsequent are the data augmentation techniques implemented in this 

investigation [26].  
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i) Window warping: window warping is an augmentation technique that regulates the temporal changes of 

an audio signal. For example, the temporal changes of a lung sound signal. This change can be in the 

form of shifting the window and curving it with a dilation or compression procedure [27].  

ii) Jittering: jittering is adding noise data to an audio signal [27]. In this study, Gaussian noise was added 

to the lung sound signal to add data variation. The noise intensity was randomly selected between  

10-20 dB. This technique can help the model to be more robust and help with the variations that occur 

in real data.  

iii) Cropping: cropping is performed to process this lung sound signal. This technique can be used to focus 

on a specific part of the lung sound cycle that is relevant for detection and classification [15].  

iv) Padding: the padding function on the lung sound signal is to add a value of 0 (zero) at the end of the 

signal if its length is less than n-fft (2,048 samples). The padding ensures that further operations, such 

as cropping, can run smoothly. In this study, the author combined cropping and padding to ensure that 

all lung signals have a uniform length to be used as model input. The authors refer to research that 

incorporates these augmentation techniques in the context of image data, and similar principles can be 

applied to audio data [28]. 

 

 

 
 

Figure 4. Min-max normalization normal lung sound 

 

 

2.4.  Fold cross validation 

This technique can decrease variability, enhance data use, and achieve a balance between bias and 

variation [29], [30]. Cross-validation was carried out by the authors, with configurations scaling up to  

25 folds. The 25-fold cross-validation approach involves dividing the dataset into 25 approximately balanced 

portions, or folds, based on the number and distribution of samples. Each component exhibits a representative 

distribution of the complete dataset. The model undergoes 25 iterations of training and testing. In each 

iteration, one of the 25 folds is chosen as the test data, while the remaining 24 folds are utilized for training 

the model. This guarantees that each fold is utilized once as the test data and 24 times as part of the training 

data. The purpose of performing cross-validation up to 25-fold is to assess how well the deep learning model 

performs in the training process and evaluate the model's performance. After the iteration is complete, the 

evaluation results from 25 folds are collected to obtain metric values. Confusion matrix in this study is 

displayed in Table 2. 

 

 

Table 2. Confusion matrix 
Actual/Predicted Normal Crackles Wheezes Rhonchi Crackles_Wheezes 

Normal TP FP FP FP FP 

Crackles FN TP FP FP FP 
Wheezes FN FN TP FP FP 

Rhonchi FN FN FN TP FP 

Crackles_Wheezes FN FN FN FN TP 

 

 

2.5.  Proposed YAMNet and neural network 

The YAMNet model can extract various attributes from audio recordings, including frequency, 

amplitude, and sound texture. These features are relevant for audio signal identification and classification. 

Embeddings from YAMNet are used as feature representations of lung sounds. These embeddings are vectors 
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with fixed dimensions that describe the characteristics of the lung sounds. After the features are extracted, the 

neural network model performs classification based on these features. This neural network model  

(fully connected) has several dense layers (2048, 1024, 512, 256, 128 neurons) and each layer incorporates a 

rectified linear unit (ReLU) activation, followed by batch normalization and dropout operations to promote 

stable convergence and minimize overfitting. The SoftMax function is utilized in the output layer to produce 

a probabilistic distribution over the predefined categories of lung sounds, namely normal, wheezes, crackles, 

rhonchi, and the combination of crackles and wheezes. As shown in Figure 5, the workflow outlines the 

structural design of the model developed in this study. 

 

 

 
 

Figure 5. Works flow a model 

 

 

3. RESULTS AND DISCUSSION 

K-fold cross-validation experiments were conducted. As part of the cross-fold validation process, 

we reviewed the effects of different cross-fold values on our lung-para sound classification model.  

The authors performed tests with settings from 1 to 25. The authors found that the three best accuracies were 

97.24% epoch 16, 97.06% epoch 18, and 96.88% epoch 17. Accuracy of different folds in this study is 

displayed in Figure 6. 

 

 

 
 

Figure 6. Accuracy of different folds 
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The authors evaluated the performance of various optimizers as objects in a lung sound 

classification model and recorded their accuracy values as part of the performance analysis. The AdaMax 

optimizer shows the best performance in all metrics, with an accuracy of 93.42%, precision of 93.38%,  

recall of 93.42%, and F1-score of 93.29%. Optimizer results in this study are displayed in Table 3. 

The AdaMax optimizer demonstrates a well-balanced performance across recall, precision, and  

F1-score metrics. This very good balance indicates that this model works well, namely the ability to detect 

positive classes correctly (precision) and the ability to detect all positive classes (recall). The second best 

after AdaMax is the Adam optimizer, with an accuracy of 91.62%, precision of 91.60%, recall of 91.62%, 

and F1-score of 91.40%. The precision and recall values are consistent, indicating good performance in 

detecting positive and negative classes. Balanced performance is evidenced by the comparable values of 

recall, precision, and F1-score, indicating that there is no significant bias in any of the metrics. The 

performance of the Adam optimizer is very good; it can be the second choice after the AdaMax optimizer. The 

third best optimizer sequence is stochastic gradient descent (SGD), with an accuracy of 89.30%, balanced 

precision, and recall values. SGD is a choice if the model requires a simpler learning process, although it has 

slightly lower performance than the Adam and AdaMax optimizers. The fourth best optimizer is RMSprop, 

with an accuracy of 87.72%, lower than the previous three optimizers. The precision and recall values are 

balanced, and the F1-score value is slightly lower (87.22%). The RMSprop optimizer provides quite good 

values, but its performance is lower than that of Adam, AdaMax, and SGD. The adaptive gradient (Adagrad) 

optimizer is not recommended for this lung sound classification task because it has a low accuracy of 46.58%. 

This indicates that the model is not able to learn well and is unable to detect positive and negative classes. 

The authors investigate the impact of changing the number of epochs on the effectiveness of  

our model for lung sound classification. Our starting point is 10 epochs; there is a significant increase in 

metrics when the number of epochs increases from 10 to 100 epochs. This performance is relatively stable. 

At epoch 50, there is a significant increase in values in all metrics, with accuracy increasing to 84.42%. At 

epoch 100, all metrics are around 91.55 to 91.59%. This shows that the model has learned very well. At 

epoch 150 to 300, the accuracy and other metrics reach 93%. This model's optimal epoch is 200 to 300; it 

achieves the best performance with high and stable accuracy, precision, recall, and F1-score values. The best 

accuracy is at 93.64%; this occurs at epoch 300. Epochs table in this study is displayed in Table 4. 

After epoch 300, there is a slight decrease in performance in several metrics, such as F1-score and 

recall. This indicates that increasing the number of epochs can no longer improve performance on the testing 

data. At epoch 350 and 400, performance stability with minor declines occurred. The accuracy, precision, 

recall, and F1-score values decreased slightly to 93.20%, indicating that the model began to have difficulty 

maintaining its performance.  
 

 

Table 3. Evaluation metrics of different optimizers used in the proposed model 
Optimizer Accuracy (%) Precision (%) Recall (%) F1-score (%) 

Adam 91.62 91.60 91.62 91.40 

RMSprop 87.72 87.73 87.73 87.22 

Adagrad 46.58 46.15 46.83 44.14 
SGD 89.30 89.34 89.30 88.85 

AdaMax 93.42 93.38 93.42 93.29 

 
 

Table 4. Model performance across different epochs 
Number of epochs Accuracy (%) Precision (%) Recall (%) F1-score (%) 

10 59.95 63.52 59.95 59.17 

50 84.42 84.05 84.42 84.08 
100 91.55 91.59 91.55 91.12 

150 92.76 92.87 92.76 92.56 

200 93.42 93.40 93.42 93.29 
250 93.24 93.18 93.24 93.08 

300 93.64 93.60 93.64 93.52 

350 93.20 93.18 93.20 93.05 
400 93.20 93.14 93.20 93.06 

 

 

The confusion matrix with the Adamax optimizer shows that YAMNet and the neural network 

models have excellent performance. The models were able to classify the rhonchi and crackles_wheezes 

classes perfectly. The wheezes class was also classified accurately. The model was able to recognize the 

typical characteristics of the wheezes class. The normal and crackle classes need to be improved to 

distinguish between them. This study presents the confusion matrix for lung sound categorization as the 

object, which is displayed in Figure 7 at epoch 400. 
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Figure 7. Confusion matrix for lung sound categorization 

 

 

The study includes a performance comparison of the proposed models with previously established 

approaches. There was an increase in the comparison results obtained by the author from 2022 to 2025.  

A comparative evaluation between the proposed method and existing methodologies displayed in Table 5. 

Based on the comparison of the Kaggle dataset, the neural network model got an F1-score of 72.41%. 

The YAMNet and neural network models got a score of 91.4%. Based on the comparison using only 

the ICBHI dataset, the proposed model (YAMNet, neural network) got the highest performance with an  

F1-score of 98.52%. The CNN+bidirectional long short-term memory (BDLSTM) model recorded an  

F1-score of 95.90%. The short-time Fourier transform (STFT)-CNN model F1-score is lower at 78.45%. 

More modern models, such as residual attention network-based vision transformer (RAN-ViT), achieve an 

F1-score of 97.49%. The multi–task learning model F1-score of 98.40%. Proposed methods such as models 

(YAMNet+neural network) and multi-task learning show promising research directions in the field of 

medical sound classification. Based on the combined ICBHI and Mendeley dataset, the proposed model 

(YAMNet+neural network) achieved an F1-score of 99.63%. This value is higher than the lightweight CNN 

F1-score model of 97.80%. The addition of datasets (ICBHI, Kaggle, and Mendeley) does not guarantee 

better performance. Performance drops to an F1-score of 93.64%. A comparison of accuracy based on the 

dataset shows that the ICBHI+Mendeley dataset produces the highest accuracy of 98.67%. Adding datasets 

(ICBHI+Kaggle+Mendeley) can reduce accuracy (93.06%). The Kaggle dataset produces the lowest 

accuracy (82.26%) compared to others. This highlights the limitations of the data quality if used alone. 

 

 

Table 5. A comparative evaluation between the proposed method and existing methodologies 
Method Dataset Precision (%) Recall 

(%) 

F1-score 

(%) 

Accuracy 

(%) 

Neural network [31], (2022) Kaggle 73.67 72.96 72.41 72.96 
CNN + BDLSTM [14], (2022) ICBHI,  

King Abdullah University Hospital 

95.91 95.90 95.90 95.90 

STFT-CNN [22], (2023) ICBHI 79.45 78.09 78.45 78.09 
Multi-feature integration utilizing 

lightweight CNN model [32], (2024) 

ICBHI, Mendeley 97.76 97.70 97.70 97.70 

Combined RAN-ViT [33], (2024) ICBHI 97.54 97.49 97.49 97.49 
YAMNet [34], (2024) ICBHI, Kaggle 97.94 97.92 97.92 97.92 

Multi-task learning [35], (2025) ICBHI 98.42 98.40 98.40 98.40 

Proposed method  ICBHI 98.56 98.53 98.52 98.53 
(YAMNet, neural network) Kaggle 91.39 91.55 91.4 91.55  

ICBHI, Mendeley 99.64 99.63 99.63 99.63  
ICBHI, Kaggle, Mendeley 93.64 93.64 93.64 93.06 
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4. CONCLUSION 

The integration of YAMNet for feature extraction and a neural network as the primary classification 

model presents promising prospects for analyzing lung sounds, as well as other applications in the biomedical 

field. With proper adjustment and training, YAMNet and neural networks can be very useful tools for 

improving diagnosis and health monitoring in the medical field. Testing of various optimization algorithms to 

see their effect on model accuracy. The AdaMax optimizer provides the best accuracy value of 93.42%, 

precision 93.38%, recall 93.42, and F1-score 93.29%, compared to other optimizers (Adam, RMSprop, 

Adagrad, and SGD), which produce lower metric values (based on result and discussion). The optimal epoch 

for this model recorded an accuracy of 93.64%, a precision of 93.60%, a recall of 93.64%, and an F1-score of 

93.52%; this occurred at epoch 300. 
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