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 Data in many application domains is imbalanced. In machine learning, 

addressing imbalanced data is crucial to prevent bias towards the dominant 

class label and ensure that prediction models can learn and predict the 

minority class proficiently. This paper proposes a hybrid imbalanced 

classification model (HICD) to address the multiclass imbalanced data 

problem. The primary idea is to combine effective methods to construct a 

classification model that can handle multiclass imbalanced data effectively. 

Four methods are employed: an oversampling method to balance the data, a 

decomposition method to convert the multiclass problem into a set of binary 

problems, ensemble classification to integrate base classifiers to improve 

prediction, and a boosting method to encourage the classifier to pay more 

attention to misclassified samples. To evaluate the proposed model, 

seventeen imbalanced datasets from various application domains, featuring 

different numbers of classes, instances, features, and imbalance ratios, are 

assessed. The experimental results and statistical significance tests 

demonstrate that the proposed hybrid model significantly outperforms the 

standard one-vs-one (OVO) approach and the OVO combined with 

oversampling technique (SMOTE), both considered state-of-the-art for 

addressing imbalanced multiclass datasets, in terms of F1-score. 
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1. INTRODUCTION 

In several real-world problems, such as disease identification, text classification, network intrusion 

detection, and spam filtering, imbalanced data is common. Where the frequency of class labels in the dataset 

is unequal, in other words, one or more classes are underrepresented, in contrast, the remaining classes are 

highly represented in the dataset. The class represented by a significantly larger number of observations 

relative to other classes, in the dataset, is referred to as the “majority class”. While the class that is 

represented by a noticeably smaller number of observations relative to other classes is referred to as the 

“minority class”. Two main imbalance problems can be identified: binary imbalanced problem, where the 

dataset contains only two classes (the majority and minority class), and multiclass imbalanced problem, 

which includes more than two classes, with one or more classes represented by fewer instances. 

https://creativecommons.org/licenses/by-sa/4.0/


Int J Artif Intell  ISSN: 2252-8938  

 

A hybrid model for handling the imbalanced multiclass classification problem (Esra’a Alshdaifat) 

3983 

Using the standard machine learning algorithms as they are on an imbalanced dataset will result in 

majority class label bias, and the accuracy of the produced model will not be representative of its actual 

usefulness. To make this problem clear, imagine a medical diagnosis data set having two classes: i) majority 

class (negative), which forms 95% of samples, and ii) minority (positive) class, which forms 5% of samples. 

Creating a classification model that constantly outputs the majority class, gives an accuracy rate of 95%. In 

this scenario, the samples of the minority class were neglected by the classification algorithm, and the 

obtained accuracy score is considered misleading. Note here that greater importance is often given to the 

underrepresented class. For instance, in the previous medical diagnosis problem, the minority class is the 

“positive” samples, which are rare but essential to be detected precisely. The same issue occurs in multiclass 

imbalanced problems; however, it is more challenging. Considering a heart disease dataset, where patients 

are categorized into five classes based on the severity of heart disease, which range from class 0 (no disease) 

to classes one to four (severe diseases). The no disease and non-severe disease classes are the dominant 

classes, whereas classes that represent more severe cases are represented by fewer samples. Training a 

classifier on this dataset will be effective in predicting no or mild disease classes, but it might not be able to 

detect patients belonging to more severe classes. 

From the foregoing, handling imbalanced datasets is considered a challenging and well-known 

problem in the machine learning field. Consequently, much research work has been conducted by numerous 

researchers to tackle this problem. The work in addressing the imbalanced data problem can be categorized 

into three main categories [1]: i) data-level methods, ii) algorithmic-level methods, and iii) hybrid methods. 

In data-level methods, balancing the data is performed by augmenting the minority class observations or 

reducing the majority class observations, which are known as over-sampling and undersampling methods. 

Concerning the algorithmic-level methods, such methods involve modifying existing algorithms or proposing 

a structure for new algorithms to address the imbalanced data problem. With respect to hybrid methods, a 

combination of data-level and algorithmic-level methods is employed to handle the imbalanced data.  

The solution proposed in this paper for handling the imbalanced data problem belongs to the hybrid 

methods category. More specifically, four methods are combined to tackle the imbalanced data and obtain an 

effective classification model. The first method is a data-level method: the well-known synthetic minority 

oversampling technique (SMOTE) is utilized [2]. The second method is an ensemble method, where a 

collection of classifiers is utilized to enhance classification effectiveness. The third method is a 

decomposition method, in which a multiclass classification problem is decomposed into a number of binary 

sub-problems, and each classifier focuses only on two classes; thus, better classification effectiveness can be 

obtained. The fourth method is a boosting method, which identifies the low-performance base classifiers and 

forces them to focus on misclassified instances using a bootstrap technique. The idea is that integrating four 

effective methods for handling imbalanced multiclass classification can result in a high-performance hybrid 

model. Further information about the proposed model is provided in section 3. 

The rest of this paper is structured in the following sections: section 2 provides an overview of the 

methods used to handle imbalanced datasets. Section 3 explains the generation and use of the suggested 

hybrid imbalanced multiclass classification model. Section 4 presents a general description of the evaluation 

datasets. Section 5 covers the experimental setup and reports the produced results. Section 6 summarizes the 

paper and provides some directions for future work. 

 

 

2. LITERATURE REVIEW 

In this section, an overview of the methods used to handle imbalanced datasets is presented. As 

mentioned earlier, imbalanced datasets can be handled using three primary methods [1]: i) data-level 

methods, ii) algorithmic-level methods, and iii) hybrid methods. Commencing with the data-level methods, 

which are used to balance the data during the preprocessing phase. These methods can be divided into two 

groups: oversampling and undersampling methods. In oversampling, the class imbalance is addressed by 

increasing the number of minority class samples. This can be achieved by either duplicating existing minority 

class instances randomly or by generating new synthetic samples. The first approach involves repeating some 

instances, which is straightforward but may cause overfitting. The second approach applies interpolation 

between minority class observations to generate new observations, such as using the SMOTE [2], the result 

here is more diverse synthetic samples [3]. SMOTE is considered the most widely used oversampling method 

and has broad applications [4]. Many researchers applied it to imbalanced data problems and reported that the 

model performance improved significantly [5], [6]. On the other hand, some researchers argue that the 

resulting synthetic samples may not accurately reflect the original data, and they referred to the new samples 

as “unrealistic samples”, arguing that this can degrade classifier accuracy [7]. Adaptive synthetic (ADASYN) 

sampling approach for imbalanced learning also creates synthetic examples, but it adopts a more adaptive 

way compared to traditional SMOTE [3]. 
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Regarding the undersampling methods, samples are removed from the majority class until the 

dataset becomes balanced. This is done to avoid bias in classification models toward the majority class [8]. 

Random undersampling (RUS), is considered one of the simplest and most common undersampling methods, 

in which samples from majority classes are removed randomly. However, this leads to a loss of valuable 

information that could impact the performance of the resulting model [9]. Consequently, other methods 

emerged and attempted to remove samples from the majority classes based on some defined criteria, such as 

the radial-based undersampling algorithm [10]. 

With respect to the algorithmic-level methods, which are also known as “internal approaches”, the 

data imbalance problem is handled by creating or improving existing classification algorithms [4]. These 

methods include threshold adjustments, one-class learning, cost-sensitive learning, and ensemble-based 

techniques [4], [11]–[13]. In the threshold adjustment method, classifiers often provide probabilities that refer 

to which class an observation belongs, which can be used to adjust thresholds and refine class assignments 

[11]. Cost-sensitive learning assigns greater misclassification costs to minority class samples to encourage 

the classifier to pay more attention to underrepresented samples [4]. One class classification focuses on the 

minority class and learning its characteristics to differentiate it from the other data [11]. Ensemble classifiers 

aim to enhance the performance of classification tasks by combining predictions from a set of base classifiers 

[14]. Common ensemble methods include bagging and boosting [14]. Using ensembles of classifiers has 

become a popular method for addressing class imbalance in machine learning [11], [12]. Some research 

works focused on simplifying and converting the single multiclass problem into many binary problems using 

specific decomposition techniques, such as one-vs-one (OVO), one-vs-all (OVA), and the binary tree method 

[15]. The idea here is to focus on one or two classes instead of creating a model that differentiates between 

several classes. 

Some researchers focused their research on combining data-level methods and algorithmic-level 

methods to generate more powerful models to handle the imbalance class problem, these methods are 

referred to as hybrid methods [16]. It is important to note that hybrid models can be differentiated according 

to: i) the adopted data and algorithm methods, and ii) whether the addressed classification problem is binary 

or multiclass. Most research work related to the generation of hybrid imbalanced models has been conducted 

on binary imbalanced problems. Commencing with the binary hybrid model proposed by Sun et al. [17], in 

which the bagging ensemble method is combined with SMOTE. Shi et al. [18] integrated a novel density-

based sampling technique with the ensemble approach to construct a binary hybrid imbalanced classification 

model (HICD). HICD partitions the data space into five areas according to data density, and then the data is 

sampled from these areas. Once the data is sampled, the ensemble model is generated. While the model 

proposed by Theephoowiang and Hanskunatai [19] splits the data into four different groups according to the 

overlapping and non-overlapping concept between the majority and minority classes instances, the data 

categories are then used to form five datasets, which are resampled using different SMOTEs. The sampled 

datasets are then used to generate the classification models using different single and ensemble algorithms. 

Shan and Chung [20] coupled data-level techniques and loss function to generate the desired hybrid model. 

The suggested model begins with dividing samples based on their effect on imbalanced data classification 

into several categories, thus appropriate samples can be selected for sampling. A loss function is then 

proposed, relying on sample difficulty. 

Multiclass imbalanced classification problem is considered challenging research due to the 

complexities caused by multiple classes [21]. Several researchers tried to combine the ensemble methods, such 

as bagging or boosting, with oversampling or undersampling techniques to address the multiclass imbalanced 

problem [22]. More recent work on multiclass imbalanced hybrid model generation is focused on proposing 

unique data-level methods and combining them with the ensemble methods or integrating the state-of-the-art 

sampling methods with a novel algorithmic-level method. The work proposed by Hartono et al. [23] 

introduced a generalization potential and learning difficulty-based hybrid sampling (GDHS) method as a 

data-level method and combined it with the gradient boosting decision tree (DT) ensemble model. In GDHS, 

minority class representation is improved by applying intelligent oversampling, and the majority classes  

are cleaned to minimize noise and overlap. Some researchers tried to combine OVO or OVA with 

oversampling methods and ensemble classification or deep learning, such as the work proposed in [24], [25].  

Salehi and Khedmati [21] suggested a hybrid cluster-based oversampling and undersampling (HCBOU) 

technique, which clusters classes into majority and minority groups to guide the sampling process. HCBOU 

preserves the class structure and produces convenient synthetic samples. The novel HCBOU is integrated 

with OVO and OVA classification decomposition methods. 

The work presented in this paper is directed at generating a hybrid imbalanced multiclass 

classification model. The core idea is to integrate four well-known powerful methods for handling 

imbalanced data problem, to construct a high-performance hybrid model. More specifically, the utilized 

methods are:  
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‒ SMOTE method, in which the minority class is oversampled to balance the data and improve 

generalization. 

‒ OVO method, in which a multiclass dataset is mapped into a number of binary datasets, and a classifier 

is generated for each. This simplification can produce better classification effectiveness. 

‒ Ensemble method, in which several classifiers are joined to enhance classification effectiveness. Note 

here that the binary classifiers generated using OVO decomposition are considered a form of ensemble. 

Moreover, an ensemble of classifiers that can be used as a base classifier for each class pair is a form of 

ensemble, and both forms are considered in the work presented in this paper. 

‒ Boosting method, in which each base classifier within the ensemble is evaluated, and those with lower 

performance are boosted to focus more on the samples they misclassified. 

 

 

3. THE HYBRID IMBALANCED MULTICLASS CLASSIFICATION MODEL 

This section illustrates the construction and use of the hybrid imbalanced multiclass classification 

model. Again, the fundamental idea is to merge: i) oversampling, ii) ensemble, iii) decomposition, and  

iv) boosting methods to construct an effective classification model for imbalanced multiclass classification 

problems. Figure 1 presents an example of the desired model generation process for a dataset including four 

class labels. The process begins with applying the SMOTE to balance the data. Next, the multiclass dataset is 

decomposed into multiple binary datasets using the OVO approach. An initial set of base classifiers is then 

trained and evaluated. Based on the evaluation results, each base classifier is either boosted or not, and 

afterward retrained on the entire corresponding binary dataset to avoid any data loss. As a result, a set of 

balanced and boosted base classifiers is generated, collectively forming the final desired hybrid model. 

Although the model generation process involves several stages, it is performed only once. 

 

 

 
 

Figure 1. The generation process of the hybrid imbalanced multiclass classification model 

 

 

The detailed process of model construction is explained in Algorithm 1. The algorithm has five 

inputs: i) the input dataset D, ii) the set of classes C, iii) the SMOTE that will be used to balance the data O, 

iv) the classification algorithm Algo that will be utilized to construct the base classifiers, and v) the 

performance threshold acc_threshold that will be adopted to spot the classifiers that need to be boosted. The 

algorithm begins by applying the SMOTE to the dataset to produce the balanced resampled data 

Resampled_D (line 9). Then, all possible combinations of size two classes featured in the dataset will be 

found (line 10). The algorithm then loops through the set of class combinations, and on each iteration, it finds 

a set of examples Di in D that features Ci (line 11). Then it divides Di into training and validation sets, thus a 

classifier can be built and evaluated to generate an accuracy score acci (lines 14 and 15). The next step is to 

identify weak classifiers by comparing the evaluated accuracy score with the accuracy threshold (line 16). If 
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the accuracy score is under the predefined threshold, the bootstrap method is applied to the misclassified 

data, and the result is added to the Di data and used to rebuild the boosted base classifier boosted_classifieri, 

which is then added to the set of base classifiers forming the hybrid model (lines 16 to 20). While if the 

accuracy score is above the predefined threshold, then the base classifier is reconstructed using the training 

data Di without applying boosting and then added to the set of base classifiers forming the hybrid model 

(lines 22 and 23). The hybrid classification model is the output of the algorithm, which consists of a set of 

binary balanced base classifiers. 

 

Algorithm 1. Hybrid imbalanced multiclass classification model construction 
1: INPUT 

2: D: the input dataset  

3. C: the unique classes in D 

4. O: the oversampling technique  

5: Algo: the classification algorithm  

6: acc_threshold: accuracy threshold  

7: OUTPUT 

8: The generated hybrid classification model 

9: Resampled_D = Apply O on D 

10: C_combinations = Find all sets of size 2 combinations in C 

11: for i =1 to j =|C_combinations| do 

12: Di = Find set of examples in D that features Ci  

13: Ti, Vi = divide Di into training and validation sets 

14: classifieri = Use Algo to construct base classifier classifieri using training set Ti 

15: acci = use Vi to evaluate classifieri  

16: if (acci< acc_threshold) 

17: boosted_misclassifiedi = apply bootstrap on misclassified data 

18: boosted_Di = Di ∪ boosted_misclassifiedi  
19: boosted_classifieri = Use Algo to construct base classifier using boosted_Di 

20: hybrid_model = hybrid_model ∪ boosted_classifieri 
21: else 

22: classifieri = Use Algo to construct base classifier Ci using training set Di 

23. hybrid_model = hybrid_model ∪ classifieri  
24: end if 

25: end for 

 

When using the generated hybrid model for prediction, a majority voting approach is adopted to 

aggregate the predictions from the member binary classifiers. More particularly, to classify a new unseen 

sample, all the individual binary classifiers in the generated hybrid classification model are utilized to 

classify the sample, and the class label that receives the majority of votes is considered the final output and is 

assigned to the unseen sample. Hence, the well-known SMOTE method is utilized, and the adopted 

decomposition method is the OVO; we will refer to the hybrid model as Boosted-OVO&SMOTE throughout 

the rest of the paper. 

For evaluating the resulting model, the accuracy, precision, recall, and F1-score are considered: 

‒ Accuracy: the ratio of correctly predicted observations to all observations in a given test set [26]. 
 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (1) 

 

‒ Precision: the ratio of observations correctly predicted as positive to all observations predicted as 

positive [26]. 
 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (2) 

 

‒ Recall: the ratio of observations correctly predicted as positive to all actual positive observations [26]. 
 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3) 

 

‒ F1-score: it represents a combination of the precision and recall scores [26]. 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 

 

Here, TP denotes the true positive, TN denotes the true negative, FP denotes the false positive, and FN 

denotes the false negative records. Because the datasets taken into consideration in this study are multiclass 

datasets, macro scores are utilized. 
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4. DATASETS 

This section provides a summary of the main attributes of the datasets used to assess the proposed 

hybrid model. Seventeen imbalanced datasets from various disciplines, each with a different number of 

observations, classes and attributes, all sourced from the University of California Irvine (UCI) Machine 

Learning Repository [27]. Table 1 outlines the key features of these datasets. Because the research presented 

in this paper focuses on imbalanced multiclass classification problems, the datasets include a range of class 

distribution rates. 

 

 

Table 1. The description of the experimental datasets 
Domain Distribution of classes ratio # of 

instances 

# of 

features 

# of 

classes 

Dataset 

Biology 1407/2406/364 
(Ratio =33.7: 57.6: 8.7) 

4177 8 3 Abalone 

Health and 

medicine 

415/227/831 

(Ratio =28.17: 15.41: 56.42) 

1473 9 3 Contraceptive method  

Social science 65/64/31 

(Ratio =40.63:  40.00: 19.38) 

160 4 3 Hayes-Roth 

Health and 
medicine 

2/24/64 
(Ratio =2.22: 26.67: 71.11) 

90 8 3 Post-operative 

Health and 

medicine 

150/35/30 

(Ratio =69.7: 16.3: 14.0) 

215 5 3 Thyroid 

Health and 

medicine 

60/150/100 

(Ratio =19.35:48.39:32.26) 

310 6 3 Vertebral 

Automotive 199/217/218/212 
(Ratio =23.52: 25.66: 25.79: 25.03) 

846 18 4 Vehicle 

Automotive 1210/384/65/69 

(Ratio =70.0: 22.2: 3.8: 4.0) 

1728 6 4 Car 

Health and 

medicine 

160/54/35/35/13 

(Ratio =53.9: 18.2: 11.8: 11.8: 4.4) 

297 13 5 Heart (Cleveland) 

Social science 4320/2/328/4266/4044 
(Ratio =33.3:0.015:2.5:32.9:31.2) 

12960 8 5 Nursery 

Computer science 4913/329/28/88/115 

(Ratio =89.8:6.0:0.5:1.6:2.1) 

5473 10 5 Page blocks 

Health and 

Medicine 

112/61/72/49/52/20 

(Ratio =30.6:16.7:19.7:13.4:14.2:5.5) 

366 34 6 Dermatology 

Biology 2027/1322/522/1630/1928/2636/3546  
(Ratio =14.9:9.7:3.8:12.0:14.2:19.3:26.0) 

13611 16 7 Dry bean 

Physics and 

chemistry 

70/17/0/76/13/9/29 

(Ratio =32.7:7.9:0.0:35.5:6.1:4.2:13.6) 

214 9 7 Glass 

Biology 143/77/52/35/20/5/2/2 

(Ratio =42.5:22.9:15.4:10.4:5.9:1.5:0.6:0.6) 

336 7 8 E. coli 

Computer science 1143/1143/1144/1055/1144/1055/1056/1142/1055/1055 
(Ratio =10.4:10.4:10.4:9.6:10.4:9.6:9.6:10.4:9.6:9.6) 

10992 16 10 Pen digits 

Biology 244/429/ 463/44/35/51/163/30/ 20/5 

(Ratio =16.4:28.9:31.2:3.0:2.4:3.4:11.0:2.0:1.3:0.3) 

1484 8 10 Yeast 

 

 

5. EXPERIMENTS AND ANALYSIS 

This section discusses the experimental setup and reports the obtained results. For building the 

individual classifiers, three algorithms were employed: i) DT, ii) support vector machine (SVM), and  

iii) random forest (RF). These algorithms were chosen because of: i) their different learning behaviors, which 

enable comprehensive evaluation of the effectiveness of the suggested hybrid model to be conducted, and  

ii) their popularity and reported performance in prediction. DT is well-known for its simplicity and 

interpretability, SVM is effective in high-dimensional spaces, and RF, as an ensemble classification method, 

is recognized for improving classification effectiveness. To ensure precise results, ten-fold cross validation 

(TCV) was employed for all the experiments reported in this paper. The evaluation measures included 

accuracy, precision, recall, and F1-score. To simplify the analysis, the results will be discussed based on the 

F1-score because: i) it combines two measures; precision and recall, and ii) it reflects precise performance for 

imbalanced datasets. With respect to SMOTE, the k-neighbors parameter is set to one because some 

evaluation datasets include only two samples for the minority class. The SVM classifier employed the radial 

basis function (RBF) kernel. Fifty classifiers were constructed as base classifiers for the RF classifier. Each 

dataset is evaluated using three methods coupled with three classification algorithms. More specifically, for 

each classification algorithm, the methods are: i) OVO with one of the base classifiers (OVO), ii) OVO and 

SMOTE (OVO&SMOTE), and iii) OVO coupled with SMOTE and bootstrap boosting (Boosted-

OVO&SMOTE). As noted earlier, a threshold value is utilized to spot the classifiers that should be boosted; 

several experiments were conducted to identify the best threshold value for each dataset and classification 
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algorithm. Table 2 presents the adopted threshold values for each considered evaluation dataset and classifier. 

The produced results are presented and discussed in the next sub-sections. 
 
 

Table 2. The adopted boosting threshold values 
Best boosting threshold value 

Dataset DT boosting threshold SVM boosting threshold RF Boosting threshold 

Abalone 0.75 0.80 0.95 

Contraceptive 0.70 0.70 0.75 

Hayes Roth 0.85 0.90 0.70 
Post-operative 0.85 0.72 0.65 

Thyroid 0.99 0.95 0.95 

Vertebral 0.95 0.70 0.95 
Vehicle 0.90 0.99 0.75 

Car 0.95 0.99 0.99 

Heart 0.75 0.99 0.80 
Nursery 0.95 0.95 0.95 

Page blocks 0.95 0.90 0.95 

Dermatology 0.94 0.95 0.95 
Dry bean 0.90 0.95 0.99 

Glass 0.89 0.70 0.95 

E. coli 0.99 0.90 0.90 
Pen digits 0.99 0.99 0.99 

Yeast 0.90 0.60 0.80 

 
 

5.1.  Results obtained from using the DT classifier to construct the hybrid model 

In this section, the results produced from using the DT classifier to generate the desired hybrid 

model are presented and discussed. The results are tabulated in Table 3, and the best results are highlighted in 

bold font. Commencing with comparing the performance of OVO and OVO SMOTE models, from the table, 

it is clear that combining SMOTE and OVO outperforms using OVO alone. The same observation is noticed 

when comparing the results obtained from using the Boosted-OVO&SMOTE hybrid model and the OVO 

model. Thus, combining OVO and SMOTE to generate a hybrid model improved the classification 

effectiveness. Regarding comparing the proposed hybrid model (Boosted-OVO&SMOTE) with 

OVO&SMOTE, it is obvious that the hybrid model outperforms the OVO&SMOTE model. More 

specifically, Boosted-OVO&SMOTE generated the best results for all the considered datasets. However, for 

six datasets, the same results were obtained from using OVO&SMOTE. Consequently, boosting the 

relatively low-performance classifiers resulted in improving the classification effectiveness. 
 

 

Table 3. Results obtained from using the DT classifier as the base classifier 
Dataset OVO OVO&SMOTE Boosted-OVO&SMOTE 

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 

Abalone 0.668 0.571 0.589 0.575 0.800 0.799 0.800 0.799 0.800 0.799 0.800 0.799 

Contraceptive 0.464 0.449 0.441 0.439 0.569 0.569 0.570 0.565 0.574 0.573 0.574 0.571 
Hayes Roth 0.825 0.864 0.855 0.853 0.837 0.844 0.827 0.814 0.841 0.852 0.843 0.826 

Post-operative 0.643 0.536 0.527 0.521 0.797 0.804 0.795 0.789 0.823 0.842 0.825 0.816 
Thyroid 0.944 0.942 0.923 0.922 0.964 0.964 0.963 0.963 0.976 0.977 0.974 0.975 

Vertebral 0.806 0.770 0.756 0.752 0.833 0.841 0.830 0.828 0.849 0.846 0.846 0.843 

Vehicle 0.704 0.723 0.706 0.709 0.716 0.720 0.714 0.711 0.746 0.750 0.746 0.743 

Car 0.859 0.863 0.816 0.790 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 

Heart 0.459 0.279 0.270 0.268 0.791 0.798 0.788 0.786 0.791 0.798 0.788 0.786 

Nursery 0.848 0.866 0.835 0.812 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 
Page blocks 0.959 0.817 0.809 0.799 0.991 0.991 0.991 0.991 0.991 0.991 0.991 0.991 

Dermatology 0.944 0.948 0.948 0.942 0.974 0.974 0.969 0.970 0.976 0.975 0.971 0.972 

Dry bean 0.703 0.783 0.764 0.733 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 
Glass 0.711 0.691 0.716 0.683 0.866 0.865 0.875 0.858 0.890 0.894 0.895 0.885 

E. coli 0.809 0.704 0.689 0.672 0.940 0.939 0.940 0.937 0.948 0.947 0.951 0.947 

Pen digits 0.965 0.966 0.965 0.965 0.969 0.969 0.969 0.969 0.971 0.971 0.971 0.971 
Yeast 0.487 0.449 0.458 0.442 0.843 0.848 0.842 0.843 0.849 0.853 0.849 0.849 

 

 

5.2.  Results obtained from using the support vector machine classifier to construct the hybrid model 

In this section, the results achieved from using the SVM classifier to generate the desired hybrid 

model are presented and discussed. The results are tabulated in Table 4. Again, combining SMOTE with 

OVO outperforms using OVO alone. Regarding comparing the Boosted-OVO&SMOTE and OVO&SMOTE, 

the boosted approach generated the same or better results for all the considered datasets. More specifically, 

Boosted-OVO&SMOTE produced better results for eight of the seventeen considered datasets (abalone, 
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contraceptive, Hayes Roth, thyroid, car, heart, glass, and E. coli), for the nine remaining datasets the same 

results were produced by the OVO&SMOTE model. Note here that the observations from using the DT and 

SVM classifiers are harmonic. 
 

 

Table 4. Results obtained from using the SVM classifier as the base classifier 
Dataset OVO OVO&SMOTE Boosted-OVO&SMOTE 

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 

Abalone 0.748 0.516 0.522 0.510 0.716 0.722 0.716 0.718 0.723 0.722 0.723 0.720 

Contraceptive 0.489 0.474 0.472 0.470 0.517 0.537 0.518 0.509 0.516 0.517 0.515 0.510 
Hayes Roth 0.550 0.632 0.573 0.569 0.652 0.657 0.665 0.637 0.738 0.766 0.749 0.728 

Post-operative 0.688 0.287 0.417 0.339 0.798 0.815 0.802 0.791 0.798 0.815 0.802 0.791 

Thyroid 0.953 0.947 0.892 0.892 0.973 0.975 0.973 0.973 0.980 0.982 0.979 0.979 
Vertebral 0.816 0.801 0.781 0.781 0.793 0.795 0.794 0.787 0.793 0.795 0.794 0.787 

Vehicle 0.751 0.739 0.753 0.738 0.767 0.755 0.769 0.754 0.763 0.763 0.763 0.754 

Car 0.929 0.929 0.858 0.859 0.989 0.990 0.989 0.989 0.990 0.990 0.990 0.990 
Heart 0.572 0.233 0.276 0.251 0.720 0.723 0.719 0.705 0.746 0.755 0.747 0.743 

Nursery 0.907 0.880 0.848 0.847 0.989 0.989 0.989 0.989 0.989 0.989 0.989 0.989 

Page blocks 0.939 0.688 0.526 0.570 0.937 0.938 0.937 0.937 0.937 0.938 0.937 0.937 
Dermatology 0.975 0.975 0.971 0.972 0.986 0.985 0.988 0.986 0.986 0.985 0.988 0.986 

Dry bean 0.895 0.925 0.911 0.906 0.940 0.941 0.940 0.940 0.940 0.941 0.940 0.940 

Glass 0.682 0.517 0.540 0.514 0.765 0.774 0.771 0.756 0.785 0.798 0.786 0.778 
E. coli 0.860 0.807 0.767 0.770 0.899 0.904 0.900 0.897 0.909 0.914 0.910 0.907 

Pen digits 0.994 0.994 0.994 0.994 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 

Yeast 0.598 0.579 0.538 0.541 0.668 0.699 0.668 0.671 0.668 0.699 0.668 0.671 

 

 

5.3.  Results obtained from using the random forest  ensemble to construct the hybrid model 

This section illustrates and describes the experimental results produced when the RF ensemble 

classifier was utilized as the base classifier to generate the suggested hybrid model. The results are tabulated 

in Table 5. Like the case of DT and SVM classifiers, Boosted-OVO&SMOTE using RF as base classifiers 

produced the best F1-score for most datasets. Moreover, employing RF as the base classifier resulted in 

further performance improvements. More specifically, it achieved the highest F1-score for sixteen out of the 

seventeen datasets considered in the investigation, although for four of those datasets, the OVO&SMOTE 

model achieved the same score. 

Now, to show that Boosted-OVO&SMOTE significantly outperforms OVO and OVO&SMOTE 

hybrid models the Friedman statistical significance test [28] was applied. According to Friedman test 

statistics, there is a significant difference in performance among the hybrid models (X2(2) = 4.5000,  

p = 0.00000). Accordingly, the Nemenyi post-hoc test [29] was employed to identify the superior hybrid 

model. Figure 2 displays the output of the Nemenyi post-hoc test. Note here that to consider one model 

significantly exceeds another, the difference between their calculated average ranks should be greater than or 

equal to a critical difference (CD). From the figure, both Boosted-OVO&SMOTE and OVO&SMOTE 

models perform better than the OVO model, further, the Boosted-OVO&SMOTE hybrid model significantly 

outperforms the OVO&SMOTE hybrid model. 

 

 

Table 5. Results obtained from using the RF ensemble as the base classifier 
Dataset OVO OVO&SMOTE Boosted-OVO&SMOTE 

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 

Abalone 0.757 0.598 0.721 0.614 0.869 0.868 0.869 0.868 0.871 0.870 0.871 0.870 

Contraceptive 0.511 0.484 0.496 0.485 0.621 0.619 0.621 0.618 0.629 0.627 0.628 0.626 

Hayes Roth 0.806 0.853 0.839 0.836 0.837 0.844 0.819 0.810 0.847 0.864 0.847 0.827 
Post-operative 0.673 0.480 0.556 0.506 0.818 0.830 0.824 0.815 0.824 0.843 0.831 0.821 

Thyroid 0.963 0.975 0.932 0.942 0.989 0.990 0.987 0.988 0.989 0.990 0.987 0.988 

Vertebral 0.842 0.812 0.790 0.789 0.907 0.908 0.909 0.906 0.911 0.913 0.912 0.909 
Vehicle 0.766 0.764 0.768 0.762 0.752 0.743 0.754 0.741 0.772 0.763 0.772 0.763 

Car 0.858 0.792 0.766 0.743 0.996 0.996 0.996 0.996 0.998 0.998 0.998 0.998 

Heart 0.556 0.241 0.262 0.242 0.883 0.886 0.888 0.883 0.883 0.886 0.888 0.883 
Nursery 0.818 0.846 0.786 0.774 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 

Page blocks 0.968 0.890 0.825 0.837 0.994 0.994 0.994 0.994 0.994 0.994 0.994 0.994 

Dermatology 0.978 0.979 0.974 0.975 0.989 0.989 0.991 0.989 0.991 0.992 0.991 0.991 
Dry bean 0.730 0.783 0.782 0.751 0.957 0.957 0.957 0.957 0.958 0.958 0.958 0.958 

Glass 0.791 0.700 0.735 0.706 0.923 0.927 0.930 0.922 0.925 0.926 0.930 0.923 

E. coli 0.866 0.776 0.759 0.753 0.960 0.959 0.960 0.958 0.962 0.962 0.963 0.960 
Pen digits 0.988 0.988 0.988 0.988 0.990 0.990 0.990 0.990 0.994 0.994 0.994 0.994 

Yeast 0.588 0.529 0.499 0.500 0.889 0.890 0.889 0.888 0.890 0.891 0.890 0.889 
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Figure 2. The result of the Nemenyi post-hoc test for comparing OVO model, OVO&SMOTE model, and 

Boosted-OVO&SMOTE model 

 

 

5.4.  Comparing the performance of the classifiers utilized to generate the hybrid model 

This section presents a comparison among the base classifiers used to generate the desired hybrid 

model. Figure 3 displays the performance comparison in terms of F1-score for the three considered 

classifiers: i) DT, ii) SVM, and iii) RF classifiers. From the figure, it is obvious that the performance of the 

RF hybrid model outperforms DT and SVM hybrid models for the most considered datasets. More 

specifically, the RF hybrid model achieved the best F1-score for fifteen datasets, while the DT hybrid model 

generated the best F1-score for two datasets (car and nursery). Note that the same result was obtained for the 

car dataset using the DT and RF hybrid models. For only one dataset (pen digits), the SVM hybrid model 

produced the best F1-score. Therefore, the adopted classifier can significantly influence the overall 

effectiveness of the hybrid model. To conduct a precise comparison, the Friedman test was adopted and 

reported a significant difference among the considered models (X2(2) = 21.5224, p = 0.00002). Therefore, the 

Nemenyi post-hoc test was employed to highlight the superior hybrid model. Figure 4 summarizes the output 

of the Nemenyi post-hoc test. From the figure, the RF hybrid model significantly outperforms both DT and 

SVM hybrid models. In addition, no significant difference between the DT hybrid model and the SVM 

hybrid model (connected models in the figure indicate no significant difference). In summary, utilizing RF to 

generate the desired hybrid model provides clear evidence that adopting ensemble classification improves the 

classification effectiveness for the hybrid model. 

 

 

 
 

Figure 3. Comparing the performance of the three considered classifiers utilized to generate the hybrid model 
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Figure 4. The result of the Nemenyi post-hoc test for comparing: RF hybrid model, DT hybrid model, and 

SVM hybrid model 
 

 

6. CONCLUSION 

In this paper, a novel solution to the well-known imbalanced multiclass classification problem 

belonging to the hybrid methods category is presented and illustrated. The primary idea is to combine four 

powerful methods for handling imbalanced multiclass classification to construct a high-performance hybrid 

model. The examined methods include: the well-known SMOTE data-level method, the decomposition 

method, the ensemble method and the boosting method. Regarding the ensemble and decomposition 

methods, these were achieved through the OVO approach, which involves decomposing the multiclass 

problem into multiple binary problems and constructing a tailored classifier for each binary problem. 

Concerning the boosting method, the idea was to identify the less effective classifiers and boost them using 

the bootstrap method. Consequently, our hybrid model is referred to as Boosted-OVO&SMOTE. According 

to the findings, the Boosted-OVO&SMOTE hybrid model significantly outperforms the conventional OVO 

model. Moreover, the suggested model improved classification effectiveness or preserved the same 

performance when compared with the OVO&SMOTE model, this indicates that the model is effective in 

spotting the classifiers that require boosting. In other words, the suggested model will produce better results 

when the binary classifiers within the OVO include relatively “low-performance” classifiers. Moreover, 

utilizing the RF ensemble classifier as a base classifier significantly enhances the overall performance 

compared to using single classifiers. Note that the resulting model is a form of an ensemble of ensembles. 

Three key directions can be considered for future work. The first direction focuses on enhancing the 

scalability of the suggested hybrid model to address big datasets in terms of the number of instances and 

classes. The second direction concentrates on investigating more application domains to evaluate the 

generalization of the hybrid model. The third direction focuses on reducing the model complexity by 

exploring the integration of pruning techniques. 
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