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 This study proposes a backpropagation neural network (BPNN) as an 

alternative solver for nonlinear equations in gas flow simulation through 

porous media. Conventional solvers like the Newton-Raphson (N-R) method 
are accurate but may become inefficient for large-scale or heterogeneous 

systems. We develop a feedforward BPNN architecture with adaptive 

learning rates to solve discretized residual equations from the one-

dimensional gas flow model. The methodology includes finite difference 
discretization and mapping the nonlinear algebraic system into a four-layer 

neural network. The BPNN solver is validated against the Newton method 

across various grid sizes and heterogeneous permeability-porosity 

distributions. Results show that BPNN achieves high accuracy, with 
maximum absolute errors (MAE) of only 0.241 psi in the homogeneous 

model and 0.0418 psi in the heterogeneous model. While the BPNN requires 

more iterations and longer computation time, especially for finer grids, it 

exhibits the ability to learn pressure patterns and improve efficiency over 
time. This approach demonstrates that BPNN can serve as a viable nonlinear 

solver in reservoir simulation, offering flexibility in handling nonlinearities 

while maintaining accuracy. 
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1. INTRODUCTION 

Fossil fuels, particularly those originating from hydrocarbon (oil and gas), remain as the primary 

global source of energy despite the rising use of renewable resources [1]–[3]. To effectively develop the oil 

and gas field, we need to understand how fluids move through the porous medium in the subsurface. In 

addition, the knowledge of fluid flow in porous media also plays an important role in the study of 

groundwater [4]–[6], geothermal energy [7], [8], and CO2 sequestration [9]–[11]. Reservoir simulation is one 

of the fields in petroleum reservoir engineering where numerical computer programs are used to predict fluid 

flow behavior within oil and gas reservoirs. Since this model contains uncertainties, the physical properties of 

rocks and fluids, and initial reservoir conditions can be adjusted as long as they are within reasonable 

engineering limits until a production history match is achieved [12]–[14]. A good history match implies that 

the reservoir model can predict the future behaviour of hydrocarbon production. Therefore, reservoir 

simulation can assist the decision-making process in reservoir management and development as it can 

estimate oil and/or gas recovery under various production scenarios [15]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Due to the nonlinearity of the system of equations in a reservoir simulation, solving it accurately and 

efficiently is a challenging task. A reservoir model is a simplification of the properties of rocks, fluids, and 

their interactions as well as the fluid flow mechanism in the reservoir during production. Reservoir geometry 

can be modeled with various grid shapes, such as regular cartesian, rectilinear, curvilinear, or unstructured. 

Reservoir fluids could be represented by black-oil or compositional models, depending on the number of 

phases and the number of components the modeler is concerned with. The production period is divided into 

several timesteps based on the limit of accuracy to be achieved. We found that the more complex the 

reservoir numerical model and the higher the expected accuracy, the greater the cost and computational time 

to solve it. Thus, our study aims to develop a new approach to accurately solve the nonlinear equations found 

in oil/gas reservoir simulations. 

Artificial neural networks (ANN) have been widely used successfully in modeling nonlinearities in 

many fields [16]–[18]. Among ANNs, backpropagation neural networks (BPNN) are the most popularly used 

neural network models. BPNN is basically a feedforward network trained using the error gradient calculation, 

which is called backward pass. The BPNN network can learn and remember extensive input-output mapping 

relations without requiring prior knowledge of the mathematical equation that defines these relationships. 

The learning rule employs the steepest descent method, utilizing backpropagation to adjust/modify the  

weight to reduce the sum of squared errors. This feature makes BPNN popular for predicting complex 

nonlinear systems. 

Besides BPNN, other ANN methods have also been used in fluid flow studies. Iskandar and 

Kurihara [19] utilize long short-term memory (LSTM) to forecast the produced oil, CO2 and water during the 

carbon capture, utility, and storage (CCUS) operations. Zhang et al. [20] successfully combined Bayesian 

Markov chain Monte Carlo (MCMC) and LSTM to assist the history matching process and capture 

subsurface uncertainty in the 10th SPE comparative model. In the work by Zhang et al. [21], recurrent neural 

network (RNN), LSTM, and gated recurrent unit (GRU) can accurately and effectively predict reservoir 

outflow in water resources. Li et al. [22] proposed a deep neural network (DNN)-based reservoir simulator 

for hydraulic fracturing and validated by simulating 3D synthetic model and unconventional field.  

Santos et al. [23] proposed a 3D convolutional neural network (CNN) that is able to predict fluid flow in 3D 

digital rock images. These methods excel in terms of computational time because they are stand-alone 

models and are not applied to solve nonlinear discrete equations in reservoir simulation. However, the 

aforementioned neural network approaches necessitate a substantial quantity of historical data to forecast a 

limited temporal span, and are comparatively less effective in providing an explanation of the fluid flow 

phenomena occurring within the reservoir. 

Raissi et al. [24] introduced physics-informed neural networks (PINN) which utilises neural 

networks that attempt to obtain continuous solutions of partial differential equations (PDE) by incorporating 

the physics of initial and boundary conditions as the loss function. Ihunde and Olorode [25] demonstrated 

that PINN can incorporate physical constraints without significantly reducing the accuracy of compositional 

model, but require up to millions of unique data in their studies. Han et al. [26] proposed the physics-

informed neural network based on domain decomposition (PINN-DD) which successfully solved the problem 

of large-scale reservoir simulation with limited data, but at a high computational time and cost. Zhang [27] 

came up with physics-informed deep convolutional neural network (PIDCNN), which is more efficient than 

fully connected neural networks, as 2D variables may be treated as images. The primary constraint of 

PIDCNN is its restriction to structured grids, while the method for representing features set up on 

unstructured grids in an image-like format remains unclear. A PINN using a capacitance resistance model 

(CRM) was developed by Maniglio et al. [28] to forecast oil production in reservoirs with waterflooding, 

eliminating the need for a 3D model and ensuring consistency in production data. While ANN and the 

combination of some methods with other types of neural networks have been developed, conventional 

reservoir simulation is still required for various types of reservoir management problems such as optimization 

of infill drilling campaign and application of appropriate enhanced oil recovery (EOR) methods. 

This study aims to harness the nonlinearity modeling capabilities of BPNN to be used as a new 

alternative nonlinear solver in reservoir simulation. This paper is organized as follows: in section 2, the 

governing equations for the 1D gas flow in porous medium, discretization, and workflows for Newton 

method and neural network approach is presented. Section 3 contains the results of the neural network 

approach to solving one-dimensional gas flow in a porous medium, validated by comparing the solutions 

obtained for the Newton method. The effect of learning rate parameters on the computation time and the 

number of iterations is investigated on both homogeneous and heterogeneous model. Section 4 summarizes 

the performance of the proposed neural network-based nonlinear solver in reservoir simulation and provides 

some suggestions for future research. 
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2. METHOD 

2.1.  Model description 

Figure 1 illustrates the one-dimensional model the single-phase gas flow in a porous medium. At 

initial conditions, all cells are assumed to have the identical pressure of 5,000 psi. The Dirichlet condition is 

assigned at the left by keeping the pressure constant, whereas the Neumann condition of no-flow boundary is 

assigned at the right. Other model parameters which related to the simulation are summarized in Table 1. 

 

 

 
 

Figure 1. A one-dimensional model of gas flow in a porous medium 

 

 

Table 1. Model parameters 
Parameters Value 

Temperature 200 

Initial pressure (psi) 5,000 

C1 (%) 100 

Permeability (md) 1, 10-20 (heterogeneous) 

Porosity (fraction) 0.1, 0.1-0.2 (heterogeneous) 

Distance (ft) 1,000 

Duration (day) 6.9 

Δ𝑡 0.0069 

 

 

In one dimension (linear flow), the equations ruling the single-phase gas flow in a porous medium  

is as (1): 
 

𝜕
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where 𝜇 is gas viscosity; 𝑍 is gas deviation factor ; 𝑝 is pressure; 𝑥 is distance in the x-coordinate; 𝑡 is time; 𝜂 

is diffusivity coefficient, equal to 0.00633 𝑘/𝜙, with 𝑘 and 𝜙 is the permeability and porosity, respectively. 

We used the direct correlation of Papay [29] to estimate gas deviation factor, Z, and the correlation of 

Gonzalez et al. [30] to estimate gas viscosity, 𝜇. 

To obtain a numerical solution, (1) is discretized using the finite difference method. The left-hand 

side of (1) relating to space is discretized using centered finite difference, whereas the right-hand side 

relating to time uses forward finite difference, thus resulting in the residual in (2): 

 

𝑟𝑖 = 𝛼𝑖  𝑝𝑖−1
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with coefficients 𝛼, 𝛽 and 𝛾 defined as (3-5): 
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Figure 2 shows the distribution of rock properties to see the effect of reservoir heterogeneity  

on solver performance. The permeability distribution is presented in Figure 2(a), while the porosity 

distribution is shown in Figure 2(b). We used uniform distribution to generate permeability with a range of 

10 to 20 milidarcies, and porosity with a range of 0.1 to 0.2. 
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(a) 

 

 
(b) 

 

Figure 2. Distribution of (a) permeability in 10 (top), 25 (middle), and 50 (bottom) grids, and (b) porosity in 

10 (top), 25 (middle), and 50 (bottom) grids in heterogeneous models 

 

 

2.2.  Newton method 

The Newton-Raphson (N-R) method is one of the most frequently used and efficient techniques in 

solving systems of equations found in mathematical and engineering problems. The N-R method searches for 

the roots of an equation using the tangent line of a curve iteratively until it approaches the solution. The 

residual in (2) can be written in matrix form as 𝐴𝑥 = 𝑏, as stated in (6). 

 

[
 
 
 
 
−𝛽𝑖 𝛾𝑖 0 0 ⋯ 0 0 0
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⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
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  (6) 

 

To update the solution at each iteration, the solution at the previous iteration and the inverse of the Jacobian 

matrix are required in (7). 

 

𝑃𝑘+1 = 𝑃𝑘 − 𝐽−1𝑟(𝑃𝑘) (7) 

 

The Jacobian matrix is a collection of all the first partial derivatives of the residual in (8). 
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 (8) 

 

2.3.  Backpropagation neural networks 

Werbos [31] first proposed the use of chain rules to systematically calculate gradients in neural 

networks, which is the basic concept in backpropagation. Later, Rumelhart et al. [32] popularized the 

backpropagation algorithm by using it to train neural networks with multiple layers. Goulianas et al. [33] 

introduced a method to solve a system of nonlinear algebraic equations by using the backpropagation 

method. For example, for system of equations with 𝑛 equations and 𝑛 unknown variables as (9): 

 

𝑭1(𝑥) = 𝑭1(𝑥1,  𝑥2, … , 𝑥𝑛) = 𝛼11𝑓11(𝒙) + 𝛼12𝑓12(𝒙) + ⋯+ 𝛼1,𝑘1
𝑓1𝑘1

(𝒙) − 𝑏1 = 0  

 

𝑭2(𝑥) = 𝑭2(𝑥1,  𝑥2, … , 𝑥𝑛) = 𝛼21𝑓21(𝒙) + 𝛼22𝑓22(𝒙) + ⋯+ 𝛼2,𝑘2
𝑓2𝑘2

(𝒙) − 𝑏2 = 0  

⋮ 
𝑭𝑛(𝑥) = 𝑭𝑛(𝑥1,  𝑥2, … , 𝑥𝑛) = 𝛼𝑛1𝑓𝑛1(𝒙) + 𝛼𝑛2𝑓𝑛2(𝒙) + ⋯+ 𝛼𝑛,𝑘𝑛

𝑓𝑛𝑘𝑛
(𝒙) − 𝑏𝑛 = 0  (9) 

 

In (9) above is analogous to residual (2). So, for example, the residual for the second grid can be written  

in (10): 

 

𝑟2(𝑃1, 𝑃2, 𝑃3) = 𝐹2(𝑥1, 𝑥2, 𝑥𝑛)  (10) 

 

Hence, we have the following (11): 

 

𝛼2(𝑃)𝑃1 + 𝛽2(𝑃)𝑃2 + 𝛾2(𝑃)𝑃3 = 𝛼21𝑓21(𝑥) + 𝛼22𝑓22(𝑥) + 𝛼23𝑓23(𝑥)  (11) 

 

where 𝑓21(𝑥) = 𝛼2(𝑃)𝑃1;  𝑓22(𝑥) = 𝛽2(𝑃)𝑃2;  𝑓23(𝑥) = 𝛾2(𝑃)𝑃3 and 𝛼21 = 𝛼22 = 𝛼23 = 1. 

 

A neural network architecture with four layers can be formed as shown in Figure 3. The weight 

value connecting the first and second layers is updated iteratively to get the 𝒙 value that is closest to the 

solution. Then, the weight that connects layer 2 to layer 3 represents the function 𝑓(𝒙). While the weight on 

layer 3 to layer 4 puts the 𝛼 coefficient in the equation. The residual equation in (2) does not add a fixed 

constant so that this neural network model does not include bias in the last layer or other layers. The iteration 

process to update the solution is carried out with the following (12): 

 

𝑥𝑘
𝑚+1 = 𝑥𝑘

𝑚 − 𝛽(𝑘)∑ 𝐹𝑙(𝑥)
𝜕𝐹𝑙(𝑥)

𝜕𝑥𝑘

𝑛
𝑙=1   (12) 

 

with 𝛽(𝑘) is the adaptive learning rate parameter at each iteration in (13): 

 

𝛽(𝑘) <
2

∑ (
𝜕𝐹𝑖

𝑚(𝑥)

𝜕𝑥𝑘
)

2
𝑛
𝑖=1

  (13) 

 

The above system of nonlinear equations is similar to the residual equations found in reservoir 

simulations. One neuron in layer 1 has a fixed value of 1. In layer 2, this value is the pressure solution that 

will be solved for each grid so the number of neurons will depend on the number of grids in the model. The 

neurons in layer 3 represent the three terms in the left-hand segment of the residual equation. While the 

neuron in layer 4 is the output layer whose value is expected to be close to zero. Table 2 shows the number of 

neurons in each network layer. 

 

 

Table 2. Number of neurons in each network layer 
Number of grids Number of neurons 

Layer 1 Layer 2 Layer 3 Layer 4 

10 1 10 30 10 

25 1 25 75 25 

50 1 50 150 50 
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Figure 3. BPNN for solving nonlinear equations [33] 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Model validation 

We validated the simulation results by comparing the pressure distribution solution from the 

calculation using the BPNN approach with the solution from the Newton method. Constant pressure at the 

left boundary condition and no flow at the right boundary condition lead to the pressure distribution profile as 

seen in Figure 4. Because the permeability of the heterogeneous model (10-20 md) is relatively higher than 

the homogeneous model (1 md), the pressure drop in the heterogeneous model is much faster. Higher 

permeability facilitates the more efficient movement of fluids through the rock matrix [34], [35]. This 

indicates that fluid can be quickly extracted from the reservoir upon the beginning of production, resulting in 

a more rapid decrease in pressure. At the end of the simulation time of 6.9 days, the pressure at the right end 

drops to 4987 psi and 4962 psi for the homogeneous and heterogeneous models, respectively. Figure 4 shows 

that the pressure solutions on each grid are in good agreement between the pressure points from the BPPN 

approach and from Newton's method in both the homogeneous model in Figure 4(a) and the heterogeneous 

model in Figure 4(b). The lines denote the solution of the Newton method, while the symbols denote the 

solution of the BPNN method. 

 

 

  
(a) (b) 

 

Figure 4. Pressure distribution in (a) homogeneous model and (b) heterogeneous model 
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Figure 5 shows the pressure error increasing over time in both the homogeneous model in  

Figure 5(a) and the heterogeneous model in Figure 5(b). This may be due to the truncation error of the finite 

difference method growing as time progresses [36], [37]. Moreover, finite precision in numerical 

computations causes round-off errors. These small inaccuracies can accumulate over a long simulation and 

affect solution accuracy [38], [39]. To overcome this, some researchers usually use high-order finite 

differences [40], [41] or use smaller time steps during critical parts of the solution [42]. However, it shows 

that the magnitude of the pressure error is very small with maximum absolute error (MAE) of 2.41 × 10−7 

psi and 4.18 × 10−8 psi in the homogeneous and heterogeneous models. This indicates that BPNN produces 

an accurate solution in predicting the pressure distribution in this model. 

 

 

  
(a) (b) 

 

Figure 5. Absolute error of pressures between NN solver and Newton method in (a) homogeneous model  

and (b) heterogeneous model 

 

 

3.2.  Number of iterations 

To achieve an efficient BPNN computation, Goulianas [33] recommends setting the learning rate 

between 0 and 2. Therefore, we compared the learning rate parameter which is a hyperparameter in neural 

networks with values from 0.1 to 0.9 with a range of 0.2. Figure 6 shows the performance of the BPNN 

solver as indicated by the average iterations against the adaptive learning rate parameter on the homogeneous 

model in Figure 6(a) and the heterogeneous model in Figure 6(b). It shows that the iterations required to 

obtain the solution on each timestep increase by using a finer grid. 

Increasing the resolution of the grid results in a greater number of unknowns while solving issues, 

thus increases the size and complexity of the system of equations as well as the dimension Jacobian matrix. 

Nonlinearities in the governing equations may be higher on finer grids. Therefore, addressing these 

nonlinearities may necessitate more iterations, as the approach must continuously linearize and resolve  

the system. 

Moreover, heterogeneous models also are more likely to require a larger number of iterations. The 

heterogeneous model with 50 grids require the highest number of iterations among other models. This may 

because physical variables like permeability and porosity exhibit localized variability, resulting in a more 

complex set of equations to solve. Significant variations in these characteristics might lead to sharp gradients 

that require more iterations [43]. In addition, errors arising at locations with major property differences  

(e.g., boundaries between high- and low-permeability zones) could propagate across the solution domain, 

leading to additional iterations for corrections [44], [45]. 

In each simulation run, we set a tolerance of absolute maximum error of 10−6 psi, so that the 

iterations of the Newton and BPNN methods will continue to run until they reach that limit. Figure 7 

shows the decrease in residual error as iterations progress for the homogeneous model in Figure 7(a) and 

the heterogeneous model in Figure 7(b). It shows that BPNN requires more iterations than Newton method 

in all cases. 

An interesting finding from Figure 7 is that the Newton method requires fewer iterations at the 

beginning of the simulation and then increases. The vice versa is observed for BPNN, where more 

iterations are required at the beginning of the simulation but decrease as the simulation progresses. This 

may be due to the ability of BPNN to learn the pattern of pressure drop so that fewer iterations are 

required at the end of simulation. 
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(a) (b) 

 

Figure 6. Numbers of iteration at several adaptive learning rate parameters (ALRP) in  

(a) homogeneous model and (b) heterogeneous model 
 

 

  

  

  
(a) (b) 

 

Figure 7. The decrease in residuals at each iteration for all case studies of (a) homogeneous model and  

(b) heterogeneous model 
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3.3.  Computation time 

Computation time indicates the efficiency of a nonlinear solver in reaching a solution. Figure 8 

shows the effect of the learning rate parameter on the computation time to reach a converged solution for the 

homogeneous model in Figure 8(a) and the heterogeneous model in Figure 8(b). It shows that the efficiency 

of the BPNN method is affected by the learning rate which is set on the network. In general, a learning rate of 

0.1 requires the most computation time compared to the others in all cases. The computation time will 

decrease as the learning rate increases until a certain point where increasing the learning rate will increase the 

computation time. The learning rate determines the size of the steps taken in the training process of the neural 

network, especially in minimizing the loss function [46]. A small learning rate can avoid the risk of 

overshooting but consequently takes more time. While, a large learning rate can speed up the convergence 

rate but has the risk of overshooting. In the homogeneous model, it was found that the optimum learning rate 

is 1.1, 1.3, and 1.9 for the number of grids 10, 25 and 50. While in the heterogeneous model, the optimum 

learning rate is at 1.1, 1.7, and 1.9 for the number of grids 10, 25, and 50. 

 

 

 
(a) (b) 

 

Figure 8. Computation time for (a) homogeneous model and (b) heterogeneous model 

 

 

Table 3 shows that BPNN is not as efficient as Newton method in solving the single-phase gas flow 

in this study. On homogeneous models, the computation time of BPNN is about double that of Newton 

method. Meanwhile, the difference in computation time increases non-linearly in the heterogeneous model. 

The difference is about 1.5 times in the heterogeneous model with 10 grids, while it is 10 times in the model 

with 50 grids. The inefficiency of BPNN may be due to the nature of BPNN which involves forward pass and 
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backward pass so that the calculation is expensive [47]. Moreover, the flow model in this study is relatively 

simple since it is only one phase and involves only about a dozen grids where Newton method is known for 

its efficiency on small problem dimensions [48]. 

We examined computational performance at various Δt values: 0.0138s, 0.0069s, and 0.000345s. 

Reducing time-step sizes (Δ𝑡) increase computational costs for both methods across all models and grid 

resolutions. For example, in the homogeneous model with 50 grids, the Newton method takes 30.5 seconds 

for Δt =  0.0138s, 45.5 seconds for Δt = 0.0069s, and 69.9 seconds for Δt = 0.000345s. Increasing the 

number of grids significantly increases computational time for both methods. This effect is more pronounced 

in the BPNN approach. For instance, in the homogeneous model with Δt = 0.0138s, BPNN takes  

4.3 seconds for 10 grids but 178.9 seconds for 50 grids. The performance gap between Newton and BPNN is 

more pronounced in models with higher grid resolutions and smaller time steps. For example, in the 

heterogeneous model with 50 grids and Δt = 0.0069s, the Newton method takes 90.4 seconds compared to 

610.9 seconds for BPNN. The computational times for the heterogeneous model are typically longer than 

those for the homogeneous one, indicating the greater complexity involved in solving heterogeneous grids. 

For example, at Δ𝑡 = 0.0138𝑠 and 50 grids, the Newton method requires 30.5 seconds for the homogeneous 

model and 63.3 seconds for the heterogeneous model. In addition, the difference in computation time also 

looks nonlinear as shown in Table 4. 

 

 

Table 3. Computation time for BPNN approach and Newton method 
Model Computational time (seconds) 

Δ𝑡 = 0.0138 s Δ𝑡 = 0.0069 s (base case) Δ𝑡 = 0.000345 s 

Newton BPNN Newton BPNN Newton BPNN 

Homogeneous       

10 grids 2.3 4.3 3.8 7.9 7.3 16.7 

25 grids 8.9 23.5 14.8 30.7 24.5 66.9 

50 grids 30.5 178.9 45.5 172.3 69.9 518 

Heterogeneous       

10 grids 3.3 6.1 6.2 8.1 12.6 19.5 

25 grids 15.1 76.1 22.5 73.2 36.6 198.4 

50 grids 63.3 547.99 90.4 610.9 104.1 496.6 

 

 

Table 4. Relative computational time of BPNN with Newton method 
Model Δ𝑡 = 0.0138 s Δ𝑡 = 0.0069 s (base case) Δ𝑡 = 0.000345 s 

Homogeneous    

10 grids 1.8 2 2.2 

25 grids 2.6 2 2.7 

50 grids 5.8 3.7 7.4 

Heterogeneous    

10 grids 1.8 1.3 1.5 

25 grids 5 3.2 5.4 

50 grids 8.6 6.7 4.7 

 

 

4. CONCLUSION 

This research presents a novel method for solving nonlinear equations in reservoir simulation based 

on BPNN. The study successfully demonstrates the solver's ability to produce highly accurate solutions, 

which were verified against the classic Newton method. The pressure solutions achieved a MAE of only 

2.41 × 10−7 psi and 4.18 × 10−8 psi for homogeneous models and heterogeneous models, respectively. 

However, a detailed performance analysis reveals that the BPNN solver, in its current form, is less 

computationally efficient than the Newton method for the problems studied. Regarding computation time, the 

BPNN approach was approximately twice as slow for homogeneous models. This performance gap widened 

non-linearly for more complex, heterogeneous models, where the BPNN solver was between 1.5 to 10 times 

slower, depending on the grid resolution. The number of grids, rock heterogeneity, and the adaptive learning 

rate parameter heavily influence the solver's efficiency. The simulation results showed that while the BPNN 

method required more iterations overall, it exhibited a learning behavior; the iteration needed in each time 

step decreased over the simulation time, in contrast to the Newton method. This suggests that the network 

adapts to the solution's pattern over time. The selection of an optimal learning rate was also critical, as it 

significantly impacted convergence speed and computational cost. Further research should test the BPNN 

method on more complex fluid models and investigate different network architectures and optimizations to 

improve its efficiency for larger simulations. 
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