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 A plethora of national vital infrastructures connected to internet of things 

(IoT) networks may trigger serious data security vulnerabilities. To address 

the issue, intrusion detection systems (IDS) were investigated where the 
behavior and traffic of IoT networks are monitored to determine whether 

malicious attacks or not occur through centralized learning on a cloud. 

Nonetheless, such a method requires IoT devices to transmit their local 

network traffic data to the cloud, thereby leading to data breaches. This 
paper proposes a federated learning (FL)-based IDS on IoT networks aiming 

at improving the intrusion detection accuracy without privacy leakage from 

the IoT devices. Specifically, an IoT service provider can first motivate IoT 

devices to participate in the FL process via a contract-based incentive 
mechanism according to their local data. Then, the FL process is executed to 

predict IoT network traffic types without sending IoT devices’ local data to 

the cloud. Here, each IoT device performs the learning process locally and 

only sends the trained model to the cloud for the model update. The 
proposed FL-based system achieves a higher utility (up to 44%) than that of 

a non-contract-based incentive mechanism and a higher prediction accuracy 

(up to 3%) than that of the local learning method using a real-world IoT 

network traffic dataset. 

Keywords: 

Contract theory 

Federated learning 

Incentive mechanism 

Internet of things 

Network security 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Wahyono 

Department of Computer Science and Electronics, Faculty of Mathematics and Natural Sciences 

Universitas Gadjah Mada 

Yogyakarta, Indonesia 

Email: wahyo@ugm.ac.id 

 

 

1. INTRODUCTION 

The growing popularity of internet of things (IoT) networks pose new challenges to data security 

and privacy. Specifically, national vital infrastructures linked to the IoT networks, such as transportation, 

energy, and healthcare systems, can be vulnerable to cyber-attacks that may lead to damaging consequences 

for national security and the well-being of society. For that, the IoT network security enhancement is crucial 

for national vital infrastructures through protective measures such as the adoption of intrusion detection 

systems (IDS), data encryption, and regular security updates to reduce risks and boost infrastructure 

resilience [1], [2]. 

One solution to improve the IoT network security for vital infrastructure protection is the development 

of automatic IDS at the centralized cloud server deployed by IoT service providers (ISPs) [3]. Here, the use of 

machine learning (ML) using deep learning (DL) approaches for IDS implementation in the cloud server has 

been widely investigated. For example, the works in [4]–[10] propose network attack classification based on 

https://creativecommons.org/licenses/by-sa/4.0/


Int J Artif Intell  ISSN: 2252-8938  

 

Contract-based federated learning framework for intrusion detection system in … (Yuris Mulya Saputra) 

3325 

deep neural networks (DNN) utilizing various network traffic information datasets with different capture times. 

Specifically, the authors in [4], [5] discuss a DNN-based IDS to classify malware to notify users about potential 

attacks. Using Apache Spark, Mighan and Kahani [6] investigates the comparison of IDS between the proposed 

DL method and several linear ML methods. Then, an adaptive DNN-based IDS framework is proposed in [7], 

aiming at classifying network attacks. To tackle the unsupervised feature learning, a non-symmetric deep  

auto-encoder for network IDS is studied in [8], [9]. Moreover, Zhong et al. [10] introduces a hierarchical DL 

leveraging behavior and content features to recognize the network traffic attacks.  

The use of DL approach for IDS scenario is then extended to IoT network-based applications. For 

example, a DL-based IDS using feed-forward neural networks (FNN) for binary and multi-class traffic flow 

classification in packet level of IoT devices is investigated in [11]. Otoum et al. [12] proposes a DL-based 

IDS utilizing stacked-deep polynomial network to obtain optimal security risk detection. Then, an IoT-based 

IDS to reveal distributed denial-of-service botnet attacks using DNN approach is investigated in [13]. 

Furthermore, an anomaly-based IDS to classify attacks using convolutional neural networks (CNN)-based 

approach for IoT networks is studied in [14]. Elnakib et al. [15] extends the previous work to cover the multi-

class categorization using anomaly-based attack datasets for the IoT networks. Nonetheless, all of these 

studies are using the centralized learning process at the cloud server. In this case, sending network traffic data 

from IoT devices to the cloud server for the centralized learning may trigger to other issues such as data 

traffic breaches and privacy leakage of the IoT devices. As the alternative solution, each IoT device can 

process the network traffic data locally, however, this IDS approach will not achieve high intrusion detection 

accuracy due to limited local data and computational constraints on IoT devices [16].  

The development of edge computing and distributed ML [17], [18] can be used to automatically detect 

intrusions from IoT devices without compromising privacy. For that, a federated learning (FL) approach has 

emerged as one of the most potential solutions to achieve that goal. Specifically, each IoT device executes the 

learning process locally and only sends the trained model to the cloud for the model update without sharing the 

IoT device’ local data. The use of FL has been investigated in [19]–[24]. Particularly, the work in [19], [20] 

propose an IDS using FL with attention gated recurrent unit (through eliminating insignificant trained model to 

the cloud) and conventional DL method, respectively. Then, an FL-based IDS to tackle cyberattacks using 

DNN, CNN, and recurrent neural networks (RNN) for agricultural IoT environment is discussed in [21]. Using 

non-independent and identically distributed security attacks data, Alcazar et al. [22] incorporates FL via 

FedAvg and Fed+ approaches for IDS in an industrial IoT setting. Another performance comparison between 

FedProx and FedAvg methods for distributed network IDS is investigated in [23]. According to Oliveira et al. 

[24], an FL-enabled IDS with asynchronous learning using binary and multi-class classification is also 

introduced. Nevertheless, these studies utilize outdated network traffic datasets. They also do not consider the 

economic aspect of the system participating in the learning process (due to the selfishness characteristic of IoT 

devices). In other words, the above system will not work unless IoT devices are motivated to join in the FL 

processes. Therefore, the use of incentives as a reward for IoT device participation is required. 

To address the aforementioned problem, in this paper, an integrated FL-based IDS framework with 

contract-based incentive mechanism for an IoT network is proposed. This aims to predict network traffic 

types (i.e., normal patterns or attack patterns) with high accuracy while maximizing utility for the whole IoT 

network in the FL processes. Specifically, an ISP can first motivate a set of IoT devices in the considered 

area to join the FL processes. Here, the ISP can provide incentive mechanism for the IoT devices by solving 

a contract optimization problem that maximizes the utility for the ISP and the IoT devices. This optimization 

will produce a set of optimal contracts containing performance and reward for the IoT devices. The ISP then 

offers the optimal contracts to the IoT devices in which they can receive or reject the offered contracts 

according to their decisions. In this way, the IoT devices that receive the contracts can participate in the FL 

processes. For the FL process, each participating IoT device can first execute the training process locally 

using its local network traffic data. Then, the trained model from the training process can be shared to the 

ISP’s cloud for the global network traffic model update without revealing any private information of the IoT 

devices. Through experimental results using a real-world IoT network traffic dataset, the proposed  

contract-based FL framework can obtain a higher utility (up to 44%) than that of non-contract-based 

incentive mechanism and a higher prediction accuracy (up to 3%) than that of the local learning method. In 

the following, the details of contract-based incentive mechanism and FL approach between the ISP and IoT 

devices are discussed. Then, extensive comparisons in terms of utility, validation accuracy, validation loss, 

and learning performances are presented. 

 

 

2. METHOD 

Let 𝒩 = {1, … , 𝑛, … , 𝑁} is the set of IoT devices and assume that a cloud-based ISP is connected to 

N IoT devices via Wi-Fi or cellular networks in the considered IoT network for a certain period. Here, the 

ISP utilizes a huge computing resource while the IoT devices have limited computing resources. To predict 
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network traffic types of IDS with high accuracy while maximizing utility for the whole IoT network in the 

FL processes, two approaches are investigated. Particularly, an incentive mechanism based on a contract 

theory approach between the ISP and participating IoT devices is first designed. This is carried out by 

formulating a contract optimization problem to find the optimal contracts containing performance in terms of 

quantity and quality of IoT network traffic data from each IoT device. This optimal IoT network traffic data 

is then used as the input data for the learning processes through using the FL approach without sharing any 

sensitive data of the IoT devices. The whole model architecture is shown in Figure 1.  

 

 

 
 

Figure 1. The model architecture of the proposed IDS in the IoT network 

 

 

2.1.  Contract-based incentive approach 

Figure 2 shows the procedures for contract-based incentive and FL approach for the IDS in the IoT 

network. In this context, contract-based incentive mechanism is implemented to motivate IoT devices with 

high quantity and quality local network traffic data in joining the FL process, aiming at producing  

high-accuracy IDS. This incentive mechanism is based on the contract theory, an economic approach that 

balances the utilities of the ISP and IoT devices in the FL process under information asymmetry [25]. To this 

end, the ISP works as a principal which offers the contracts to the IoT devices as observed in Figure 2(a). 

Meanwhile, the participating IoT devices act as agents that have rights to receive or reject the offered 

contracts. As the principal, the ISP will provide incentives to the IoT devices as part of the contracts in return 

for their participation in the FL process. An IoT device that participates more in the FL process will receive 

more incentives from the ISP. Nonetheless, due to the information asymmetry between the ISP and IoT 

devices (i.e., the ISP does not know the preferences as well as network traffic data quality and quantity of the 

IoT devices due to their privacy), the ISP will only obtain the general information from the IoT devices, e.g., 

IoT device specification and resource information [26]. 

After the general information is collected from the IoT devices, the ISP can perform the FL contract 

optimization that maximizes utilities of the ISP and IoT devices. Specifically, the ISP first divides the IoT 

devices into N types. This type represents the willingness of an IoT device to participate in the FL process 

considering its network traffic data quality and quantity. Let β𝑛 denote an IoT device with type-n, in which 

β1 < ⋯ < β𝑛 < ⋯ < β𝑁, n ∈ {1, … , N}. The larger β𝑛 reflects the higher willingness to participate in the FL 

process due to the higher incentive (at the expense of higher data quantity and quality) [26], [27]. In this case, 

the ISP does not have any knowledge of the true type of each participating IoT device in the FL process. 

However, the ISP knows the likelihood that an IoT device belongs to a type-n from prior activities of the IoT 

devices [26] such that ∑ ρ𝑛
𝑁
𝑛=1 = 1, where ρ𝑛 is the probability of IoT device with type-n. 

Next, the FL contract optimization problem can be formulated with the aim to maximize the utility 

of the ISP in the FL process, in addition to the utility of IoT devices. First, the utility of the ISP that employs 

an IoT device with type-n can be expressed as the combination between the benefit and cost functions in 

executing the FL process as (1): 

 

μ𝑛
𝐼𝑆𝑃 = α𝑋𝑛 − σ𝑌𝑛 (1) 
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Where α𝑋𝑛 indicates the benefit function for the ISP with α >  0 is a conversion variable that implies the 

monetary unit of the IoT network traffic data quantity and quality 𝑋𝑛 [28]. Meanwhile, 𝑌𝑛 is the incentive for 

the participating IoT devices and σ represents unit cost of the incentive. Since there exists N types of the 

participating IoT devices with probability ρ𝑛 , ∀ 𝑛 ∈ 𝒩, then the expected utility of the ISP can be 

formulated in (2). 

 

μ𝐼𝑆𝑃 = ∑ μ𝑛
𝐼𝑆𝑃ρ𝑛

𝑁
𝑛=1  (2) 

 

Second, the utility of an IoT device with type-n that also contains the benefit and costs functions can be 

defined as (3). 

 

μ𝑛
𝐼𝑜𝑇 = β𝑛γ(𝑌𝑛) − η𝑋𝑛 (3) 

 

Where γ(Yn) = √𝑌𝑛 is a strictly increasing concave benefit function with γ(0) = 0, γ′(𝑌𝑛) < 0, γ′′(𝑌𝑛) < 0, ∀𝑌𝑛 

[27]. Additionally, η corresponds to the computation and memory costs for the IoT device with type-n in 

training its local network traffic data in the FL process. 

To obtain the contract feasibility, each offered contract package, i.e., (𝑋𝑛 , 𝑌𝑛), ∀𝑛 ∈ 𝒩, must meet 

individual rationality (IR) and incentive compatibility (IC) constraints [25], [27]. The IR constraints 

guarantee that an IoT device with type-n will obtain the utility that is greater than or equal to zero as 

described as (4). 

 

μ𝑛
𝐼𝑜𝑇 = β𝑛γ(𝑌𝑛) − η𝑋𝑛 ≥ 0, ∀𝑛 ∈ 𝒩 (4) 

 

Meanwhile, the IC constraints ensure that all IoT devices only accept contract packages designed for their 

respective types under the presence of information asymmetry, as given in (5). 

 

βnγ(Yn) − ηXn ≥  βnγ(Ym) − ηXm,  m  ≠ n,  ∀m,  n ∈ 𝒩 (5) 

 

To this end, the FL contract optimization problem that maximizes the expected utility of the ISP under the IR 

and IC constraints of the IoT devices can be formulated by (6). 

 

max
(X,Y)

∑ μn
ISPρn

N
n=1  (6) 

 

Subject to the IR, IC, and monotonicity constraints as shown in (7) to (9). 

 

β𝑛γ(𝑌𝑛) − η𝑋𝑛 ≥ 0, ∀𝑛 ∈ 𝒩 (7) 

 

βnγ(Yn) − ηXn ≥  βnγ(Ym) − ηXm,  m  ≠ n,  ∀m,  n ∈ 𝒩 (8) 

 

β1 < ⋯ < β𝑛 < ⋯ < β𝑁, n ∈ {1, … , N} (9) 

 

Where 𝑋 = [𝑋1, … , 𝑋𝑛 , … , 𝑋𝑁] and 𝑌 = [𝑌1, … , 𝑌𝑛 , … , 𝑌𝑁]. Using the same method as in [26]–[28], the 

optimal contracts (𝑋∗, 𝑌∗) can be found through simplifying the IR and IC constraints such that the problem 

becomes (10). 

 

max
(X,Y)

∑ μn
ISPρn

N
n=1  (10) 

 

Subject to the monotonicity condition in (9), and the simplified IR and IC constraints as given in (11) to (12). 

 

β1γ(𝑌1) − η𝑋1 = 0 (11) 

 

𝛽𝑛𝛾(𝑌𝑛) − 𝜂𝑋𝑛 =  𝛽𝑛𝛾(𝑌𝑛−1) − 𝜂𝑋𝑛−1,  ∀𝑛 ∈ 𝒩 (12) 

 

2.2.  Federated learning approach 

Upon obtaining the optimal contract packages (𝑋∗, 𝑌∗) for all participating IoT devices, the learning 

process using FL between the ISP and the participating IoT devices in 𝒩 that accept the offered optimal 

contracts can be executed and illustrated in Figure 2(b). Specifically, for each learning round, IoT devices first 

train their individual network traffic data locally and then only send the trained IDS models to the ISP’s cloud 
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within a pre-defined limited period, ensuring the data privacy of the IoT devices. To obtain the global IDS 

model, the ISP’s cloud can aggregate all the received trained IDS models and use this aggregated IDS model 

to update the current global IDS model. Here, the current global IDS model is used for the next learning FL 

iteration process by the cloud and the IoT devices. This process repeats until the global IDS model converges 

or the learning duration reaches the specified deadline time. Hence, using a such FL approach, the accuracy of 

IDS in the IoT network can be improved while preserving private information and reducing communication 

overhead (since IoT network traffic data is typically much larger than the training model) in the FL process. 

To implement the DL process in the FL process, a DNN approach [29] is employed. Particularly, 

input data containing tabular data with many samples and training features (such as packet type, service, 

protocol, and other relevant network traffic features) along with training labels, i.e., network traffic pattern, is 

first collected from the real network traffic activity on each IoT device. To reduce the complexity of the 

learning process, the feature selection process using the correlation between features and label is then 

executed. In this case, the features with the correlation value less than 0.1 can be dropped from the training 

process. Upon selecting the relevant features, the input data is fed into the DNN on each IoT device. Here, 

the DNN model includes an input layer, several hidden layers with activation functions, some dropout layers, 

and the output layer with an output activation function for the network traffic pattern classification. Once the 

DNN model is created on each IoT device, the IoT device can perform the learning process locally to 

generate a trained model γ𝑛
𝑡 , where n is the index of IoT device and t is the iteration of FL process. The 

aggregation of trained models then leads to the global IDS model 𝐺𝑡 that can be expressed as (13). 

 

𝐺𝑡 =
1

𝑁
∑ γ𝑛

𝑡𝑁
𝑛=1  (13) 

 

Using the global model 𝐺𝑡, each IoT device can perform the next iteration’s training process to obtain 

𝐺𝑡+1, 𝐺𝑡+2, … , 𝐺∗. The final 𝐺∗, which is the final global IDS model, is then used to validate the accuracy of 

IDS using new network traffic data generated by the IoT devices for other periods. 

 

 

  
(a) (b) 

 

Figure 2. The procedures for (a) contract-based incentive and (b) FL approach for the IDS in the IoT network 

 

 

3. RESULTS AND DISCUSSION 

To evaluate the superiority of the proposed contract-based FL framework, a real-time IoT network 

traffic dataset from UCI Machine Learning Repository [30] that contains 83 features and 100K samples with 

normal and attack network activities. These samples are divided into subsamples according to the number of 

participating IoT devices. For the incentive mechanism, the proposed contract-based FL system is compared 

with the information symmetry (i.e., the ISP completely knows the true type of IoT devices) and the baseline 

method (i.e., the ISP provides the proportional incentive for the participating IoT devices). In this case,  

10 participating IoT devices are considered to receive the optimal contracts that corresponds to 10 types of 

IoT devices. 

Next, the FL process is then implemented using the DNN model with TensorFlow NVIDIA T4 

Tensor Core GPU. Particularly, three hidden layers with rectified linear unit (ReLU) activation function, two 

dropout layers, and an output layer with SoftMax activation function are employed. To further show the  

FL performance, the proposed framework is compared with the centralized learning (i.e., DNN global) and 

the local learning (i.e., DNN local). Additionally, 2-label and 12-label scenarios are used. Specifically,  
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2-label scenario includes the 2 types of normal and attack patterns. Meanwhile, 12-label scenario contains the 

real network traffic patterns such as DOS_SYN_Hping, ARP_poisioning, NMAP_UDP_SCAN, 

NMAP_XMAS_TREE_SCAN, NMAP_OS_DETECTION, NMAP_TCP_scan, DDOS_Slowloris, 

Metasploit_Brute_Force_SSH, NMAP_FIN_SCAN, MQTT, Thing_speak, Wipro_bulb_Dataset, Amazon-

Alexa. Additionally, a different number of participating IoT devices is also considered. 
 

3.1.  Utility performance 

Prior to evaluating the FL performance, the utility performances of the ISP and participating IoT 

devices based on the contract theory are first demonstrated as shown in Figure 3. Particularly, as shown in 

Figure 3(a), the ISP always obtains positive utility for IoT device with type 1 to 10. This proves that the IR 

constraints are satisfied for all types of the IoT devices. Additionally, the utility of the ISP follows an 

increasing function regarding the types of IoT devices. This is because the IoT device with a higher type has 

more willingness to join the FL process, thereby leading to higher utility of the ISP in terms of the global IDS 

model accuracy. 

Moreover, the ISP’s normalized utility of proposed contract-based system is between the 

information-symmetry and baseline mechanisms, i.e., at 0.28 when IoT device has type 10. In this case, the 

information-symmetry mechanism acts as the upper-bound solution since the ISP completely knows the types 

of all IoT devices. As a result, the ISP can maximize its utility at the expense of zero utilities for all the 

participating IoT devices, as illustrated in Figure 3(b). Next, it can be observed in Figures 3(a) and 3(b) that 

the proposed contract-based system can achieve utility of the ISP and utility of IoT devices up to 44 and 

572% higher than those of the baseline mechanism, respectively. This is due to the non-contract mechanism 

in which the participating IoT devices will receive linear/proportional incentives for their contributions in the 

FL process. From Figure 3, it can be summarized that the total utility of the ISP and IoT devices for the 

proposed framework is close to that of the ISP and IoT devices for the information-symmetry scheme as the 

upper bound solution. This indicates that the proposed contract-based framework is suitable for the FL 

process through balancing the utility performance of the ISP and participating IoT devices effectively [31]. 
 

 

  
(a) (b) 

 

Figure 3. Normalized utility performance for (a) the ISP and (b) participating IoT devices 
 

 

3.2.  Learning performance 

According to the optimal contracts that maximize utility of the ISP and IoT devices in section 3.1, 

the accuracy and loss performance comparisons can then be evaluated when 10 IoT devices participate in the 

FL process. Specifically, when various numbers of labels are used as shown in Table 1, the 2-label scenario 

outperforms all the performances of the 12-label scenario. Here, both training and validation accuracy of  

2-label scenario achieves more than 2% better than those of 12-label scenario. This is because the 12-label 

scenario may suffer from misclassification due to many classes. This result also aligns with the loss 

performance where the training and validation losses of the 2-label scenario reach 7 times and 3 times better 

than those of the 12-label scenario, respectively. 

When different approaches are used as observed in Table 2, the accuracy performance of the 

proposed FL framework, i.e., DNN FL, are between the DNN global and DNN local. In particular, the DNN 

global can achieve the accuracy that is slightly higher than that of the DNN FL by 1%. The reason is that the 

DNN global acts as the upper bound where all the network traffic data is trained at the cloud of the ISP. 

Nonetheless, this method may lead to the privacy leakage of the IoT devices when the cloud collects their 

local network traffic data. In contrast, the DNN FL can outperform the accuracy performance of the local 

learning or DNN local by approximately 3%. This is due to the insufficient network traffic data which is 

trained at the IoT device locally without any collaboration with the other IoT devices. 

To further show a more practical scenario, different number of participating IoT devices is executed. 

In this case, the number of IoT devices varies from 5 to 20 devices. As shown in Table 3, the proposed FL 

can slightly produce a higher validation accuracy and a lower loss when 10, 15, and 20 number of IoT 
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devices are deployed. This implies that more participating IoT devices with more network traffic data and 

sufficient data quality can improve the accuracy and loss performances. 
 

 

Table 1. The FL performances for different number of labels with 10 IoT devices 
Number of labels Training accuracy (%) Validation accuracy (%) Training loss Validation loss 

2 98.6 98.4 0.043 0.039 

12 97.13 97.5 0.091 0.125 

 

 

Table 2. The FL performances for proposed and other approaches with 2 labels and 10 IoT devices 
Method Training accuracy (%) Validation accuracy (%) Training loss Validation loss 

DNN global 99.61 99.64 0.011 0.016 

DNN FL  98.6 98.4 0.043 0.039 

DNN local 98.4 95.4 0.067 0.372 

 

 

Table 3. The FL performances for various number of IoT devices with 2 labels 
Number of IoT devices Training accuracy (%) Validation accuracy (%) Training loss Validation loss 

5 98.5 98.37 0.043 0.038 

10  98.6 98.4 0.043 0.039 

15 98.6 98.4 0.042 0.038 

20 98.43 98.42 0.045 0.043 

 

 

To show the performances of the above scenarios in more detail, the validation accuracy and loss for 

50 learning rounds are studied. This can be observed clearly in Figures 4 to 6 that although the accuracy and 

loss gaps are high at the beginning of the FL process, the difference gets lower when more learning rounds 

are conducted. Particularly, both 2-label and 12-label scenarios in Figure 4 and various number of IoT 

devices scenarios in Figure 6 can achieve the accuracy convergence after 30 and 25 learning rounds, 

respectively. Additionally, there exists a performance anomaly for the DNN local in Figure 5 where its 

validation loss suffers from overfitting, i.e., the validation loss keeps increasing. This is because the training 

process generates a simple trained model (with limited local network traffic data due to inherent restricted 

storage and resources at the IoT device), thereby leading to the overfitting for the testing/validation process.  
 

 

 
 

Figure 4. The validation accuracy and loss performances for various number of labels 
 

 

 
 

Figure 5. The validation accuracy and loss performances for various learning methods 
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Figure 6. The validation accuracy and loss performances for different numbers of IoT devices 

 

 

4. CONCLUSION 

This paper presents a contract-based FL framework for IDS in the IoT network to improve the 

intrusion detection accuracy without privacy leakage from the IoT devices. Particularly, the ISP can first 

drive the IoT devices in the considered network to join the FL process through employing the contract-based 

incentive mechanism based on their local data quality and quantity. In this case, the ISP is required to address 

the contract optimization problem aiming at obtaining the optimal contracts. Using the optimal contracts for 

joining IoT devices, the FL process is then implemented to predict IoT network traffic types. Here, each IoT 

device conducts the learning process locally and only sends the trained model to the cloud for the model 

update. Through experimental results using the real-world IoT network traffic dataset, the proposed FL-based 

system can produce 44% higher utility than that of the baseline method and prediction accuracy by 98.4%, a 

3% higher than that of the local learning method. 
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