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This paper proposes a novel data analysis framework that integrates deep
learning with a binary neuro-fuzzy algorithm to address the problem of fault
localization in smart power grids. In the first stage, a long short-term
memory (LSTM) network is employed to train data samples collected from
smart meters. The resulting learned features are subsequently utilized by an
adaptive neuro-fuzzy inference system (ANFIS) for accurate fault detection
and classification. Through this intelligent hybrid approach, multi-phase
faults can be efficiently identified using a limited amount of data. The
proposed method distinguishes itself by its capacity to rapidly train and test
large datasets while maintaining high computational efficiency. To evaluate
the performance of the model, an advanced simulation of the IEEE 123-node
test feeder is conducted. The robustness and effectiveness of the proposed
framework are validated using multiple performance metrics, including
precision, recall, accuracy, Fl-score, computational complexity, and the

ROC curve. The results demonstrate that the proposed deep learning—based
model significantly outperforms existing approaches in the literature,
achieving a fault detection and classification precision of 99.99%.
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1. INTRODUCTION

In the previous few years, there have been significant transformations in electrical networks,
resulting in the emergence of a new generation of networks known as the smart grid. The rapid evolution of
technology and the rising requirement for sustainable energy solutions have spurred the rise of smart grids.
The incorporation of intelligent grid technologies in urban environments offers numerous advantages,
including enhanced energy efficiency, reliability, and eco-friendliness [1]. Real-time bidirectional
communication is readily available at each stage, encompassing power generation, and distribution systems
in a smart grid [2]. The smart grid presents a significant chance for energy distributors to improve the system,
guaranteeing uninterrupted access to electrical energy while simultaneously cutting down on field operation
expenses [3]. Energy distributors have been actively installing numerous smart meters to utilize the collected
data for efficient demand management and to develop such a system. To this day, the data is gathered every
month through the meters. However, by incorporating advanced meter infrastructure (AMI), the meters are
now capable of capturing data at intervals as frequent as every 15 to 30 minutes. As a result, this data can
accumulate to the terabit scale [4]. Furthermore, the information is gathered from intelligent sensors,
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advanced meters, and the supervisory control and data acquisition (SCADA) system to guarantee the efficient
transmission of data to energy consumers and distributors [5]. The gathering and examination of this data
will enable the extraction of crucial information for the strategic planning of activities within the intelligent
distribution system and the upkeep of essential electrical machinery [6]. The utilization of data analytic
machine learning and deep learning techniques is imperative for the efficient training and testing of the
substantial volume of data obtained from smart meters.

Numerous researches have been conducted on data analytics within intelligent power grids [7].
Bano et al. [8] employed smart electrical network data analysis techniques to detect disturbances using
phasor measurement units (PMUs). The utilization of this algorithm could potentially lead to a decrease in
data volume, resulting in the extraction of meaningful information from the dataset. Researchers introduced
an Apache spark framework designed for embedded computing in the context of data analysis in smart power
grid environments [9]. Ahmed ef al. [10] created a bidirectional communication network connecting multiple
residences using client agents within the transformer agents. The evaluation of the precision of these models
was assessed through the utilization of error coefficients.

An et al. [11] employed a reinforcement deep learning model to identify instances of data attacks in
AC electrical grids. The findings from the simulation indicate a limited ability to detect attacks when the
model is being implemented. Liao and Anani [12] was developed a neural network for the purpose of
identifying deficiencies in voltage sag. The complexity identification is constrained by this approach.
The utilization of homomorphic encryption-based data aggregation and blockchain was suggested in [13] to
enhance data security while maintaining a high level of training time efficiency. A machine learning
algorithm has been used to identify the exposure of urban areas to specific seismic hazards [14], as well as to
discriminate between different types of artificial seismic sources [15]. According to Abdalzaher ef al. [16], a
trust model based on a deep auto-encoder (AE) is employed to identify attacks in IoT systems with the
assistance of cognitive radio. Furthermore, Moustafa et al. [17] presents the implementation of an optimized
regression model to predict ground vibrations caused by blast-driven activities. In a smart grid, the prediction
of solar generation is accomplished using an intelligent model, as demonstrated in [18].

Deep learning techniques such as convolutional neural network (CNN) have the capability to identify
anomalies within electrical grids. In a study conducted by Diaba et al. [19], the implementation of CNN,
gated recurrent unit (GRU), and long short-term memory (LSTM) models was carried out to detect physical
cyber-attacks in the smart grid and SCADA metering infrastructure. This model must consider numerous
parameters within a network environment. Simultaneously, the adaptive neuro-fuzzy inference system (ANFIS)
model was studied to identify and categorize faults within a smart grid.

The primary contribution of this study can be outlined as follows:

—  Various deep learning techniques for analyzing smart grid data have been consolidated in our research.
We have outlined the capabilities and constraints of each method in detail.

—  We have introduced an innovative integrated deep learning framework using ANFIS and LSTM to
identify and categorize various faults within a smart grid by analyzing data collected from smart meters.

—  The efficacy of the suggested model was also assessed through the examination of various metrics
including accuracy, loss curve analysis, Fl-score, ROC analysis, model complexity, precision-recall
evaluation, and calibration assessment.

The rest of this work is organized as follows: section 2 outlines the experimental setup used and the
deep learning methods employed. Section 3 gives the results and discussion using OpenDSS and MATLAB,
along with the fuzzy rules employed for fault identification and classification. The conclusion of this paper
can be found in section 4 with perspectives.

2. METHODOLOGY AND EXPERIMENTAL SETUP
2.1. Experimental setup

The experimental platform consists of a Dell computer equipped with an Intel Core i7 processor
running at 2.20 GHz, 6 GB of RAM, and the Windows 10 operating system. The data analysis and algorithmic
implementation were carried out using Python and MATLAB R2023. The electrical network simulations were
performed with the OpenDSS software, which enables detailed modeling of distribution systems. The fault
detection framework was deployed on the IEEE 123-node test feeder, augmented with virtual smart meters for
data acquisition and monitoring. This configuration provides a realistic environment for validating the proposed
detection model. The overall structure of the experimental setup is illustrated in Figure 1.

2.2. Proposed method for fault identification
The identification of malfunctions in an electrical grid enables the elimination of faults that arise
within an electricity distribution system. The fault diagnosis procedure comprises three distinct stages.
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i)  Initially, abnormal voltage and current parameters in the impacted portion of the electrical grid can be
detected and recognized.

i)  Subsequently, the determination of the occurrence and characteristics of the malfunction is essential
to expedite accessibility and offer a dependable resolution for any issues that arise within the
electrical grid.

iii) Ultimately, rectifying the error promptly is essential to prevent any harm to the unaffected sections of
the network.

To accomplish this task, a unique integrated deep learning approach was used, incorporating the

LSTM model and the ANFIS algorithm. This method incorporates fuzzy logic and neural network strategies
to effectively diagnose faults within a smart electrical network using data from smart meters. Figure 2 depicts
the flowchart of the proposed model for fault detection, which is constructed using the neuro-fuzzy deep
learning approach. Initially, the attributes of the data obtained from the intelligent meters are extracted.
Subsequently, the aforementioned data is set as the inputs for training the LSTM model. The smart meter
data is then used for fault classification through the application of the neuro-fuzzy system. If a fault is
identified, the hybrid system will promptly pinpoint and isolate the fault. Conversely, if no fault is detected,
the system will proceed to retrieve data once more from the smart meters. Following the detection of the
error, an assessment of its precision is conducted. If this level of accuracy meets the required standards, data
is produced to facilitate decision-making to manage operations of restoration. In cases of low accuracy,
adjustments are made to the weight, hyperparameters to enhance the reliability of the model. The LSTM
hyper-parameters are determined using the dataset, the number of iteration and the accuracy expected.

. . e e ! . e 01 Source
|l ._}_é s oo -/ \ e 01 three phase transformers

: + # . 125 Nodes
1 e 20 Lines
+ [ . e 04 Regulators
Sk e 04 Capacitors
= H e 85 Loads
e 12 Switch

Figure 1. Experimental setup
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Figure 2. Flow chart of proposed model

Therefore, a study case is conducted using an IEEE 123-bus test network. This testing system
consists of three distinct phases: phase A, phase B, and phase C. Therefore, when the current deviates from
its usual path, it indicates a fault. This testing system consists of three distinct phases: phase A, phase B, and
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phase C. Therefore, when the current deviates from its usual path, it indicates a fault. A single-phase fault is
characterized by the occurrence of a fault between phase A and ground, phase B and ground, or phase C and
ground. Furthermore, a two-phase fault refers to a fault occurring between A and B, or A and C or B and C.
The fault occurring between phase A and phase B, as well as phase C, is classified as a three-phase fault.
Deviations from the normal voltage range can lead to overvoltage and voltage dips. Figure 3 illustrates the
neuro-fuzzy controller model. This model considers six input parameters that correspond to the phase
currents and voltages, specifically: I, I, I, V,, V},, and V.. The controller calculates the inputs. The result is
a numerical value that signifies a specific occurrence of a malfunction within the electrical distribution
system. The result is a numerical value that signifies a specific occurrence of a malfunction within the
electrical distribution system.

Initially, the data is acquired through fault simulation using the OpenDSS software on the IEEE 123
bus network. Subsequently, the aforementioned data is gathered through the utilization of intelligent meters
and subsequently subjected to analysis by MATLAB’s advanced fuzzy system. This sophisticated system
enables the detection and precise localization of various faults within the distribution network. Moreover,
Figure 3 presents the data collected from the smart meters installed in the IEEE 123 bus network. This data
includes the measurements of voltage and current characteristics during instances of phase faults. The current
and voltage can be classified as “Low” when their magnitudes fall within the range of 0 to 0.1 per unit (pu).
On the other hand, they are considered “High” when their values exceed 10% of the base value.
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Figure 3. Architecture of neuro-fuzzy system with six inputs

3. RESULTS AND DISCUSSION

Figures 4 to 9 show the simulation results respectively for normal conditions, single-phase fault,
two-phase fault, and three-phase fault. It can be illustrated that the results vary according to the cases
considered. Figures 4(a) and Figure 4(b) give a constant evolution of the current and voltage in the electrical
network. In normal condition, the voltage is comprised between 2420 V and 2460 V. In the same time, the
current is comprised between 100 A and 500 A.
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Figure 4. Simulation results under normal conditions (a) voltage and (b) current

A smart grid fault detection using neuro-fuzzy deep learning algorithm (Etienne Frangois Mouckomey)



5100 O ISSN: 2252-8938

In Figure 5, a single-phase fault has been implemented to evaluate the ability of the system to train
the measurement data while considering the fuzzy rules. Figure 5(a) gives the voltage curve; it can be seen
that the voltage of phase A is under the normal range. In same time, the current of phase A is over the normal
range as illustrated in Figure 5(b).
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Figure 5. Simulation results during a single-phase fault (a) voltage and (b) current

Figure 6 gives the implementation results for a two-phase fault. It should be observed that the
appearance of this fault leads to a drastic drop of the voltage in the phases, in particular phase A and phase B
as illustrated in Figure 6(a). In same time, the current of phase A and phase B evolves inversely to the voltage
between critical values as shown in Figure 6(b). Moreover, the greatly affected buses are 45, 46, and 52.
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Figure 6. Simulation results during a two-phase fault (a) voltage and (b) current

Figures 7(a) and 7(b) respectively illustrate the behavior of the voltage and current magnitude for a
three-phase fault. The collected data show that this fault causes a collapse of all phases. This fault caused an
increase in the phase currents and a progressive drop in the voltages. Moreover, around all buses are affected
by the three-phase fault. The greatly affected buses are 34, 71, 92, 75, 11, 52, 70, 80, and 84.

Figure 8(a) illustrates the evolution of voltage while Figure 8(b) gives the current during an
overvoltage. These results show an increase in voltage compared to normal conditions. The data acquired
demonstrates the instability of the network when this fault appears and the need to locate it in order to act
effectively. In Figure 9, a voltage drop illustrates the impact of this fault on the voltage as shown in
Figure 9(a) and current characteristics in Figure 9(b). These phases are dramatically affected by the
occurrence of this kind of fault.
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Figure 7. Simulation results during a three-phase fault (a) voltage and (b) current
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Figure 8. Simulation results during an overvoltage (a) voltage and (b) current
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Figure 9. Simulation results during a voltage drop (a) voltage and (b) current

The training results reveal that the ANFIS-based fault detection system accurately identifies several
types of faults: single-phase faults on phases A and B, two-phase faults on A-B, B-C, and A-C, as well as the
three-phase fault on A-B—C. These fault types correspond respectively to rules 36, 22, 15, 50, 29, 43, and 57
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of the fuzzy inference systems. The training of the ANFIS fault detector was conducted over 100 epochs,
during which the training error exhibited a continuous decrease up to the final iteration, demonstrating
effective model convergence. Model validation was subsequently performed to assess the fault detection
capability of the trained system. The validation phase involved testing the neuro-fuzzy model with unseen
input data, and the results indicate that the ANFIS model achieves a high level of performance, detecting,
identifying, and classifying faults with an accuracy of 0.999. Furthermore, the precision—recall metrics for the
ANFIS model, the LSTM model, and the proposed hybrid model are depicted in Figure 10, where
Figures 10(a) to 10(c). The comparative analysis clearly demonstrates that the hybrid model proposed in this
study exhibits superior precision—recall performance relative to the other models.

The model we put forward achieved a superior score of 0.9999 at the 100" epoch. Furthermore,
the proposed model exhibits a notable enhancement in accuracy, attributed to its ability to optimize for
extended training periods. Additionally, Table 1 presents a comparison with techniques used in literature.
The proposed method demonstrates superior precision in comparison to alternative methods, while also
effectively classifying and pinpointing all faults. The findings indicate that the suggested method surpasses
the ones found in existing research.
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Figure 10. Precision-recall comparison (a) ANFIS, (b) LSTM, and (c) proposed model

Table 1. Comparison with literature

Ref Method Is training dataset required? Is fault classified? Is fault located? Precision
[20] Deep learning framework Yes No Yes 0.952
[21] SVM No No No 0.912
[22]  ANFIS Yes Yes No 0.984
[23] ANFIS Yes Yes No 0.763
[24] Temporal model No No Yes 0.889
[25] Fractional classifier No No Yes 0.855
Writers  Proposed model Yes Yes Yes 0.999
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4. CONCLUSION

This study introduces an innovative approach to data analysis utilizing deep learning in conjunction
with a neuro-fuzzy algorithm to effectively detect and identify faults. The utilization of LSTM in this study
enables the training of data obtained from system. The neuro-fuzzy strategy is employed to identify and
detect faults based on the analysis of trained data. To achieve this goal, a model is acquired utilizing deep
learning techniques that merge two top-performing artificial intelligence algorithms. Our deep learning
method was tested on an IEEE 123-bus network containing smart meters and nodes with faults to assess its
capability in data analysis and fault detection. The findings of the suggested model demonstrate its superior
performance in precision when compared to existing models in the literature. To the best of our
understanding, this research paper represents the initial exploration of a deep learning framework with neuro-
fuzzy strategy in the existing research literature, specifically for data analysis within a smart power grid.
Future studies can be employed for the optimization of deep learning architectures and extending the
framework to real time implementation using advanced sensor networks.
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