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 This paper proposes a novel data analysis framework that integrates deep 

learning with a binary neuro-fuzzy algorithm to address the problem of fault 

localization in smart power grids. In the first stage, a long short-term 

memory (LSTM) network is employed to train data samples collected from 

smart meters. The resulting learned features are subsequently utilized by an 

adaptive neuro-fuzzy inference system (ANFIS) for accurate fault detection 

and classification. Through this intelligent hybrid approach, multi-phase 

faults can be efficiently identified using a limited amount of data. The 

proposed method distinguishes itself by its capacity to rapidly train and test 

large datasets while maintaining high computational efficiency. To evaluate 

the performance of the model, an advanced simulation of the IEEE 123-node 

test feeder is conducted. The robustness and effectiveness of the proposed 

framework are validated using multiple performance metrics, including 

precision, recall, accuracy, F1-score, computational complexity, and the 

ROC curve. The results demonstrate that the proposed deep learning–based 

model significantly outperforms existing approaches in the literature, 

achieving a fault detection and classification precision of 99.99%. 
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1. INTRODUCTION 

In the previous few years, there have been significant transformations in electrical networks, 

resulting in the emergence of a new generation of networks known as the smart grid. The rapid evolution of 

technology and the rising requirement for sustainable energy solutions have spurred the rise of smart grids. 

The incorporation of intelligent grid technologies in urban environments offers numerous advantages, 

including enhanced energy efficiency, reliability, and eco-friendliness [1]. Real-time bidirectional 

communication is readily available at each stage, encompassing power generation, and distribution systems 

in a smart grid [2]. The smart grid presents a significant chance for energy distributors to improve the system, 

guaranteeing uninterrupted access to electrical energy while simultaneously cutting down on field operation 

expenses [3]. Energy distributors have been actively installing numerous smart meters to utilize the collected 

data for efficient demand management and to develop such a system. To this day, the data is gathered every 

month through the meters. However, by incorporating advanced meter infrastructure (AMI), the meters are 

now capable of capturing data at intervals as frequent as every 15 to 30 minutes. As a result, this data can 

accumulate to the terabit scale [4]. Furthermore, the information is gathered from intelligent sensors, 
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advanced meters, and the supervisory control and data acquisition (SCADA) system to guarantee the efficient 

transmission of data to energy consumers and distributors [5]. The gathering and examination of this data 

will enable the extraction of crucial information for the strategic planning of activities within the intelligent 

distribution system and the upkeep of essential electrical machinery [6]. The utilization of data analytic 

machine learning and deep learning techniques is imperative for the efficient training and testing of the 

substantial volume of data obtained from smart meters. 

Numerous researches have been conducted on data analytics within intelligent power grids [7].  

Bano et al. [8] employed smart electrical network data analysis techniques to detect disturbances using 

phasor measurement units (PMUs). The utilization of this algorithm could potentially lead to a decrease in 

data volume, resulting in the extraction of meaningful information from the dataset. Researchers introduced 

an Apache spark framework designed for embedded computing in the context of data analysis in smart power 

grid environments [9]. Ahmed et al. [10] created a bidirectional communication network connecting multiple 

residences using client agents within the transformer agents. The evaluation of the precision of these models 

was assessed through the utilization of error coefficients.  

An et al. [11] employed a reinforcement deep learning model to identify instances of data attacks in 

AC electrical grids. The findings from the simulation indicate a limited ability to detect attacks when the 

model is being implemented. Liao and Anani [12] was developed a neural network for the purpose of 

identifying deficiencies in voltage sag. The complexity identification is constrained by this approach.  

The utilization of homomorphic encryption-based data aggregation and blockchain was suggested in [13] to 

enhance data security while maintaining a high level of training time efficiency. A machine learning 

algorithm has been used to identify the exposure of urban areas to specific seismic hazards [14], as well as to 

discriminate between different types of artificial seismic sources [15]. According to Abdalzaher et al. [16], a 

trust model based on a deep auto-encoder (AE) is employed to identify attacks in IoT systems with the 

assistance of cognitive radio. Furthermore, Moustafa et al. [17] presents the implementation of an optimized 

regression model to predict ground vibrations caused by blast-driven activities. In a smart grid, the prediction 

of solar generation is accomplished using an intelligent model, as demonstrated in [18].  

Deep learning techniques such as convolutional neural network (CNN) have the capability to identify 

anomalies within electrical grids. In a study conducted by Diaba et al. [19], the implementation of CNN,  

gated recurrent unit (GRU), and long short-term memory (LSTM) models was carried out to detect physical 

cyber-attacks in the smart grid and SCADA metering infrastructure. This model must consider numerous 

parameters within a network environment. Simultaneously, the adaptive neuro-fuzzy inference system (ANFIS) 

model was studied to identify and categorize faults within a smart grid. 

The primary contribution of this study can be outlined as follows: 

‒ Various deep learning techniques for analyzing smart grid data have been consolidated in our research. 

We have outlined the capabilities and constraints of each method in detail. 

‒ We have introduced an innovative integrated deep learning framework using ANFIS and LSTM to 

identify and categorize various faults within a smart grid by analyzing data collected from smart meters. 

‒ The efficacy of the suggested model was also assessed through the examination of various metrics 

including accuracy, loss curve analysis, F1-score, ROC analysis, model complexity, precision-recall 

evaluation, and calibration assessment. 

The rest of this work is organized as follows: section 2 outlines the experimental setup used and the 

deep learning methods employed. Section 3 gives the results and discussion using OpenDSS and MATLAB, 

along with the fuzzy rules employed for fault identification and classification. The conclusion of this paper 

can be found in section 4 with perspectives. 

 

 

2. METHODOLOGY AND EXPERIMENTAL SETUP 

2.1.  Experimental setup 

The experimental platform consists of a Dell computer equipped with an Intel Core i7 processor 

running at 2.20 GHz, 6 GB of RAM, and the Windows 10 operating system. The data analysis and algorithmic 

implementation were carried out using Python and MATLAB R2023. The electrical network simulations were 

performed with the OpenDSS software, which enables detailed modeling of distribution systems. The fault 

detection framework was deployed on the IEEE 123-node test feeder, augmented with virtual smart meters for 

data acquisition and monitoring. This configuration provides a realistic environment for validating the proposed 

detection model. The overall structure of the experimental setup is illustrated in Figure 1. 

 

2.2.  Proposed method for fault identification 

The identification of malfunctions in an electrical grid enables the elimination of faults that arise 

within an electricity distribution system. The fault diagnosis procedure comprises three distinct stages. 
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i) Initially, abnormal voltage and current parameters in the impacted portion of the electrical grid can be 

detected and recognized. 

ii) Subsequently, the determination of the occurrence and characteristics of the malfunction is essential 

to expedite accessibility and offer a dependable resolution for any issues that arise within the 

electrical grid. 

iii) Ultimately, rectifying the error promptly is essential to prevent any harm to the unaffected sections of 

the network. 

To accomplish this task, a unique integrated deep learning approach was used, incorporating the 

LSTM model and the ANFIS algorithm. This method incorporates fuzzy logic and neural network strategies 

to effectively diagnose faults within a smart electrical network using data from smart meters. Figure 2 depicts 

the flowchart of the proposed model for fault detection, which is constructed using the neuro-fuzzy deep 

learning approach. Initially, the attributes of the data obtained from the intelligent meters are extracted. 

Subsequently, the aforementioned data is set as the inputs for training the LSTM model. The smart meter 

data is then used for fault classification through the application of the neuro-fuzzy system. If a fault is 

identified, the hybrid system will promptly pinpoint and isolate the fault. Conversely, if no fault is detected, 

the system will proceed to retrieve data once more from the smart meters. Following the detection of the 

error, an assessment of its precision is conducted. If this level of accuracy meets the required standards, data 

is produced to facilitate decision-making to manage operations of restoration. In cases of low accuracy, 

adjustments are made to the weight, hyperparameters to enhance the reliability of the model. The LSTM 

hyper-parameters are determined using the dataset, the number of iteration and the accuracy expected.  

 

 

 
 

Figure 1. Experimental setup 

 

 

  
 

Figure 2. Flow chart of proposed model 

 

 

Therefore, a study case is conducted using an IEEE 123-bus test network. This testing system 

consists of three distinct phases: phase A, phase B, and phase C. Therefore, when the current deviates from 

its usual path, it indicates a fault. This testing system consists of three distinct phases: phase A, phase B, and 
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phase C. Therefore, when the current deviates from its usual path, it indicates a fault. A single-phase fault is 

characterized by the occurrence of a fault between phase A and ground, phase B and ground, or phase C and 

ground. Furthermore, a two-phase fault refers to a fault occurring between A and B, or A and C or B and C. 

The fault occurring between phase A and phase B, as well as phase C, is classified as a three-phase fault. 

Deviations from the normal voltage range can lead to overvoltage and voltage dips. Figure 3 illustrates the 

neuro-fuzzy controller model. This model considers six input parameters that correspond to the phase 

currents and voltages, specifically: 𝐼𝑎, 𝐼𝑏 , 𝐼𝑐, 𝑉𝑎, 𝑉𝑏, and 𝑉𝑐. The controller calculates the inputs. The result is 

a numerical value that signifies a specific occurrence of a malfunction within the electrical distribution 

system. The result is a numerical value that signifies a specific occurrence of a malfunction within the 

electrical distribution system. 

Initially, the data is acquired through fault simulation using the OpenDSS software on the IEEE 123 

bus network. Subsequently, the aforementioned data is gathered through the utilization of intelligent meters 

and subsequently subjected to analysis by MATLAB’s advanced fuzzy system. This sophisticated system 

enables the detection and precise localization of various faults within the distribution network. Moreover, 

Figure 3 presents the data collected from the smart meters installed in the IEEE 123 bus network. This data 

includes the measurements of voltage and current characteristics during instances of phase faults. The current 

and voltage can be classified as “Low” when their magnitudes fall within the range of 0 to 0.1 per unit (pu). 

On the other hand, they are considered “High” when their values exceed 10% of the base value. 

 

 

 
 

 

Figure 3. Architecture of neuro-fuzzy system with six inputs 

 

 

3. RESULTS AND DISCUSSION  

Figures 4 to 9 show the simulation results respectively for normal conditions, single-phase fault, 

two-phase fault, and three-phase fault. It can be illustrated that the results vary according to the cases 

considered. Figures 4(a) and Figure 4(b) give a constant evolution of the current and voltage in the electrical 

network. In normal condition, the voltage is comprised between 2420 V and 2460 V. In the same time, the 

current is comprised between 100 A and 500 A. 

 

 

  
(a) (b) 

 

Figure 4. Simulation results under normal conditions (a) voltage and (b) current 
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In Figure 5, a single-phase fault has been implemented to evaluate the ability of the system to train 

the measurement data while considering the fuzzy rules. Figure 5(a) gives the voltage curve; it can be seen 

that the voltage of phase A is under the normal range. In same time, the current of phase A is over the normal 

range as illustrated in Figure 5(b).  
 

 

  
(a) (b) 

 

Figure 5. Simulation results during a single-phase fault (a) voltage and (b) current 
 

 

Figure 6 gives the implementation results for a two-phase fault. It should be observed that the 

appearance of this fault leads to a drastic drop of the voltage in the phases, in particular phase A and phase B 

as illustrated in Figure 6(a). In same time, the current of phase A and phase B evolves inversely to the voltage 

between critical values as shown in Figure 6(b). Moreover, the greatly affected buses are 45, 46, and 52.  
 

 

  
(a) (b) 

 

Figure 6. Simulation results during a two-phase fault (a) voltage and (b) current 
 

 

Figures 7(a) and 7(b) respectively illustrate the behavior of the voltage and current magnitude for a 

three-phase fault. The collected data show that this fault causes a collapse of all phases. This fault caused an 

increase in the phase currents and a progressive drop in the voltages. Moreover, around all buses are affected 

by the three-phase fault. The greatly affected buses are 34, 71, 92, 75, 11, 52, 70, 80, and 84. 

Figure 8(a) illustrates the evolution of voltage while Figure 8(b) gives the current during an 

overvoltage. These results show an increase in voltage compared to normal conditions. The data acquired 

demonstrates the instability of the network when this fault appears and the need to locate it in order to act 

effectively. In Figure 9, a voltage drop illustrates the impact of this fault on the voltage as shown in  

Figure 9(a) and current characteristics in Figure 9(b). These phases are dramatically affected by the 

occurrence of this kind of fault. 
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(a) (b) 

 

Figure 7. Simulation results during a three-phase fault (a) voltage and (b) current 
 

 

  
(a) (b) 

 

Figure 8. Simulation results during an overvoltage (a) voltage and (b) current 
 
 

  
(a) (b) 

 

Figure 9. Simulation results during a voltage drop (a) voltage and (b) current 
 

 

The training results reveal that the ANFIS-based fault detection system accurately identifies several 

types of faults: single-phase faults on phases A and B, two-phase faults on A–B, B–C, and A–C, as well as the 

three-phase fault on A–B–C. These fault types correspond respectively to rules 36, 22, 15, 50, 29, 43, and 57 
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of the fuzzy inference systems. The training of the ANFIS fault detector was conducted over 100 epochs, 

during which the training error exhibited a continuous decrease up to the final iteration, demonstrating 

effective model convergence. Model validation was subsequently performed to assess the fault detection 

capability of the trained system. The validation phase involved testing the neuro-fuzzy model with unseen 

input data, and the results indicate that the ANFIS model achieves a high level of performance, detecting, 

identifying, and classifying faults with an accuracy of 0.999. Furthermore, the precision–recall metrics for the 

ANFIS model, the LSTM model, and the proposed hybrid model are depicted in Figure 10, where  

Figures 10(a) to 10(c). The comparative analysis clearly demonstrates that the hybrid model proposed in this 

study exhibits superior precision–recall performance relative to the other models. 

The model we put forward achieved a superior score of 0.9999 at the 100th epoch. Furthermore,  

the proposed model exhibits a notable enhancement in accuracy, attributed to its ability to optimize for 

extended training periods. Additionally, Table 1 presents a comparison with techniques used in literature. 

The proposed method demonstrates superior precision in comparison to alternative methods, while also 

effectively classifying and pinpointing all faults. The findings indicate that the suggested method surpasses 

the ones found in existing research. 
 

 

  
(a) (b) 

 

 
(c) 

 

Figure 10. Precision-recall comparison (a) ANFIS, (b) LSTM, and (c) proposed model 
 

 

Table 1. Comparison with literature 
Ref Method Is training dataset required? Is fault classified? Is fault located? Precision 

[20] Deep learning framework Yes No Yes 0.952 

[21] SVM No No No 0.912 
[22] ANFIS Yes Yes No 0.984 

[23] ANFIS Yes Yes No 0.763 

[24] Temporal model No No Yes 0.889 
[25] Fractional classifier No No Yes 0.855 

Writers Proposed model Yes Yes Yes 0.999 
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4. CONCLUSION  

This study introduces an innovative approach to data analysis utilizing deep learning in conjunction 

with a neuro-fuzzy algorithm to effectively detect and identify faults. The utilization of LSTM in this study 

enables the training of data obtained from system. The neuro-fuzzy strategy is employed to identify and 

detect faults based on the analysis of trained data. To achieve this goal, a model is acquired utilizing deep 

learning techniques that merge two top-performing artificial intelligence algorithms. Our deep learning 

method was tested on an IEEE 123-bus network containing smart meters and nodes with faults to assess its 

capability in data analysis and fault detection. The findings of the suggested model demonstrate its superior 

performance in precision when compared to existing models in the literature. To the best of our 

understanding, this research paper represents the initial exploration of a deep learning framework with neuro-

fuzzy strategy in the existing research literature, specifically for data analysis within a smart power grid. 

Future studies can be employed for the optimization of deep learning architectures and extending the 

framework to real time implementation using advanced sensor networks. 
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