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 Accurately classifying promoters has become a significant focus in 

bioinformatics research. Although numerous studies have attempted to 

address this challenge, the performance of existing methods still leaves room 

for improvement this study, statistical feature analysis has been applied to 

the features that have been developed in our previous work. This approach 

extracted additional informative features from basic sequence characteristics 

and then used them together with the original and newly engineered features. 

Utilizing statistical feature analysis enhanced key patterns, which lead to an 

improvement in the accuracy of the promoter classification. Results 

demonstrated that our proposed method outperforms other models that use 

only basic features. The value of the area under the curve (AUC) of 0.83958 

achieved when using the combined feature set confirmed the effectiveness of 

our approach. Furthermore, the AUC value reached 1 when these optimized 

features were used with naive Bayes (NB) classifier, referring to the strength 

of incorporating statistical analysis into feature design. 
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1. INTRODUCTION 

Regulation of gene expression is a vital cellular process that ensures development, physiological 

balance, and adaptation to environmental changes. It determines when and how genes are expressed, shaping 

protein diversity and cellular identity [1]. Dysregulation of this process is closely linked to human diseases 

such as cancer, metabolic disorders, and neurological conditions. Promoter regions which areshort 

deoxyribonucleic acid (DNA) stretches upstream of genesthat act as control hubs for transcription initiation 

are among the critical regulators [2]. 

Promoter regions provide docking sites for ribonucleic acid (RNA) polymerase and transcription 

factors. Early studies described essential motifs like the -35 (TTGACA) and -10 (TATAAT) elements in 

bacterial promoters, with transcription starting near a purine downstream of the -10 box. However, promoter 

structures vary widely across species [3]. 

Identifying promoters remains challenging because many lack conserved motifs and overlap with 

other regulatory regions. The accurate detection is very complicated due to their sequence variability, 

chromatin structure, and species-specific differences. Traditional computational methods, relying on motifs 

or position weight matrices, often suffer from low accuracy and high false discovery rates, limiting their 

reliability for large-scale genomic studie [4]. 

https://creativecommons.org/licenses/by-sa/4.0/
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To overcome these challenges, researchers have turned to artificial intelligence (AI) based 

approaches. Machine learning (ML) and deep learning (DL) models can capture both sequence level motifs 

and long-range dependencies, improving prediction performance. Methods such as convolutional neural 

networks (CNNs), recurrent neural networks (RNNs), and hybrid CNN-long short-term memory (LSTM) 

models have achieved good results, while attention mechanisms and Transformer-based architectures offer 

new possibilities for modeling promoter complexity [5]–[7]. 

Despite these advances, AI based methods still face problems of data scarcity and interpretability. 

Large, high-quality datasets are often unavailable. This study aims to address these gaps by developing 

robust AI-based promoter identification methods that integrate biological knowledge with ML. The next 

section reviews previous methods, with emphasis on the evolution from traditional models to modern  

AI-driven approaches. 

 

 

2. LITERATURE REVIEW 

Because the methods which depend on traditional laboratory are often resource-intensive, slow, and 

not scalable for whole-genome studies, computational approaches have become a very important tools in the 

prediction of promoto [8]. ML techniques among these computational approaches have been emerged due to 

their particularly effective, capable of uncovering intricate sequence patterns and dependencies that might be 

overlooked by conventional algorithms. ML models can accurately distinguish between promoter regions and 

background genomic sequences with high predictive power by converting raw DNA sequences into 

structured feature representations. 

Amin et al. [9] proposed a study using a DL-based approach in identification and classification of 

bacterial sigma promoters using branched CNNs. Their method which is called prompt-learning pre-trained 

language model for promoter prediction (PLPMpro), has been designed to distinguish between promoter and 

non-promoter sequences in addition to promoters' classification into different sigma factor categories, such as 

σ⁷⁰ and σ³². The system used parallel convolutional branches to extract diverse feature representations from 

DNA sequences, and this result in an improvement in the classification performance. Their CNN-based 

framework achieved a accuracy and generalizability in both binary and multiclass promoter prediction tasks [9]. 

Tayara et al. [10] in the same year, introduced a hybrid deep-learning framework called 

identification of prokaryotic promoters and their strength via windows (iPSW) using pseudo dinucleotide 

composition (PseDNC)-based deep learning to be used in the identification of prokaryotic promoters and 

classify them into two categories, strong and weak. The study integrates between CNNs and PseDNC. This 

hybrid architecture has been applied on benchmark Ecoli datasets and showed high accuracy in promoter 

detection [10].  

Moraes et al. [11] proposed CapsProm, which is a capsule network–based model used to identify 

promoter across seven different organisms, including eukaryotes and prokaryotes. CapsProm get benifit from 

the ability of the capsule network’ to maintain hierarchical relationships within sequence patterns. This 

method demonstrated competitive F1-scores surpassing baseline CNN approaches in five out of seven 

datasets. The authors emphasized the generalizabilityof the CapsProm’s gsystem, according to its strength in 

cross-species promoter prediction and potential for transfer learning (TL) across genomic contexts [11]. 

Zhang et al. [12] introduced a model for promoter prediction. This model produces a hybrid DL 

framework combining CNNs, capsule networks, bidirectional long short-term memory (Bi-LSTM), and a 

self-attention mechanism to identify promoters effectively and classify their strength. It uses one-hot 

encoding to represent DNA sequences and gets benifits from both local and global sequence features to 

enhance prediction performance. The model has achieved an accuracy of approximately 86% for promoter 

identification and around 73.5% for promoter strength classification [12]. 

In another related study, Li et al. [13] developed a novel approch PLPMpro. This approach 

enhanced the prediction of the promotor sequence by combining the prompt-learning with pre-trained 

language models. Their study used prompt-based fine-tuning to leverage genomic representations learned 

from large-scale training corpora, which increase the ability of the system to capture complex promoter 

sequence features more effectively. After evaluated the system on benchmark datasets from the Eukaryotic 

promoter database, the results achieved in both precision and recall demonstrated notable improvements 

comparing to conventional transformer-based models such as DNA bidirectional encoder representations 

from transformers (BERT) [13]. 

Paul et al. [14] developed machine learning and duplex stability promoter prediction (MLDSPP) 

named system focusing on bacterial genomes. This study is a tool designed to detect promotor regions cross 

12 prokaryotic species. This method used ML algorithms such as extreme gradient boosting (XGBoost) with 

structural DNA features such as duplex stability. The results obtained from using MLDSPP demonstrated a 

superiority to existing tools like Sigma70pred and iPromoter2L, which achieved F1-scores above than 95%. 
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Moreover, the study used explainable AI techniques, including Shapley values and one-hot encoding, to 

improve the transparency of the model and increase the predictive accuracy [14]. 

Ashayeri et al. [15] applied TL techniques on several genomic tasks, such as analysis of gene 

expression, detect of mutation, and recognition of genetic syndrome. Results showed that by using TL, the 

efficiency and accuracy of the model has been significantly improved in various genetic research domains.  

In addition TL enhances the accuracy and efficiency of mutation detection, which can help in identifying 

genetic abnormalities, and it is also able to improve diagnostic accuracy of syndrome-related genetic patterns. 

Furthermore, TL contributes in gene expression analysis by enabling more precise predictions of expression 

levels and their relationships. It also can strength the studies related to phenotype-genotype by using 

knowledge from pre-trained models [15]. 

Zeng et al. [16] introduces a novel DNA sequence segmentation method and a refined dictionary for 

BERT pre-training, enhancing promoter detection through DL techniques like CNNs, LSTMs, and Inception 

networks, improving performance and interpretability in downstream tasks [16]. Finally, Gunarathna et al. [17] 

employed interpretable ML models guided by assay for transposase-accessible chromatin using sequencing 

(ATAC-seq) data to uncover cancer-specific chromatin features in cell-free deoxyribonucleic acid (cfDNA). 

Their approach focused on enhancing the prediction of breast cancer-derived cf DNA by leverag from the 

chromatin accessibility signals, which have led to improved detection performance. Although their findings 

highlighted the potential of chromatin-based features in non-invasive cancer diagnostics, the study did not 

directly address promoter region identification [17]. 

While several ML-based promoter detection methods exist, many rely on generic features or limited 

nucleotide compositions, often resulting in low accuracy. This study addresses this limitation by introducing 

novel statistical and biological features specifically designed for promoter detection. The main objective is to 

assess the effectiveness of these features in improving ML classifier performance. To this end, we employed 

support vector machine (SVM), logistic regression (LR), k-nearest neighbors (KNN), decision tree (DT), and 

naive Bayes (NB). These classifiers were selected for their complementary strengths: i) SVM handles high-

dimensional and non-linear data, ii) LR offers interpretable linear modeling, iii) KNN captures local sequence 

similarities, iv) DT effectively manages feature interactions, and v) NB performs well under probabilistic 

assumptions. This diverse classifier selection ensures a comprehensive evaluation of the proposed features. 
 

 

3. METHODOLOGY 

This section illustrates the overall methodology used in this study. It starts from data preprocessing 

and feature extraction methods to the model development and performance evaluation. Figure 1 shows the 

workflow in this study. 
 
 

 
 

Figure 1. Flowchart of the proposed model 
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3.1.  Data preprocessing 

The dataset used in this study has been obtained from the University of California Irvine (UCI) ML 

repository [18], it consists of 106 nucleotide sequences, each sequence length has 57 base pairs, spanning 

positions -50 to +7. These sequences have been divided into two categories: promoter sequence as positive 

class (PS) and non-promoter sequence as negative class (n_PS). The preprocessing of the data begins with 

splitting the dataset into training and testing subsets, then the data has been checked and corrected to ensure 

sequence accuracy and completeness. Depending on the extent of missing information, missing or unclear 

identifiers within both classes were addressed through either imputation or removal. Last operation in the 

preprocessing was the cleaning and normalization of the sequences by by eliminating extraneous elements 

standardize their format and maintain consistency for subsequent analyses. 

 

3.2.  Feature engineering 

3.2.1. Basic feature engineering 

Basic feature engineering method analyses DNA sequences based on the components of their 

fundamental nucleotide-adenine (A), thymine (T), cytosine (C), and guanine (G). Each DNA sequence was 

broken down into individual nucleotides, and each nucleotide referred to as a separate feature. This method 

can identify short, localized nucleotide patterns which are important in distinguishing between PS and n_PS 

types. 

 

3.2.2. Developed feature engineering 

The aim of developed feature engineering approach is to enhance the accuracy of classification by 

extracting a comprehensive set of biologically meaningful attributes from DNA sequences. This method 

integrates different evaluation in order to capture both global and local sequence characteristics, these 

evaluations are nucleotide composition analysis, GC content measurement, k-mer frequency profiling, and 

sequence complexity evaluation. Nucleotide counting determine the occurrences of adenine, thymine, 

cytosine, and guanine. GC content analysis measures frequency of guanine and cytosine nucleotides which is 

important in DNA stability according to their triple hydrogen bonds. K-mer analysis investigates recurring 

nucleotide motifs of length finally, sequence complexity analysis assesses the variability and irregularity in 

nucleotide distribution. Table 1 illustrates the significant compositional and structural differences between PS 

and n_PS by using Developed Features. 

 

3.3.  Feature statistics and significance biological performance metrics 

Different statistical and evaluation metrics have been used, in order to assess the significance and 

performance of each feature in the classification task. These metrics give accurate analysis for feature 

distributions and their relationships with the classification results. The metrics used in this study were correlation 

coefficients, root mean square error (RMSE), mean and standard deviation (SD), signal-to-noise ratio (SNR), and 

the area under the curve (AUC). The formulas for these metrics are detailed as follows [19], [20]. 

i) Correlation: the correlation coefficient measuring the relationship between each feature x and the 

classification target y. In (1) shows the mathematical formula of correlation: 

 

𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑥, 𝑦) =
∑ (𝑥𝑖−𝑥̅)(𝑦𝑖−𝑦̅)𝑛

𝑖=1

√∑ (𝑥𝑖−𝑥̅)2𝑛
𝑖=1 √∑ (𝑦𝑖−𝑦̅)2𝑛

𝑖=1

 (1) 

 

where 𝑥𝑖 , 𝑦𝑖  are the values of feature and target for sample i, 𝑦̅, 𝑥̅ are the means of X and Y, n is the 

number of samples. 

ii) Root mean square (RMS): RMS is used to assess the average magnitude of a feature as (2). 

 

𝑅𝑀𝑆(𝑥) = √
1

𝑛
∑ 𝑥𝑖

2𝑛

𝑖=1
 (2) 

 

iii) Mean and SD: the mean and SD of a feature describe its central tendency and variability is shown in  

(3) and (4): 

 

𝑚𝑒𝑎𝑛(𝑥) =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1  (3) 

 

𝑆𝑇𝐷(𝑥) = √
1

𝑛
∑ (𝑥𝑖

𝑛
𝑖=1 − 𝑥̅)2 (4) 
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iv) SNR: SNR quantifies how much signal is present in a feature relative to its noise as in (5): 
 

𝑆𝑁𝑅(𝑥) =
𝑥̅

𝑆𝑇𝐷(𝑥)
 (5) 

 

v) AUC: to determine the contribution of each feature in the performance of the model, an ablation study 

was performed. Each feature has been removed individually, and the classifier has been retrained and 

the AUC of the model without this feature was recorded. In (6) used to determine AUC difference due 

to removal of feature 𝑥𝑗 is: 
 

∆𝐴𝑈𝐶𝑗= 𝐴𝑈𝐶𝑓𝑢𝑙𝑙 − 𝐴𝑈𝐶−𝑥𝑗
 (6) 

 

where, 𝐴𝑈𝐶𝑓𝑢𝑙𝑙  is the model performance with all features, 𝐴𝑈𝐶−𝑥𝑗
 is the performance after removing 

feature 𝑥𝑗. 
 

 

Table 1. Summary of developed features for PS and n_PS 
Feature Nucleotide PS average value n_PS average value Biological significance 

Nucleotide count Adenine (A) 15.79 14.02 A appears more often in PS regions, 
playing a role in facilitating DNA 

strand separation and initiating 

transcription. 
 Thymine (T) 17.19 15.11 A high presence of T in PS regions 

enhances DNA flexibility, making it 

easier to unwind the strands during 
transcription. 

 Cytosine (C) 12.62 13.51 A low count of C content in PS regions 

results in diminished structural stability 
of the DNA. 

 Guanine (G) 11.4 14.45 A decreased level of G in PS regions 

enhances accessibility for the 
transcription machinery. 

Nucleotide count 

range (per 57 
nucleotides) 

Adenine (A) 15–18 13–15 In PS regions, high A content aids in 

DNA unwinding, whereas n_PS regions 
display a more balanced nucleotide 

composition. 

 Thymine (T) 16–19 14–16 Increased T levels in PS regions 
contribute to greater DNA flexibility, 

while n_PS regions preserve structural 

stability. 
 Cytosine (C) 11–13 13–14 A decline in C content within PS areas 

leads to reduced DNA stability, 

facilitating transcription. 
 Guanine (G) 10–12 14–15 Less G in PS regions improves access 

for transcription factors. 

GC content (%) — 40–45% 48–52% A lower GC content in PS enhances 
DNA flexibility, whereas higher GC 

content in n_PS strengthens DNA 

structure. 
K-mer analysis — Common motifs such as 

TATA, CGG, and GCG 

occur frequently, 
indicating a rich presence 

of regulatory sequences 

Irregular or loosely 

organized patterns 

with no recurring 
motifs 

Specific, organized motifs in PS 

regions help control gene expression; 

such motifs are generally absent in 
n_PS regions. 

Sequence 
complexity 

— Elevated complexity with 
diverse motifs and 

structural elements 

Limited 
complexity, 

characterized by 

basic and repetitive 
sequences 

The greater sequence complexity found 
in PS refers to the presence of 

regulatory elements, while the lower 

complexity in n_PS implies minimal 
regulatory function. 

 

 

3.4.  Classifier initialization and model selection 

3.4.1. Support vector machine 

SVM is an effective classifier for handling complex, high-dimensional data by maximizing the 

margin between classes using kernel functions [21]. A linear kernel was determined using (7) [22]: 
 

𝑓𝑙𝑖𝑛𝑒𝑎𝑟(𝑥) = ∑ 𝛼𝑖 𝑦𝑖(𝑥. 𝑥𝑖) + 𝑏𝑛
𝑖=1  (7) 

 

where 𝛼𝑖  is the Lagrange multiplier, 𝑦𝑖  class labels, and 𝑥𝑖  support vectors. 
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3.4.2. K-nearest neighbors 

KNN is a non-parametric, instance-based learning algorithm that classifies a sample based on the 

majority label among its k closest neighbors in the feature space [23], as in (8): 

 

𝑈 = arg 𝑚𝑎𝑥𝑈 ∑ 𝐼(𝑈𝑖 = 𝑈)𝑘
𝑖=1  (8) 

 

where 𝐼(𝑈𝑖 = 𝑈) represent the indicator function, if (𝑈𝑖 = 𝑈) the value is 1 and otherwise 0. k is several 

nearest neighbors. 

 

3.4.3. Logistic regression 
LR is a widely-used linear model that estimates the probability of class membership through a 

logistic function. Its simplicity allows for straightforward interpretation of feature contributions via model 

coefficients [24]. The mathematical formula shown in (9): 

 

𝑃(𝑦 = 1\𝑋) =
1

1+𝑒−(𝑤.𝑋+𝑏) (9) 

 

where 𝑋 is feature vector, w represents the weight vector, and b is the bias term. 

 

3.4.4. Naive Bayes 

NB classifiers rely on strong conditional independence assumptions between features to compute 

posterior probabilities efficiently. Despite its simplicity, NB performs surprisingly well in high-dimensional 

spaces and is particularly effective when the dataset meets or approximates these probabilistic assumptions. 

Its fast training and inference times make NB a useful benchmark for probabilistic classification models [25]: 

 

𝑃(𝑦\𝑋) =
𝑃(𝑦) ∏ 𝑃(𝑥𝑖\𝑦)𝑛

𝑖=1

𝑃(𝑋)
 (10) 

 

where the prior probability of the class is represented by 𝑃(𝑦), 𝑃(𝑥𝑖\𝑦) is the probability of a feature 

and 𝑥𝑖  is the given class. 

 

3.4.5. Decision tree 

DT classify data by recursively splitting the feature space based on thresholds that maximize class 

separation [26]. In (12) shows the mathematical formula: 

 

𝐺𝑖𝑛𝑖(𝑡) = 1 − ∑ 𝑝(𝑖\𝑡)2𝑐
𝑖=1  (11) 

 

where 𝑝(𝑖\𝑡) is the proportion of class 𝑖 at node 𝑡. 

 

3.5.  Performance evaluation 

In this study, different metrics have been used to evaluate classification of each ML model [27], [28]. 

i) Accuracy: this metric represents the ratio of correctly classified samples to the total number of samples 

[20]. It is calculated as shown in (12): 

 

𝐴 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃) +𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒(𝑇𝑁)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃) +𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒(𝑇𝑁)+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝐹𝑃)+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒(𝐹𝑁)
  

 

where, 𝐴 denotes accuracy, TP and TN are the correctly predicted positive and negative cases, 

respectively, while FP and FN represent false predicted positive and negative cases. 

ii) Precision: precision is the ratio of TP predictions to all positives predicted, as in (12). 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (12) 

 

iii) Recall (sensitivity): in (13) represents the recall (sensitivity) and indicates actual positives. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (13) 

 

iv) F1-score: F1- score refers to actual positives, (14) shows the mathematical formula to determine the F1-score: 
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𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (14) 

 

 

4. RESULTS AND DISCUSSION 

4.1.  Biological features evaluation 

Table 2 summarizes key statistical and performance metrics for the features, including correlation 

with the target, RMS, mean, STD, SNR, and AUC from the ablation study. Table 2 together with Figure 2 

also highlight feature relevance. Basic nucleotide counts (Count_A, Count_T, Count_C, Count_G) and 

GC_Content show the strongest predictive power, with Count_T and Count_A positively correlated and 

Count_G and GC_Content negatively correlated with classification. Sequence_Complexity, despite a 

moderate AUC (0.7380), has a high SNR (~42), indicating stable, valuable input. Sequence_Variability has 

low SNR and correlation, suggesting limited standalone usefulness but possible value when combined. 

 

 

Table 2 .Summary of feature statistics and performance metrics from ablation study 
Feature Correlation RMS Mean STD SNR AUC 

Count_C -0.14549 13.417 13.066 3.0621 4.267 0.7682 

Count_A 0.25438 15.305 14.858 3.689 4.028 0.7419 

Count_T 0.26664 16.613 16.151 3.9104 4.13 0.7508 
Count_G -0.43651 13.39 12.925 3.5178 3.674 0.739 

GC_Content -0.43668 0.4628 0.45597 0.07959 5.729 0.754 

Sequence_Complexity -0.40924 1.9487 1.9482 0.0462 42.162 0.738 
Sequence_Variability 0.40644 0.0078 0.0059 0.0052 1.134 0.7378 

 

 

  
 

Figure 2. Feature importance and predictive value based on AUC and statistical stability 

 

 

4.2.  K-mer pattern analysis 

K-mer analysis was performed to link short nucleotide motifs with promoter classification. Each 

sequence was labeled and annotated with its top three frequent 3-mers, which were broken down into k-mers 

to calculate class-specific frequencies. Statistical tests (Chi-square or Fisher’s exact) assessed k-mer 

significance across classes. While some k-mers appeared class-specific (e.g., 'aac, acg, cgc' in Class 0;  

'aaa, ata, taa' in Class 1), most tests showed non-significant results, likely due to small sample size and sparse 

data (e.g., Chi-square p=1.0000). These results suggest k-mers alone have limited discriminative power but 

can enhance models when combined with other features, as illustrated in Figure 3. 

 

4.3.  Classifiers for engineering features 

Table 3 and Figure 4 show the performance of different classifiers using basic features.  

SVM achieved 65% accuracy but had low specificity (0.56) and moderate precision (0.61) despite good 

sensitivity (0.73). KNN performed poorly with 48% accuracy and very low specificity (0.25), struggling to 

classify n_PS correctly. LR showed balanced results with 61% accuracy and 0.5 specificity. DTs performed 

better, reaching 71% accuracy and 0.69 specificity and precision. NB was the best, achieving 90% accuracy, 

0.94 specificity, and 0.93 precision. 
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Figure 3. K-mer frequency patterns 

 

 

Table 3. The performance metrics using basic features 
Models Accuracy (%) Precision F1-score Sensitivity Specificity 

SVM 0.56 0.73 0.67 0.61 0.65 

KNN 0.25 0.73 0.58 0.48 0.48 

LR 0.5 0.73 0.65 0.58 0.61 
DT 0.69 0.73 0.71 0.69 0.71 

NB 0.87 0.9 0.93 0.9 0.94 

 

 

 
 

Figure 4. The performance metrics of classifiers for engineering basic features 

 

 

Table 4 and Figure 5 present results using the newly developed features, demonstrating significant 

improvement across classifiers, especially for those that struggled with basic features. Enhanced features 

incorporating domain knowledge and higher-order sequence information helped SVM and KNN better 

capture non-linear patterns, improving accuracy and specificity. DTs and LR also showed gains in recall, 

precision, and F1-score. Overall, the new feature set boosted all classifiers, with SVM and KNN  

becoming far more competitive, reflecting the clear advantage of the proposed feature engineering over 

traditional methods. 

 

 

Table 4. The performance metrics using enhanced feature architecture 
 Accuracy (%) Precision F1-Score Sensitivity Specificity 

SVM 0.75 0.87 0.81 0.76 0.81 

KNN 0.63 0.8 0.73 0.67 0.71 
LR 0.63 0.87 0.76 0.68 0.74 

DT 0.81 0.87 0.84 0.81 0.84 

NB 1 1 1 1 1 
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Figure 5. The performance metrics of classifiers for developed feature architecture 
 

 

Figure 6 compares receiver operating characteristic (ROC) curves and metrics for classification 

using conventional features Figure 6(a) versus the proposed enhanced features Figure 6(b). The improved 

feature set clearly boosts most classifiers’ performance. DT achieve a solid AUC of 0.83958, while  

NB reaches a perfect 1.0 with the enhanced features, showing excellent discrimination between PS and n_PS. 

KNN struggles the most, with the lowest AUC of 0.7125, and SVM and LR perform only moderately  

(AUCs of 0.80833 and 0.74583, respectively). NB remains strong with an AUC of 0.90208 even using 

conventional features. KNN’s poor performance across both feature sets likely stems from its sensitivity to 

feature dimensionality and complexity. These results highlight that the improved features provide a more 

robust data representation. 

However, this study is not without limitations. The dataset is limited in size and variety, which may 

affect the ability of the model to generalize to broader biological contexts. Also, the features focus mainly on 

nucleotide composition, ignoring important biological factors like transcription factor binding sites or 

epigenetic modifications. Future research must address these gaps by expanding the dataset, integrating 

richer biological data, and exploring advanced DL techniques to achieve better predictive accuracy. 
 

 

  
(a) (b) 

 

Figure 6. ROC curves for binary classifiers (a) conventional features and (b) proposed developed features 
 

 

5. CONCLUSION 

This study proposed a framework using in promoter detection by combining traditional nucleotide 

composition with newly developed features such as sequence complexity, variability, and k-mer-derived 

descriptors. Statistical analysis proved the importance of features such as Count_C (AUC 0.7682), 

GC_Content (AUC 0.7540), and Sequence_Complexity (AUC 0.7380), which provided stable and 

discriminative signals for classification. The proposed feature set enhanced the overall performance of the 

model, resulting in an increased AUC when using the enhanced architecture. Among the five classifiers used 

in this study, the NB model obtained perfect results with an accuracy of 100%, a precision of 1.00, a recall of 

1.00, and an F1-score of 1.00 when using enhanced features. These results confirmed that engineered 

features, based on biological and statistical properties of DNA sequences, can significantly enhance the 

classification performance even when simple models are used. 
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