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 This work offers a novel method for predicting chronic kidney disease 

(CKD) by combining random forest (RF) classification with genetic 

algorithm (GA) to optimize important parameters. The dataset comprises 

1,659 patients with 51 clinical parameters. The suggested method 

emphasizes the optimization of random state values, test size, and essential 
hyperparameters, such as the number of trees in the forest, the least number 

of samples needed at a leaf node, and the smallest number of samples 

necessary to split an internal node. The optimization process is conducted in 

two stages: the first stage optimizes the random state and test size, while the 
second stage focuses on hyperparameters. Through extensive simulations 

over 50 runs, the study demonstrates that the optimized model achieves an 

accuracy ranging from 0.9451 to 0.9738. The results indicate a maximum 

increase in accuracy of 2.09%, showcasing the effectiveness of the GA-RF 
integrated approach in enhancing model performance. This work provides 

valuable insights into the impact of parameter optimization on machine 

learning (ML) models, particularly in medical diagnostics, and offers a 

robust framework for developing highly accurate predictive models. 
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1. INTRODUCTION 

The training and testing method for classifying biological information in machine learning (ML) is 

becoming increasingly significant. The researcher focuses carefully on choosing the right methods of 

classification and developing the predictive model. Few studies have examined classification and predictive 

model development. Literature studies are predominantly theoretical; there exists no practical model for 

sample selection in the training and testing process. The research focuses on type of classification, data 

training and testing is found the grey area. In order to build and fit a good model in ML, this article provides 

an in-depth analysis of the sizes of both the training and testing datasets. This work examines the effect of 

random state (shuffling the data set), test size (data set for training and testing), and hyper-parameters on 

performance in random forest (RF) ML. Accuracy is a metric that compares the performance metrics of the 

test and the predicted data from the model. 

The genetic algorithm (GA) is integrated into RF classification in two stages. The purpose of the 

GA is to optimize the parameters during the process of model building. The simulation results (accuracy) 
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show that the random state, test ratio, and hyper-parameters are the criteria that have a direct impact on the 

model's correctness. To create a reliable system, a GA should be implemented into the RF classification to 

fine-tune the correctness of the results. 

The RF algorithm is a powerful and versatile ML method, suitable for classification and 

regression. The features of the RF algorithm, such as accuracy, robustness in handling missing values, 

scalability, nonparametric support to handling complex interactions, robustness to noisy data and fit the 

effective model for prediction in diagnosing kidney disease. Many randomized algorithms in sklearn use 

the random state to select the random seed to feed to the pseudo-random number generator. The most 

popular integers are 0 and 42. When using an integer for the random state (changing the order of training 

samples yields varied results), the function will produce the same results across different executions. The 

results only change if the integer value is altered, and increasing the number of runs will likely decrease 

the variance. The reason for variance in performance is a sample that is too small (and/or many 

features/classes which is too high), which causes the models to over-fit. To decrease the variance by 

increasing the number of runs. 

Chronic kidney disease (CKD) is a long-term health condition that typically lasts a lifetime and 

arises due to kidney cancer or diminished kidney function. The progression of this chronic illness can be 

stopped or slowed down to the point where the patient’s life can be sustained only through dialysis or surgery 

[1]. Earlier detection of CKD is difficult among patients, due to no symptoms and varying rates of kidney 

disease progression. Timely and precise prediction of kidney disease is essential for effective disease 

management [2]. The third objective of the UN's sustainable development goals (SDG) focuses on good 

health and well-being, highlighting the growing challenges posed by non-communicable diseases. One of the 

SDG targets for 2030 is to reduce premature deaths from non-communicable diseases by one-third [3]. 

Kidney injury is irreversible and can advance to end-stage renal disease (ESRD), eventually requiring renal 

replacement therapy (RRT) due to the loss of remaining kidney function [4]–[6]. According to Zhao et al. 

[7], treating CKD and renal failure is expensive and often ineffective. Early and accurate diagnosis, along 

with timely treatment, is essential for effective management of CKD. This study aims to design and validate 

a predictive model for identifying CKD. In previous research, Pal [4] employed three ML algorithms—

logistic regression (LR), decision tree (DT), and support vector machine (SVM)—to construct a predictive 

model. Similarly, Khalid et al. [8] introduced a hybrid approach that integrated Gaussian naïve Bayes (for 

gradient boosting) and a DT as the base learner, with a RF model serving as the meta-classifier. Debal and 

Sitote [3] investigated CKD using predictive models such as RF, SVM, and DT. In another study, Saif et al. 

[9] proposed three different models aimed at predicting CKD 6 to 12 months before clinical symptoms 

appear, employing sophisticated approaches like convolutional neural networks (CNNs), long short-term 

memory (LSTM) models, and deep ensemble learning techniques. Rahman et al. [10] focused on enhancing 

classification performance by applying feature selection methods such as recursive feature elimination (RFE) 

and the Boruta algorithm, along with multiple performance metrics, to identify optimal classifiers, striking a 

balance between high accuracy and low computational cost. 

Additionally, Lei et al. [2] conducted a comprehensive meta-analysis to evaluate how accurately 

ML techniques can diagnose the progression of kidney disease. Dritsas and Trigka [11] proposed a ML-based 

strategy for assessing CKD risk, leveraging a range of models including probabilistic, tree-based, and 

ensemble approaches such as SVM, LR, stochastic gradient descent (SGD), artificial neural networks (ANN), 

and k-nearest neighbors (k-NN). Lei et al. [2] performed a systematic meta-analysis to assess the diagnostic 

accuracy of ML algorithms for kidney disease progression. Dritsas and Trigka [11] developed an ML 

methodology to predict CKD risk, utilizing probabilistic, tree-based, and ensemble learning models, 

including SVM, LR, SGD, ANN, and k-NN. Lim et al. [12] reviewed CKD and noted that Cox regression 

modeling was the most commonly used method among the few studies examined. Aoki et al. [13] explored 

the application of ML techniques, including RF survival models, to study CKD in the U.S., focusing on 

laboratory-derived risk factors as predictors of estimated glomerular filtration rate (eGFR). Binsawad [14] 

analyzed the correlation between kidney function and electrocardiogram (ECG) readings using an optimized 

RF model, demonstrating superior performance in terms of classification accuracy (CA), false positive rate 

(FPR), and true positive rate (TPR) when compared to other methods. Hema et al. [15], utilizing both 

standard and real-time datasets, assessed the effectiveness of various ML algorithms—such as k-NN, RF, 

DT, gradient boosting, and extreme gradient boosting (XGBoost)—in forecasting CKD. Takkavatakarn et al. 

[16] focused on stage-4 CKD, employing four different models—LASSO regression, RF, XGBoost, and 

ANN—to predict the progression to end-stage kidney disease (ESKD). Sanmarchi et al. [17] provided a 

comprehensive review of ML methodologies used in CKD research, outlining both the potential advantages 

and limitations of these techniques in diagnosis, prognosis, and disease management. Zhu et al. [18] 

developed a pipeline to process longitudinal electronic health records (EHRs) and applied recurrent neural 

networks (RNNs) to forecast the progression of CKD from stages II/III to IV/V. Additionally, Ghosh and 
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Khandoker [19] evaluated ML-based prediction models for CKD and highlighted the interpretability of 

Shapley additive explanations (SHAP) and local interpretable model-agnostic explanations (LIME) 

frameworks, which offer valuable clinical insights for healthcare professionals. Alturki et al. [20] studied 

CKD prediction using RF with accuracy of 92.85% with synthetic minority oversampling technique 

(SMOTE). Rahman et al. [10] used ML algorithm for CKD prediction with 99.75% accuracy. Rajeashwari 

and Arunesh [21] used deep convolutional neural network (DCNN) and modified extreme random forest 

(MERF) approaches were used to predict CKD with 98.5% accuracy. 

From the literature review, it is learned that several studies are available on CKD prediction through 

machine-learning approaches. In the study of CKD, various parameters like dataset size, quality of dataset, 

and the timing of data collection play a crucial role. In the present study, a focus on CKD prediction using 

ML models for the big dataset is considered by a two-stage hybrid model of RF and GA. By this approach, 

the accuracy of the hybrid model improves. 

 

 

2. METHOD 

Diagnosing kidney disease is a crucial aspect of healthcare, which focuses on improving health 

through the prevention, diagnosis, treatment, and management of diseases and impairments. The early 

diagnosis helps society to undergo early treatment and hence avoid further damage to the health. Data about 

kidney disease is collected from open source at https://www.kaggle.com/datasets/rabieelkharoua/chronic-

kidney-disease-dataset-analysis. The data of 1,659 persons tested for 51 various parameters before 

diagnosing the CKD. 

A predictive model is generated using 1,659 persons with 51 tested parameters. The RF classifier is 

utilized for categorizing the data to fit the model and to predict. The effectiveness of the model is determined 

through the accuracy, which compares or deviation of the data considered and data generated through the 

model. Higher accuracy implies the model is effective in prediction. The effectiveness of the model in terms 

of accuracy in the RF classification depends upon various parameters viz, random state, test size, and 

hyperparameters. Key hyperparameters in RF classification include the number of trees (n_estimators), which 

indicates how many DTs the model will generate during training, selecting the best one through majority 

voting. Other important parameters are the minimum number of samples required at a leaf node 

(min_samples_leaf), which ensures that a split point at any depth leaves at least the specified minimum 

number of training samples in both branches, and the minimum number of samples needed to split an  

internal node. 

In this research, a GA is employed to enhance the model's accuracy in two stages. Stage 1, during 

the classification of the data, and stage 2, in tuning the hyperparameters. In stage 1, the precision of the 

model in terms of accuracy is analyzed by shuffling the data sets along with the test dataset size. The 

optimization of these two parameters focuses on accuracy through the use of a GA. Figure 1 shows 

architecture of the process. 

Stage 1: The lower and upper bound of the random state and test size is set as [13] 

Random_state = [0, 100] 

Test_size = [0.1, 0.5] 

Stage 1&2 : 

GA parameters set to  

Maximum number of iterations :30 

Population size :30 

Mutation probability = 0.1 

Elit ratio = 0.01 

Crossover probability = 0.85 

Parents portion = 0.3 

Crossover type = Uniform 

GA is used to optimize hyperparameters for RF classifications employing evolutionary strategies to 

search for the best hyperparameter set. GA are based on natural selection principles and employ techniques 

like selection, crossover, and mutation to evolve solutions to optimization problems. The optimized random 

state and test size, determined for model accuracy, are subsequently used as input parameters in the second 

level of the GA to refine the hyperparameters of the RF classifier. This additional step enhances the 

hyperparameters to achieve better accuracy for model fitting and prediction [22]–[24]. 

This study focuses on optimizing the random state, test size, and three key hyperparameters: the 

n_estimators, the min_samples_leaf, and the minimum number of samples required for a split. 

The simulation is terminated if the conditions (lower/and upper bound) are not satisfied  

Hyper parameters lower and upper bound set to : [25] 

Number of trees (n_estimators) = [1, 100] 
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Minimum samples leaf (min_samples_leaf) = [1, 10] 

Minimum samples to split() = [2, 10] 

 

 

 
 

Figure 1. Architecture of GA integrated with RF 

 

 

3. RESULTS AND DISCUSSION 

The predictive model is generated and simulations were performed with RF classification as follows 

the accuracy obtained in these simulations is tabulated: 

‒ Test size 10 to 50 and Random State 0 to 100 

‒ Integrating GA with RF in two levels,  

Stage 1: To optimize test size and random state, 

Stage 2: Input of optimized test size and random state to optimize hyperparameters such as N estimators, 

minimum leaf, and minimum split. The objective of the GA is to improve the accuracy of the 

classification by selecting appropriate effecting parameters. 

The simulations were conducted for test size 10 to 50 and random state 0 to 100. The accuracy 

obtained is tabulated in Table 1. The simulation result in Table 1 reveals that a maximum accuracy of 0.9518 

is obtained for test size 10 for random stages 10 & 100. Integrating GA with RF in two levels, stage 1: to 

optimize test size and random state, stage 2: input of optimized test size and random state to optimize 

hyperparameters such as N Estimators, minimum leaf, and minimum spit. A total of 50 simulation runs were 

conducted, and the findings are summarized in Table 2. 

 

 

Table 1. Simulation result of test size and random state on accuracy 

Test 

size 

Random state 

0 10 20 30 40 50 60 70 80 90 100 

Accuracy 

10 0.8916 0.9518 0.9337 0.9036 0.9337 0.9157 0.9337 0.9036 0.9036 0.9398 0.9518 

15 0.8956 0.9116 0.9438 0.9157 0.9277 0.9197 0.9277 0.8916 0.9116 0.9197 0.9157 

20 0.9006 0.9127 0.9367 0.9157 0.9187 0.9096 0.9277 0.9066 0.9187 0.9066 0.9157 

25 0.9012 0.8988 0.9181 0.9205 0.9205 0.9181 0.9205 0.9060 0.9157 0.9060 0.9084 

30 0.9076 0.8956 0.9197 0.9237 0.9197 0.9137 0.9217 0.9157 0.9177 0.9116 0.9096 

35 0.9105 0.9002 0.9157 0.9243 0.9243 0.9191 0.9208 0.9157 0.9243 0.9105 0.9053 

40 0.9142 0.9066 0.9142 0.9217 0.9292 0.9187 0.9187 0.9172 0.9187 0.9157 0.9066 

45 0.9170 0.9090 0.9116 0.9183 0.9210 0.9183 0.9157 0.9264 0.9237 0.9157 0.9116 

50 0.9157 0.9096 0.9072 0.9229 0.9193 0.9205 0.9157 0.9277 0.9205 0.9120 0.9157 
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Table 2. Simulation result of GA integrated RF in two levels 
No. of Run Stage 1: Output of GA to optimize random state and test size Stage 2: Output of GA to optimize hyper-parameters 

Random state Test size  Random state Test size  Random state 

1 97 0.416 0.9507 26 2 8 0.9522 

2 34 0.103 0.9593 8 2 5 0.9650 

3 44 0.207 0.9623 13 1 9 0.9652 

4 86 0.100 0.9581 31 1 3 0.9640 

5 14 0.110 0.9529 85 2 3 0.9528 

6 44 0.180 0.9658 7 8 7 0.9623 

7 77 0.110 0.9581 14 1 3 0.9685 

8 14 0.220 0.9539 22 1 6 0.9593 

9 3 0.200 0.9451 4 7 9 0.9542 

10 20 0.160 0.9513 9 2 5 0.9550 

11 77 0.128 0.9624 26 2 10 0.9671 

12 37 0.130 0.9509 11 2 5 0.9554 

13 97 0.350 0.9504 30 2 2 0.9504 

14 9 0.130 0.9577 17 1 5 0.9624 

15 12 0.380 0.9504 17 6 5 0.9504 

16 14 0.220 0.9526 26 1 2 0.9582 

17 44 0.140 0.9612 27 7 4 0.9655 

18 44 0.150 0.9592 47 1 2 0.9632 

19 14 0.220 0.9539 4 5 5 0.9566 

20 44 0.100 0.9651 8 4 10 0.9651 

21 21 0.120 0.9598 12 5 6 0.9648 

22 34 0.110 0.9558 12 1 7 0.9613 

23 89 0.110 0.9572 10 5 10 0.9626 

24 32 0.100 0.9538 11 5 9 0.9595 

25 21 0.144 0.9585 21 2 8 0.9627 

26 77 0.130 0.9630 13 4 7 0.9722 

27 97 0.360 0.9502 31 4 7 0.9518 

28 14 0.220 0.9570 56 2 6 0.9569 

29 86 0.100 0.9540 3 7 6 0.9655 

30 9 0.110 0.9529 6 2 2 0.9738 

31 14 0.190 0.9527 17 1 5 0.9558 

32 44 0.200 0.9585 33 1 10 0.9614 

33 9 0.120 0.9543 28 4 10 0.9593 

34 44 0.600 0.9590 5 10 4 0.9664 

35 34 0.110 0.9545 18 1 4 0.9600 

36 14 0.220 0.9530 26 1 3 0.9558 

37 44 0.130 0.9628 13 1 3 0.9720 

38 14 0.220 0.9562 7 7 6 0.9616 

39 21 0.210 0.9590 3 2 6 0.9692 

40 14 0.200 0.9527 61 1 4 0.9556 

41 3 0.210 0.9484 14 4 4 0.9512 

42 44 0.180 0.9623 25 1 4 0.9617 

43 44 0.110 0.9568 33 1 10 0.9675 

44 9 0.130 0.9526 5 6 6 0.9668 

45 21 0.130 0.9628 8 4 7 0.9674 

46 44 0.140 0.9657 21 1 4 0.9699 

47 77 0.130 0.9593 2 10 4 0.9683 

48 86 0.130 0.9471 5 4 10 0.9519 

49 21 0.130 0.9631 87 4 5 0.9631 

50 9 0.15 0.9547 4 10 8 0.967 

 

 

The result of GA in stage 1 and stage 2 indicates that the accuracy varies from 0.9451 to 0.9738 for 

optimized random state and test size. In stage 2, the accuracy is decreased in 4 runs, with no change with  

1 run out of 50, and in the remaining simulation run the accuracy increased to a maximum of 0.0209 (2.09%). 

45 runs out of 50 indicated that integrating GA with RF in stages 1 and 2 improved the accuracy. This further 

leads to fitting the predictive model more effectively. 

The GA-generated simulation of stage 1 (50th run in Table 2) shows in Figure 2 that the accuracy 

obtained is 0.9547 with random stage 9 and test size 0.15. Figure 2 indicates that no improvement in the 

result was found after 23 iterations. Similarly, Figure 3 reveals stage 2- GA simulation to optimize 

hyperparameters. The accuracy obtained in this run is 0.967. Three parameters such as the number of tree (4), 

minimum leaves (10), and minimum leaf to spit (8) are optimized for an accuracy is 0.967 in the 50th run as 

shown in Table 2. This shows that GA improves the accuracy from stage 1 to stage 2. The detailed DT is 

depicted in Figure 4 for pictorial representation. The simulation is carried out using Python v3.3 with 8 GB 

RAM, with GA function and ML algorithm in Windows 10 operating system. 
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Figure 2. State 1- GA simulation to optimize random 

state and test size, accuracy is the objective function 

 

Figure 3. Stage 2- GA simulation to optimize 

hyperparameters 
 

 

 
 

Figure 4. Pictorial representation of the DT 
 
 

4. CONCLUSION 

This study presents a novel approach to optimizing the performance of an RF classifier by 

integrating a GA for the prediction of CKD using a dataset of 1659 patients with 51 parameters. By 

systematically optimizing the random state, test size, and hyperparameters in a two-stage process, the method 

effectively enhances the accuracy of the RF model. The optimization process, conducted over 50 simulation 

runs, demonstrates a significant improvement in model accuracy, ranging from 0.9451 to 0.9738, with a 

maximum increase of 2.09%. These findings highlight the critical role of optimizing both model parameters 

and hyperparameters to enhance the predictive capabilities of ML models, especially within the realm of 

medical diagnostics. The combination of GA with RF not only enhances model performance but also 

establishes a strong and reliable framework for improving prediction accuracy in clinical settings. Future 

studies may consider applying this optimization strategy to different diseases and datasets to further assess its 

effectiveness and versatility. 
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