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 Rainfall prediction is essential for managing water resources, agriculture, 
and disaster response, particularly in regions affected by climate variability. 

This study introduces a modified genetic algorithm (MGA) to optimize 

hyperparameters of a multilayer perceptron (MLP) for rainfall forecasting. 

The MGA incorporates elitism to retain top -performing solutions and 

adaptive selection based on model accuracy. The proposed MGA–MLP 
model was tested on rainfall datasets from Australia and Indonesia (BMKG). 

Experimental results show that configurations with two hidden layers, 

rectified linear unit (ReLU) activation and limited-memory Broyden 

Fletcher Goldfarb Shannon (LBFGS) optimizer, a learning rate of 0.001 and 

1000 epochs consistently delivered strong performance. The model achieved 
accuracies of 86.02% and 79.05%, respectively. These findings indicate that 

MGA significantly improves MLP performance and provides a reliable, 

generalizable method for rainfall prediction across diverse climatic 

conditions. 
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1. INTRODUCTION 

Weather is a complex and dynamic atmospheric phenomenon governed by interdependent variables, 

including temperature, humidity, wind, air pressure, and precipitation. These parameters fluctuate over short 

time scales and exhibit nonlinear interactions, requiring advanced analytical methods for accurate prediction. 

As noted by Chen et al. [1], machine learning (ML) has emerged as a crucial tool in weather and climate data 

analysis due to its ability to efficiently process high-dimensional and nonlinear data. Rainfall prediction, in 

particular, remains a significant challenge due to its high spatiotemporal variability and the compounding 

effects of climate change [2]. Rainfall processes are deeply intertwined with broader climatic dynamics, 

including evaporation and condensation cycles, as well as regional atmospheric circulation patterns.  

The authors in [3], [4] highlighted the critical role of rainfall in sustaining groundwater recharge and 

supporting long-term hydrological management. In the Indonesian context, climate anomalies have amplified 

the frequency and severity of hydrological extremes. For example, Gradiyanto et al. [5] reported notable 

disruptions in the hydrological regime of the Kupang River, attribut ing the shifts to increased rainfall 

variability in the Greater Pekalongan area.  

In response to these challenges, artificial intelligence (AI) has significantly advanced the modeling 

of precipitation systems. Doost et al. [6] demonstrated how K-means clustering can effectively pre-process 
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spatial rainfall patterns to improve model accuracy. Kantharia et al. [7] employed an adaptive neuro-fuzzy 

inference system (ANFIS) that incorporated soil moisture parameters for improved runoff modeling. At the 

same time, Mahajan and Sharma [8] highlighted the comparative performance of classical ML algorithms in 

rainfall forecasting. Hybrid approaches are also gaining momentum. For instance, Wang et al. [9] compared 

back-propagation neural network (BPNN), group method of data handling (GMDH), and autoregressive 

integrated moving average (ARIMA) models coupled with wavelet decomposition for monthly rainfall 

prediction. Meanwhile, Liao et al. [10] introduced a ConvLSTM-SmaAT-UNet framework for short-term 

rainfall forecasting with promising results. Deep learning has further elevated rainfall modeling capabilities. 

Hu et al. [11] merged multisource precipitation data using ConvLSTM architectures, and Farooq et al. [12] 

integrated meteorological indices with ML models to refine deterministic predictions in  Australia.  

Rahman et al. [13] utilized ML fusion to support innovative city rainfall systems, while Fang et al. [14] 

combined long-lead multi-model forecasts into a deep learning structure. Similarly, Li et al. [15] developed 

ensemble learners to improve the accuracy of seasonal rainfall predictions. 

The refinement of neural network architectures has also seen significant developments.  

Necesito et al. [16] introduced a univariate deep learning framework for daily rainfall prediction in  

data-scarce regions. The authors in [17], [18] employed deep generative models for precipitation nowcasting, 

thereby improving both temporal resolution and spatial accuracy. Ling et al. [19] proposed a diffusion-based 

two-stage forecasting model, while Harris et al. [20] leveraged stochastic downscaling to increase the 

granularity of climate-scale rainfall projections. Feature selection and automation techniques continue to 

boost forecasting performance. Quintanar et al. [21] applied AutoML for predicting the standardized 

precipitation index, and Wen et al. [22] proposed AdaNAS, a neural architecture search method tailored for 

ensemble rainfall prediction. He et al. [23] explored multimodal deep learning frameworks integrating 

meteorological and environmental features, while authors in [24], [25] demonstrated the effectiveness of 

ensemble methods in projecting future precipitation scenarios and sub-seasonal forecasts. 

Building upon these advancements, this study introduces a modified genetic algorithm (MGA) to 

optimize the hyperparameters of a multilayer perceptron (MLP) model. The proposed MGA incorporates 

elite chromosome preservation and adaptive gene selection to accelerate convergence and mitigate premature 

stagnation. The optimized MLP is evaluated using rainfall datasets from both Australia and Indonesia, 

allowing for a comparative performance analysis across distinct climatic regions and thereby enhancing the 

generalizability of rainfall prediction systems. 

 

 

2. METHOD 

2.1.  Datasets  

This study utilizes two real-world rainfall datasets to assess the performance and generalization 

capabilities of the proposed model. The first dataset is the Australian rainfall dataset, obtained from Kaggle, 

which consists of 145,460 daily records from 49 weather stations across Australia. After eliminating missing 

values, 56,564 valid samples were retained. The dataset includes 22 attributes, of which 17 are numerical. 

The second dataset was collected by the Meteorology, Climatology, and Geophysics Agency (BMKG) of 

Indonesia. It initially contained 589,265 daily samples and 12 attributes, 9 of which are numerical. After 

cleaning, 372,151 samples remained. These datasets represent distinct climatic regions: temperate (Australia) 

and tropical (Indonesia), providing a comprehensive basis for assessing both model robustness and  

cross-regional generalization performance [5], [12]. 

 

2.2.  Data preparation 

Both datasets underwent a structured and consistent preprocessing pipeline to prepare them for 

binary classification tasks. The process began with the removal of incomplete entries to ensure the q uality 

and reliability of the data. Next, only specific weather stations deemed relevant to the study were retained. 

Following this, all numerical input features were normalized using min–max scaling to bring them onto a 

comparable scale. Finally, the target variable representing rainfall was encoded into binary labels, aligning 

with the classification framework employed in this study [2], [6], [8]. 

For the Australian dataset, sixteen meteorological attributes were selected as input features: 

MinTemp, MaxTemp, Rainfall, Evaporation, Sunshine, WindGustDir, WindGustSpeed, WindDir9am, 

WindDir3pm, WindSpeed9am, Pressure3pm, Cloud9am, Cloud3pm, Temp9am, Temp3pm, and RainToday. 

The output variable, RainTomorrow, was encoded as 1 for " rain" and -1 for "no rain". In the BMKG dataset, 

eight features were selected to capture the characteristics of tropical climate conditions. The output variable, 

RR (rainfall amount), was transformed into binary classes, where rainfall amounts exceeding 1 mm were 

labelled as 1 (rain) and those equal to or below 1 mm were labelled as –1 (no rain). The detailed descriptions 

of the selected BMKG features are presented in Table 1. All preprocessing steps were implemented using 

Python with the Pandas and scikit-learn libraries [13], [16]. 
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Table 1. Descriptions of selected features from the BMKG dataset  
Feature Description 

Tn Minimum temperature usually occurs in the early morning 
Tx Maximum temperature, typically occurring in the afternoon. 

Tavg Average of Tn and Tx, indicating general temperature conditions. 

RH_avg Average relative humidity (%), showing moisture in the air. 
RR Rainfall amount (mm), representing total precipitation. 
ss Duration of sunshine (hours) during the observation period. 

ff_x Maximum wind speed (m/s) recorded during the day. 

ddd_x Direction of the maximum wind. 
ff_avg Average wind speed (m/s). 

 

 

2.3.  Data class distribution visualization 

To visualize the separation between rainfall classes, the sixteen input features from the Australian 

dataset were transformed into a single discriminant axis using linear discriminant analysis (LDA). This 

dimensionality reduction technique preserved the class -separating characteristics while projecting the  

high-dimensional data onto a one-dimensional space. The transformed data were then plotted in a histogram to 

illustrate the distribution of the two classes: “rain” and “no rain”. A similar process was conducted for the 

BMKG dataset, applying LDA to project the selected features onto a one-dimensional axis. The resulting class 

distributions for both datasets are illustrated in Figure 1 for Australia and Figure 2 for Indonesia  [16], [26]. 

 

 

 
 

Figure 1. LDA-transformed class distribution for the Australian dataset  

 

 

 
 

Figure 2. LDA-transformed class distribution for the BMKG dataset 
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The histograms demonstrate a degree of overlap between the two rainfall classes, particularly in 

regions near the decision boundary. This overlapping class distribution suggests the potential for 

misclassification, especially for models that fail to effectively capture nonlinear or high-order feature 

interactions. Therefore, robust classification strategies and adaptive hyperparameter optimization are crucial for 

enhancing predictive accuracy. All preprocessing and visualization steps in this phase were implemented using 

Python with the scikit-learn and Matplotlib libraries. The use of dimensionality reduction for class separability 

has parallels in recent rainfall distribution studies employing hybrid reduction -clustering techniques [26]. 
 

2.4.  Schematic of the proposed method 

The overall framework of the proposed rainfall prediction system is depicted in Figure 3. It integrates 

MGA with an MLP to optimize classification performance, which is consistent with recent works highlighting 

the effectiveness of evolutionary optimization for deep learning models in rainfall forecasting [6], [22]. The 

flowchart outlines the end-to-end process, beginning with data preprocessing, followed by population 

initialization and fitness evaluation, and culminating in model convergence through iterative optimization.  
 
 

 
 

Figure 3. Workflow of the proposed MGA–MLP-based rainfall prediction framework 
 
 

The system consists of three primary components that operate interactively throughout the 

optimization process. The first component is the MLP module, which is responsible for configuring, training, 

and evaluating the MLP. This module defines the neural network architecture, including the number of 

hidden layers, the number of neurons per layer, the activation functions, the optimizer type, the learning rate, 

and the number of training epochs. The model is trained using 80% of the  data and tested on the remaining 

20%, a common practice in rainfall prediction studies to ensure fair model evaluation [9], [14]. The resulting 

classification accuracy serves as the fitness value for each chromosome. This component operates during the 

fitness evaluation phase, corresponding to step 5. 

The second component is the hyperparameter encoding module, which encodes each candidate 

solution (i.e., an MLP configuration) into a structured chromosome format. Each chromosome consists of a 
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sequence of genes, with each gene representing a specific hyperparameter. This encoding enables efficient 

manipulation through genetic operators, such as crossover and mutation , which are widely applied in rainfall-

related optimization frameworks  [2], [13]. The encoding and decoding processes are carried out during 

population initialization (step 3) and fitness evaluation (step 5). 

The third component is the MGA optimization module, which forms the core of the evolutionary 

search mechanism. Once chromosomes are ranked by fitness, the algorithm selects the top-performing 

individuals as parents. Genetic operators are then applied to produce new offspring. A notable feature of this 

module is the probability-based update mechanism, which constructs probabilistic distributions o f 

hyperparameter values based on the top five chromosomes in each generation. These distributions guide the 

sampling of new candidate solutions, steering the search toward configurations that have historically been 

successful, a strategy that improves exploration–exploitation balance compared to classical GA [15], [21]. 

This process occurs between steps 7 and 9. 

The interaction between these components enables the system to explore the hyperparameter space 

more efficiently than traditional grid search methods, thereby improving both computational efficiency and 

generalization performance across datasets with different climatic characteristics. The complete operational 

workflow is summarized in Table 2. All simulations were conducted using Python 3.10 with the TensorFlo w 

and scikit-learn libraries, which are widely used in rainfall forecasting research for their robustness and 

scalability [8], [10]. All experiments were executed on a workstation equipped with an Intel Core i7 CPU and 

16 GB of RAM. 
 

 

Table 2. Summary of the MGA–MLP process 
Process Description 

Data loading Load rainfall datasets (Australian and BMKG) from CSV files into system memory.  
Preprocessing Select relevant weather stations, clean missing values, normalize input features, and encode the 

binary target  (1= rain, –1= no rain). 
Generate initial population Randomly generate an initial population of 20 chromosomes, where each chromosome encodes 

a set of MLP hyperparameters. 
Train-test split  (80:20) Split  the preprocessed data into 80% training and 20% testing subsets using random sampling. 
Evaluate fitness Train an MLP model for each chromosome configuration and calculate classification accuracy 

as its fitness score. 
Select best parents Identify and retain top-performing chromosomes based on fitness scores. 
Update probabilities Adapt the distribution of hyperparameter values for the next generation based on traits of the 

best five parent chromosomes. 

Crossover and mutation Perform crossover and mutation to generate new offspring chromosomes from selected parents. 
Introduce random chromosomes Add randomly generated chromosomes into the population to maintain exploration and genetic 

diversity. 
Check termination Determine whether the maximum generation limit (100) has been reached. If not, return to 

training step for the next generation. 
Final model output Output the final MLP model using the best hyperparameter configuration obtained through the 

MGA process. 

 
 

3. RESULTS AND DISCUSSION 

3.1.  Performance of MLP using modified genetic algorithm for hyperparameter tuning  

This study optimized a MLP model using MGA for hyperparameter tuning. The implementation of the 

MLP model was carried out using the scikit-learn library in Python. The model training function is defined as: 
 

Def MLP_Model(strukturHidden,aktivasi,optimizer,epoch,learning_rate,x,y,xVal,yVal): 

   clf=MLPClassifier (hidden_layer_sizes=strukturHidden,  activation=aktivasi, solver=optimizer, 

   learning_rate_init=learning_rate, max_iter=epoch, random_state=1, verbose=False, to1=0.000001) 

   clf.fit(x,y);  ypred=clf.predict(xVal) 

   accurate = accuracy_score(yVal, ypred) 

   return round(accurate, 5) 

 

This function receives several hyperparameters as inputs and returns the model’s classification accuracy, 

which is computed based on predictions made on the validation dataset  [9]. The MLP model is tuned using 

six key hyperparameters, as shown in Table 3. 

The dataset was randomly split into 80% training and 20% validation subsets to evaluate  the model’s 

performance. The genetic algorithm (GA) iteratively updates the hyperparameters through successive 

generations to maximize the model’s accuracy. In each generation, the MLP model is trained using the 

specified hyperparameters, and its classification accuracy is computed using the validation subset. The result is 

rounded to five decimal places to maintain consistency during comparison. This setup allows for an adaptive 

and systematic search over the hyperparameter space, leading to the discovery  of optimal configurations that 

improve the MLP’s ability to predict rainfall outcomes accurately across different datasets. 
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Table 3. Key hyperparameters used in MLP optimization 
Hyperparameter Description 

Hidden layer size Specifies the number of hidden layers and the number of neurons in each layer. 
Activation function Determines the non-linear transformation applied to the output of each neuron in the hidden 

layers. Standard options include ‘rel’, ‘logistic’, and ‘tanh’. 
Solver (optimizer) Refers to the optimization algorithm that adjusts the weights during backpropagation. 

Standard solvers include ‘adam’, ‘sgd’, and ‘lbfgs’. 

Learning rate Refers to controls the size of the weight updates during training. These hyperparameters 
affect the convergence speed and stability of the model. 

Epochs The number of complete passes over the training dataset, contributing to the training depth 
of the model. 

Other hyperparameters Any parameters not explicitly mentioned were retained at their default values as defined by 
the scikit-learn implementation. 

 
 

3.1.1. Chromosome formation in the genetic algorithm 

In the context of this study, each chromosome within the GA encodes a unique configuration of 

hyperparameters for the MLP model. The encoded parameters include the number of hidden layers, the 

activation function, the optimizer type, the number of training epochs, and the learning rate. All other 

hyperparameters not explicitly defined are retained at their default values as specified by the system’s library. 

The chromosome structure is formally represented as follows: 

 
Chromosome structure = {hidden layers, activation function, optimizer, epochs, learning rate} 

 

The GA population consists of multiple chromosomes sharing the same structural format. Each 

chromosome is assigned an index from 1 to n. The model accuracy associated with each chromosome is 

calculated during the evolutionary process. Chromosomes with the highest accuracy are selected as parents 

for the next generation. New chromosomes are then generated th rough crossover and mutation operations 

applied to these selected parents, allowing exploration of potentially better hyperparameter configurations in 

the solution space. 

 
3.1.2. Modified genetic algorithm 

This study introduces MGA that incorporates two primary enhancements to improve performance 

and stability: 

i) Preservation of high-performing chromosomes across generations: this strategy ensures that the best-

performing chromosomes are retained throughout the evolutionary process, avoiding the loss of optimal 

solutions due to random variation. 

ii) Adaptive selection probability based on chromosome fitness: chromosomes with higher accuracy are 

more likely to be selected for crossover and mutation. This selection accelerates convergence and 

increases the likelihood of discovering high-performing configurations earlier. 

These modifications aim to address the limitations of conventional GAs, such as the risk of 

premature convergence and the instability caused by purely random selection mechanisms. As a result, the 

modified algorithm achieves improved model performance, attaining an accuracy of 86.016% on the 

Australian rainfall dataset and 79.05% on the BMKG dataset. These results surpass the baseline 

performance of standard GAs previously reported in the literature [12]. Furthermore, the adaptability of 

the proposed MGA makes it applicable beyond rainfall prediction, offering potential benefits for 

optimization tasks in domains such as financial forecasting and healthcare systems. This MGA 

significantly contributes to hyperparameter optimization in ML by improving stability, convergence speed, 

and generalization capability. 

 
3.2.  Result 

3.2.1. Hidden layers analysis  

The proposed method was applied to two rainfall datasets: the Australian rainfall dataset obtained 

from Kaggle.com and the Indonesian BMKG rainfall dataset. Both datasets were randomly divided into  

training and testing subsets in an 80:20 ratio. Through multiple generations of evolutionary optimization, 

optimal hyperparameter configurations were obtained, following similar approaches in recent rainfall 

prediction studies [6], [16], [26]. 

i) Australian data: the highest accuracy of 0.86016 was achieved using the following configuration: 

‒ 'hidden_layers': [9, 7, 3, 3, 6, 3, 8, 10, 8] 

‒ 'activation_function': 'tanh' 

‒ 'optimizer': 'lbfgs' 
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‒ 'epoch': 1000 

‒ 'learning_rate': 0.001 

ii) BMKG Data: The highest accuracy of 0.7905 was achieved using the following configuration: 

‒ 'hidden_layers': [10, 7] 

‒ 'activation_function': 'tanh' 

‒ 'optimizer': 'lbfgs' 

‒ 'epoch': 1000 

‒ 'learning_rate': 0.001 

The model was executed for 100 generations, evaluating multiple hidden layer architectures. It wa s 

observed that two hidden layers consistently produced the highest accuracy across both datasets. Table 4 

summarizes the various hidden layer configurations that led to firm performance. 

Hidden layers in artificial neural networks play a crucial role in processing complex rainfall data. 

The dataset used in this study has moderate feature dimensions (16 features for the Australian data and 8 for 

the BMKG data) with overlapping class distributions. Based on the experimental results, two hidden layers 

were optimal for capturing non-linear patterns and improving the model’s ability to better separate the data 

classes. The first layer captures complex feature interactions, while the second layer simplifies the data 

representation into high-level abstractions, enhancing the model’s classification ability. Using two hidden 

layers, the model effectively captures data patterns without causing overfitting. Reducing the number of 

nodes between the first and second layers, such as in configurations like [10, 5] or [14, 7], is a natural form of 

regularization, improving the model’s generalization capability. 

In addition to using two hidden layers, activation functions such as rectified linear unit (ReLU) and 

tanh were employed to support the non-linear transformations required for processing rainfall data. ReLU is 

particularly effective because it filters out noise by mapping negative values to zero, while tanh provides 

competitive performance for smaller networks with normalized data, thanks to its symmetric output range of 

[-1, 1]. Combining these activation functions contributed to achieving high accuracy (86.016% for the 

Australian data and 79.05% for the BMKG data) while maintaining computational efficiency. Experiments 

with configurations involving more than two hidden layers showed the risk of overfitting without 

significantly improving accuracy. Conversely, using only one hidden layer proved insufficient to adequately 

capture the data’s complexity. Therefore, two hidden layers offer an optimal balance between model 

capacity, generalization, and computational efficiency. 

 

 

Table 4. Hidden layer structures associated with high classification accuracy  
Hidden layer count  Generations Unique hidden layer structures 

1 10 [11], [7], [2], [14] 

2 41 [10, 5], [12, 1], [14, 7], [10, 7], [5, 3], [6, 9], [11, 4], [12, 14] 
3 5 [6, 8, 2], [13, 13, 7] 
5 17 [12, 11, 4, 9, 2], [6, 14, 13, 5, 5], [14, 6, 10, 5, 12], [7, 3, 1, 11, 11], [12, 12, 6, 2, 11]  

6 13 [5, 12, 1, 2, 11, 3], [9, 2, 8, 3, 8, 3], [4, 14, 4, 5, 10, 6]  
7 2 [6, 5, 7, 13, 3, 14, 7] 
8 3 [5, 8, 8, 8, 1, 10, 4, 11], [11, 4, 8, 8, 5, 10, 10, 6]  
9 9 [13, 8, 10, 13, 14, 1, 4, 13, 14], [11, 11, 8, 2, 13, 13, 7, 8, 9], [13, 10, 6, 3, 7, 3, 2, 13, 8], 

[4, 2, 2, 14, 10, 6, 7, 1, 7], [6, 4, 3, 8, 8, 3, 10, 8, 5]  

 

 

3.2.2. Node count optimization 

The number of nodes in the hidden layers significantly influences the network’s capacity to capture 

patterns within the data. In this study, the rainfall datasets comprising 16 features in the Australian dataset 

and 8 in the BMKG dataset required an architecture capable of modelling moderate complexity. Optimal 

configurations such as [10, 5] and [14, 7] indicate that the first layer captures complex feature interactions 

while the second layer condenses these interactions into abstract representations suitable for classification. 

From a model design perspective, the ideal number of nodes balances representational power and 

generalization. A progressive reduction in node count between hidden layers acts as an implicit regularize, 

mitigating the risk of overfitting, which aligns with prior findings on neural network architectures for rainfall 

prediction [9]. This behavior was reflected in the achieved accuracies: 86.016% for the Australian dataset and 

79.05% for the BMKG dataset. 

Further experiments revealed that using too few nodes (e.g., [5, 2]) led to underfitting, while an 

excessive number of nodes (e.g., [20, 15]) increased computational cost without substantial gains in 

accuracy. Therefore, configurations such as [10, 5] and [14, 7] were found to strike the optimal balance 

between model complexity, efficiency, and accuracy. In total, eight two-layer hidden structures consistently 

yielded high accuracy: [10, 5], [12, 1], [14, 7], [10, 7], [5, 3], [6, 9], [11, 4], and [12, 14]. 
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3.2.3. Activation function selection 

Activation functions are crucial components in artificial neural networks as they determine how data 

is processed at each layer. In this study, ReLU achieved the highest accuracy (86.016% for the Australian 

dataset and 79.05% for the BMKG dataset) due to its ability to handle complex non -linear patterns and 

efficiency in training large networks. The dataset used in this study has moderate yet complex feature 

dimensions, requiring an activation function capable of effectively capturing non-linear patterns. ReLU 

demonstrated superior performance on datasets with positive values because of its ability to filter out noise 

by mapping negative values to zero. On the other hand, tanh showed competitive results for sma ller 

networks, as its symmetric output range of [-1, 1] is well-suited for normalized data. The average activation 

function that provided the best accuracy was ‘relu’, based on 15 runnings, and each running ha d 40 

generations, as shown in Table 5. 

According to Table 5, the activation functions achieving high accuracy were ReLU with 297 

occurrences, tanh with 110, and logistic with 193. This result suggests that ReLU has the highest probability 

of delivering high accuracy. From the model perspective, ReLU helps address the vanishing gradient 

problem, enabling networks with two hidden layers to learn more complex patterns without losing efficiency , 

a property also noted in deep learning approaches for rainfall prediction [16]. So, it ensures that the model 

performs well on the training data and generalizes effectively to the testing data. 
 

 

Table 5. The activation function 
Activation function Running 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

ReLU 1 23 32 16 26 25 14 21 11 31 26 14 19 11 27 

Tanh 1 3 3 7 5 10 16 7 2 6 5 2 20 11 12 
logistic 38 14 5 17 9 5 10 12 27 3 9 24 1 18 1 

 

 

3.2.4. Optimizer analysis  

The optimizer determines how the model updates its parameters during training. In this study, three 

optimizers were compared: blogs, Adam, and stochastic gradient descent (SGD). Table 6 shows the 

frequency of high-accuracy outcomes across 15 experimental runs (40 generations each). 

The research findings show that the limited-memory Broyden Fletcher Goldfarb Shannon (LBFGS) 

optimizer outperforms the others, with the highest frequency of achieving high accuracy. Several key factors 

can explain this result. First, LBFGS is a quasi-Newton algorithm designed to efficiently handle non-linear 

problems. MLP models use complex non-linear activation functions, making LBFGS ideal for achieving fast 

and stable convergence in this context. Using an approximated Hessian matrix approach, LBFGS takes more 

informed steps toward the function’s minimum, improving efficiency. Second, compared to other optimizers 

such as SGD or Adam, LBFGS processes the entire dataset in each iteration (full-batch optimization). This 

approach minimizes noise in gradient estimates, resulting in a more stable optimization process. In this study, 

the dataset (rainfall data from Australia and BMKG) is of moderate size, so LBFGS performs optimally 

without suffering from memory limitations often associated with larger datasets. Third, the success of 

LBFGS can also be attributed to the combination of hyperparameters determined through the tuning process, 

particularly the learning rate of 0.001 and 1000 epochs. This combination provides a balanced exploration -

exploitation tradeoff during optimization, allowing LBFGS to effectively search the parameter space and 

reach optimal convergence. Overall, the full-batch optimization, stability against noise, and efficiency in 

handling non-linear problems make LBFGS an excellent choice for this study. These findings are consistent 

with prior works that have highlighted the effectiveness of LBFGS in training neural networks with 

structured and moderately sized datasets [16]. 
 

 

Table 6. Frequency of best-performing optimizers 
Optimizer Running 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

LBFGS 40 35 27 35 27 39 36 37 38 31 25 37 23 36 39 
SGD 0 1 1 1 1 0 1 1 1 6 3 0 1 0 1 

Adam 0 4 12 4 12 1 3 2 1 3 12 3 16 4 0 

 

 

3.2.5. Epoch optimization 

This study tested several epoch values: 100, 200, 300, 400, 500, 1000, 2000, and 3000. These values 

were chosen randomly, and each epoch was evaluated across 15 runs, with 40 generations per run. The results 

are summarized in Table 7. As shown in the table, an epoch value of 1000 most frequently produced the 
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highest accuracy. Selecting the optimal number of epochs is crucial to ensure that the model learns data 

patterns effectively without causing overfitting. In this study, 1000 epochs were found to provide the best 

performance. Experiment results show that fewer epochs, such as 500 or 300, caused the model to fail in 

achieving full convergence (underfitting). In comparison, more epochs, such as 2000 or 3000, did not yield  

significant accuracy improvements and even increased the risk of overfitting. The rainfall datasets with 

moderate feature dimensions and nonlinear patterns required sufficient training time to learn complex patterns. 

One thousand epochs ensured that the model had enough time to converge, which was supported by its high 

performance on the test data (86.016% for the Australian dataset and 79.05% for the BMKG dataset). These 

findings are consistent with previous research indicating that an appropriate number of training epochs, 

matched to dataset complexity and optimizer characteristics, is essential for achieving high accuracy without 

overfitting [1]. Furthermore, this choice complements the LBFGS optimizer, which relies on stable and full-

batch updates to efficiently find optimal solutions. With 1000 epochs, the model achieved a balance between 

adequate training and generalization capability, reflected in the consistency of accuracy across multiple runs.  
 

 

Table 7. Frequency of best-performing epochs across 15 runs  
Epoch Number of running 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Total 

100 5 9 0 0 4 0 0 1 3 0 9 2 0 0 0 33 
200 1 0 11 2 2 4 10 13 0 17 0 15 1 1 16 93 
300 0 1 0 1 4 0 0 1 0 1 4 4 4 3 8 31 

400 3 7 2 8 4 11 0 1 9 0 3 8 2 13 2 73 
500 3 1 4 0 6 1 2 11 0 8 14 8 16 3 4 81 

1000 5 1 12 15 2 22 5 1 10 10 3 0 7 1 9 103 
2000 18 2 7 13 15 2 5 2 6 1 7 2 0 11 0 91 

3000 5 19 4 1 3 0 18 10 12 3 0 1 10 8 1 95 

 
 

3.2.6. Learning rate optimization 

The count of optimal learning rate selections is presented in Table 8. The table shows that the 

learning rate of 0.001 most frequently resulted in high accuracy. While a lower learning rate of 0.0001 was 

also tested, it led to a lower frequency of high accuracy, indicating that  a lower learning rate does not 

necessarily yield better performance.  
 

 

Table 8. Frequency of best-performing learning rates across 15 runs  
Optimizer Running 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Total 

1 0 0 0 0 0 2 2 1 1 1 2 0 0 8 3 20 
0.1 0 0 0 2 0 1 1 0 0 0 0 0 1 8 0 13 

0.01 0 1 3 5 2 3 3 1 1 0 6 2 1 0 14 42 
0.001 32 20 28 12 13 20 20 13 4 5 25 13 2 17 9 233 

0.0001 8 19 9 21 25 14 14 25 34 34 7 25 36 7 14 292 

 

 

As supported by prior research on neural network optimization [1], the selection of an appropriate 

learning rate is critical for achieving high accuracy and stable convergence. The optimal learning rate of 

0.001 was the most effective in this study. This value strikes a balance between convergence  speed and the 

stability of the optimization process. Higher values, such as 0.01, led to instability in training with fluctuating 

accuracy, while smaller values, such as 0.0001, resulted in overly slow convergence. When combined with 

the ‘LBFGS’ optimizer, a learning rate of 0.001 allows for precise parameter updates, ensuring efficient and 

consistent convergence. Additionally, the synergy between this learning rate and the selected epoch value 

(1000 epochs) enabled the model to capture complex patterns in  the high-dimensional rainfall datasets, as 

evidenced by high accuracy on both the Australian (86.016%) and BMKG (79.05%) data. This selection also 

supported the model’s ability to generalize effectively, evident from the strong test data performance. 

Choosing the optimal learning rate is a key factor in training neural networks. In this study, 0.001 

provided the best performance, ensuring stable and efficient parameter updates while enabling fast 

convergence without the risk of divergence or overtraining. The rainfall datasets here contain complex,  

non-linear patterns with overlapping class distributions. The 0.001 learning rate allowed the model to 

effectively learn these patterns, achieving high accuracy in test data. It demonstrated a more stable 

performance than other values, such as 0.01 or 0.0001. The 0.01 rate caused instability in training, while 

0.0001 slowed convergence and failed to reach the optimal solution. Furthermore, 0.001 is highly compatible 

with the ‘LBFGS’ optimizer, which relies on stable gradients to accelerate convergence. This learning rate 
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also helped the model avoid overfitting, as seen in its consistent performance across multiple experiments. 

Therefore, selecting a learning rate of 0.001 provides optimal accuracy, stability, and efficiency balance. 
 
 

4. CONCLUSION 

This study presents MGA to optimize hyperparameters of a MLP model for rainfall prediction.  

The MGA incorporates two primary enhancements: i) elitism preservation, which ensures that the  

best-performing chromosomes are retained across generations, and ii) adaptive selection probability based on 

chromosome fitness, which increases the likelihood of high-performing configurations being passed on. 

These improvements address common limitations in standard GA, such as random selection instability and 

premature convergence. The proposed method was evaluated using two real-world rainfall datasets: the 

Australian and Indonesian BMKG datasets. Experimental results showed that the MGA –MLP achieved 

classification accuracies of 86.016% and 79.05%, respectively, demonstrating superior performance 

compared to baseline GA-tuned models. Analysis of hidden layer structures revealed that two -layer 

configurations with decreasing node counts (e.g., [10, 5] or [14, 7]) provided optimal generalization. ReLU 

and tanh activation functions, LBFGS optimizer, 1000 epochs, and a learning rate of 0.001 were also 

identified as key contributors to performance. In conclusion, the proposed MGA offers a reliable, adaptive, 

and efficient approach to hyperparameter tuning in neural networks. Its ability to generalize across different 

climate datasets highlights its potential for broader applications, including finance, agriculture, and 

environmental modeling. 
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