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 Deep learning is generally used to perform remote monitoring of three-

dimensional (3D) printing results, including extrusion-based 3D food 

printing. One of the widely used deep learning algorithms for defect 
detection in 3D printing is the convolutional neural network (CNN). 

However, the process requires high computational costs and a large dataset. 

This research proposes the Con4ViT model, a hybrid model that combines 

the strengths of vision transformer with the inherent feature extraction 
capabilities of CNN. The locally extracted features in the CNN were merged 

using the transformers’ global features with four transformer encoder blocks. 

The proposed model has a smaller number of parameters compared to other 

lightweight pre-trained deep learning models such as VGG16, VGG19, 
EfficientNetB2, InceptionV3, and ResNet50. Thus, the proposed model is 

simplified. Simulations were conducted to classify defect and non-defect 

images obtained from the printing results of a developed extrusion-based 3D 

food printing device. Simulation results showed that the model produced an 
accuracy of 95.43%, higher than the state-of-the-art techniques, i.e., VGG16, 

VGG19, MobileNetV2, EfficientNetB2, InceptionV3, and ResNet50, with 

accuracies of 77.88%, 86.30%, 82.95%, 90.87%, 84.62%, and 93.83%, 

respectively. This research shows that the proposed Con4ViT model can be 
used for 3D food printing defect detection with high accuracy. 
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1. INTRODUCTION 

Three-dimensional (3D) food printing technology is an innovation that enables the creation of foods 

with complex shapes and high precision using specialized 3D printers [1]. This technology works similarly to 

conventional 3D printers but uses food materials such as ‘ink’ to print food [2]. Food printing offers a range 

of advantages that enhance the culinary experience. It enables personalization, allowing for unique shapes, 

textures, and flavors according to individual preferences. In addition, since it uses precise techniques, it 

reduces food waste [3]. Food printing also encourages creativity in the kitchen, allowing new combinations 

of ingredients and designs that are impossible with conventional methods [4]. Luxury restaurants use 3D food 

printing to create unique dishes with artistic presentation [5], [6]. In the future, it has the potential to be used 

in the food industry for uniform and efficient mass production of food [7]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Defects in 3D food printing can affect the quality, appearance, and texture of the printed  

foods [8]. The causes of these defects can vary from technical issues with the printer and errors in printing 

parameters to the nature of the food material used [9]. Resolving these defects requires adjustments to the 

mold design, temperature, printing speed, and material settings [10]. Early detection of these defects can 

save the food materials used in 3D food printing by streamlining the process [11]. Early defect detection 

can be done remotely by taking an image of the food printing results obtained from a camera. Then, 

classification between defect and non-defect food images is done. A widely used method for defect and 

non-defect classification is deep learning convolutional neural networks (CNN) [12]. However, the CNN 

method requires high computing costs and large data. 

Several models have been developed to reduce the computational cost of CNN, namely 

lightweight CNN models such as VGG16 [13], VGG19 [14], MobileNetV2 [15], EfficientNetB2 [16], 

InceptionV3 [17], and ResNet50 [18]. These algorithms use a parameter reduction approach to lower CNN 

computational costs. Another approach that has not been explored is simplifying the feature extraction 

process from large data. Vision transformer (ViT) is an algorithm that can perform global feature 

extraction from large amounts of data [19]. The ViT method has been proven to be able to classify 

tomography images for pulmonary nodule detection and diagnosis with good accuracy [20]. ViT offers 

several advantages over traditional CNN for computer vision tasks, including improved efficiency, 

scalability, transfer learning, performance, and flexibility [21]. With further research and development, 

ViT has the potential to become a powerful tool for a wide range of computer vision applications, such as 

crop pest image recognition [22]. 

In this research, we propose a hybrid model of CNN and ViT to combine the ability of local 

feature extraction in CNN with global feature extraction in ViT. The proposed method is called Con4ViT, 

which combines CNN with four transformer encoder blocks of ViT. Simulations were conducted to prove 

the performance of the proposed Con4ViT method for the developed extrusion-based 3D food printing 

device. Con4ViT is used to classify food printing images into two classes, namely defect and non-defect. 

Then, the proposed Con4ViT method is compared with the state-of-the-art techniques that have been 

mentioned, namely VGG16, VGG19, MobileNetV2, EfficientNetB2, InceptionV3, and ResNet50. 

The rest of this paper is structured as follows. Section 2 describes the related works about deep 

learning models in 3D Printing. Section 3 presents the methodology of this research, including the dataset 

acquired from a developed extrusion-based 3D food printing and the proposed architecture of Con4ViT. 

Section 4 provides the results and discussion of the model performance, and section 5 presents the main 

conclusions of this work. 

 

 

2. RELATED WORKS 

Baumann and Roller [23] conducted early research on defect control in 3D printing machines. The 

study involves computer vision to detect fault diagnosis, dividing the defect classification into five classes, 

namely detachment, missing material flow, deformed object, surface errors, and deviation from the model. 

Three classes were successfully detected from the five classes, with a detection rate of 60 to 80% [23]. 

Rachmawati et al. [24], introduced data augmentation for 3D printing to vary the amount of data to help 

reduce overfitting. The study used a regular CNN, and the accuracy of the study was 95.45%. Other studies 

that utilize deep learning in 3D printing are summarized in Table 1. As seen in Table 1, previous research 

using the ResNet50 model with a 3D food printing image dataset of chocolate objects resulted in an accuracy 

of 93.80% [25]. The study used pre-trained InceptionV3 and ResNet 50 models with additional 

hyperparameter tuning on learning rate to obtain the optimum value. Then, the research conducted by 

Paraskevoudis et al. [26] monitored defects in fused fluid fabrication (FFF) 3D printing. The study used the 

VGG16 pre-trained architecture model as a base network with 16 convolutional layers and 3 fully connected 

layers. The resulting model accuracy is 92.70%. 

 

 

Table 1. Performance comparison of different deep learning models in 3D printing  
Works Machine 

(material) 

Method Accuracy 

(%) 

Sensitivity 

(%) 

Precision 

(%) 

F1-score (%) 

Rachmawati et al. [24] 3D Printing CNN+MobileNet 95.45  -  -  -  

Baumgartl et al. [27] 3D Pritning CNN+Classic ML 96.80  96.80  96.52  96.42  

(kappa score) 

Mawardi et al. [25] 3D food printing ResNet50 93.80  96,56  96,84  96.70  

Paraskevoudis et al. [26] 3D Printing VGG16 92.70 92.00  75.01  82.10 
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Defect classification in 3D food printing generally exhibits lower accuracy compared to traditional 

3D printing. This discrepancy arises from the differences in printing materials, which pose challenges for 

computer vision systems. While 3D food printing utilizes soft materials like chocolate and pasta, traditional 

3D printing employs more rigid materials that are easier to analyze for object detection and image 

classification [28], [29]. Given these challenges, deep learning models are considered well-suited for defect 

detection in 3D food printing.  

 

 

3. METHODOLOGY 

This section outlines the process for detecting and classifying print results from 3D food printing 

devices into two categories: defect and non-defect. Classification is performed using a newly proposed 

algorithm a hybrid model that combines a CNN with a ViT on images captured from the 3D food printing 

device. The defect detection process is illustrated in Figure 1. 

The first stage involves data collection, where videos of the food being printed are recorded using an 

Ender-V3 3D printer equipped with a Luckybot extruder. Video capture is facilitated by OctoPrint plugins. 

These videos are then segmented into individual image frames, which are manually labeled as either defect or 

non-defect based on the actual condition of the printed results. Then, data preprocessing is conducted on the 

labeled images. The dataset is then split into 80% training data and 20% validation data. The next step 

involves developing the hybrid model, which integrates CNN and ViT components through several 

transformer encoder blocks. During the training phase, validation is performed to mitigate the risk of 

overfitting. To assess the model's performance, a confusion matrix is employed. 

 

 

 
 

Figure 1. The research methodology 

 

 

3.1.  Data collection 

The initial process for capturing images of 3D food printing involves using a Logitech C270 

webcam to record the printing procedure, as illustrated in Figure 2. A Raspberry Pi microcontroller serves as 

the interface between the 3D food printing device and the computer, enabling the detection and recording of 

the printing process. Various printing tasks are conducted using different designs, from which two outcomes 

are selected: one representing a defect and the other a non-defect. 

After the printing is completed, the recordings are then segmented into individual images. For the 

defect category, which includes the failed print video with a duration of 2 minutes and 11 seconds, images 

are extracted every second, resulting in a total of 262 images. Similarly, the non-defect category, which has a 

duration of 2 minutes and 12.5 seconds, produces 265 images. The images from the defect process are 

categorized as defect samples, while those from the non-defect process are classified as non-defect samples. 

In addition, the dataset is supplemented with images from a regular 3D printing device. This inclusion adds 

variety to the dataset and enhances data representation, ultimately improving the accuracy of the model. 
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Figure 2. Experimental setup for defect detection in 3D food printing 

 

 

3.2.  Data preprocessing 

This section describes the data preprocessing steps necessary to prepare the images for effective 

processing by the deep learning model. The preprocessing techniques include resizing, rescaling, and data 

augmentation. Initially, the 3D food printing images are captured from the camera and resized to 128×128 

pixels [30]. Following this, image scaling is applied to adjust the pixel values from the range of [0, 255] to  

[0, 1] [31]. This rescaling is crucial for preventing pixel values from becoming excessively large or small, 

which can lead to numerical instability and slow down the computational process [32]. All experiments are 

conducted using the Keras library in Python, utilizing an A100 GPU with 150 GB of memory. 

In this research, various data augmentation techniques are employed to enhance the dataset and 

facilitate the hybrid modeling process between CNN and ViTs. These techniques are designed to mitigate 

overfitting and improve the overall accuracy of the model. The augmentation methods used include width 

shift, height shift, zoom range, flip, and rotation range [33]. A complete summary of the augmentation 

techniques applied to the 3D food printing image dataset is presented in Table 2. 

 

 

Table 2. Values and parameters of the applied transformation techniques 
Parameters Value of parameters Action 

Width shift range 0.2 Randomly adjusts the image's horizontal size by 20%. 

Height shift range 0.2 Randomly adjusts the image's vertical size by 20%. 

zoom_range 0.2 Extend the zoom by 0.2 from the center. 

shear_range 0.2 0.2 is the image's extension. 

rotation_range 10 Spin in a -10 to a-10-degree circle. 

rescale 1./255 scales (normalizes) the image pixel values to fall within the range of 0 to 1, 

from an initial value range of 0 to 255. 

 

 

3.3.  Data splitting 

The dataset is divided in an 80:20 ratio, with 80% allocated for training and 20% reserved for 

validation. This split is consistently applied to both the Con4ViT model and other benchmark models to 

ensure that the results are comparable. By maintaining the same training and validation data distribution 

across all models, we can confidently attribute any observed differences in performance to variations in 

model architecture rather than inconsistencies in the data. This approach enhances the reliability of the 

evaluation and strengthens the conclusions drawn from the comparative analysis. 

 

3.4.  Hybrid method CNN-ViT (Con4ViT) 

This section explains the functionality of the Con4ViT model, which combines the strengths of 

CNNs and ViTs to effectively capture both local and global features in images. The model begins with local 

feature extraction through a convolutional block comprising three layers. After the convolutional operations 

are performed, the resulting multi-dimensional output is flattened into a one-dimensional vector. This vector 

is then processed by the transformer encoder, which utilizes a self-attention mechanism to recognize the 

relationship between elements in the vector across four transformer encoder blocks. A complete block 

diagram illustrating the architecture of the proposed Con4ViT hybrid model is shown in Figure 3. 
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Figure 3. The proposed Con4ViT hybrid method 

 

 

The input image of size 128×128×3 is fed into CNN to extract local features [34] with sequential 

CNNs consisting of 3 convolutional and max-pooling layers. The convolution layer utilized rectified linear 

unit (ReLU) activation function as shown in (1) [34]. 

 

𝑦(𝑖, 𝑗) = ∑ ∑ ×𝑀−1
𝑚=0 (𝑖 + 𝑚, 𝑗 + 𝑛). 𝑤(𝑚, 𝑛)

𝑁−1

𝑛=0
 (1) 

 

Where 𝑥(𝑖, 𝑗) is the image input in pixel (𝑖, 𝑗), 𝑤(𝑚, 𝑛) is the weight of kernel/filter with size 𝑀 × 𝑁 and 

𝑦(𝑖, 𝑗) is the output after the convolution operation at position (𝑖, 𝑗). Then, the pooling layer utilizes the (2). 

 

𝑧(𝑝, 𝑞) = 𝑚𝑎𝑥({ 𝑦(2𝑝 +  𝑚, 2𝑞 + 𝑛) | 𝑚, 𝑛 ∈ {0,1}}) (2) 

 

Where 𝑧(𝑝, 𝑞) is the output after the max pooling operation at position (𝑝, 𝑞), the indices 𝑚 and 𝑛 iterate 

over the 2×2 pooling window, and the stride s is 2, indicating that the pooling window moves 2 pixels at a 

time in both dimensions. The pooling operation reduces the input dimension by taking the maximum value of 

each sub-area in the input matrix. If the pooling size is 2×2, from each 2×2 block, the maximum value is 

taken as the pooling result. 

After the pooling operation, a combination with flatten is performed using the reshape feature with 

the encoder standard. In flatten, the image is processed into patches so that it can be converted into a vector 

sequence. As seen in Figure 4, the 3D food printing input image is processed into non-overlapping patches. 

In this process, the original image in Figure 4(a) is first divided into multiple smaller regions in Figure 4(b), 

each of size 20×20 pixels. These patches are then transformed into one-dimensional vectors through a flatten 

operation. Flatten converts a multi-dimensional tensor into a one-dimensional vector without changing the 

values of the elements in the tensor. For example, if the input is a 3D tensor with size (𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒, ℎ, 𝑤, 𝑐) 

(e.g., from the convolution layer), then flatten will convert it into a 2D tensor of size (𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒, ℎ × 𝑤 × 𝑐) 

Mathematically, for an input 𝑥1,1,1, 𝑥1,1,2 … of size (ℎ, 𝑤, 𝑐) the result is (3). 

 

𝐹𝑙𝑎𝑡𝑡𝑒𝑛 (𝑋) = [𝑥1,1,1, 𝑥1,1,2 … , 𝑥ℎ,𝑤,𝑐] (3) 

 

 

  
(a) (b) 

 

Figure 4. Patch of flatten image 3D food printing of (a) input image and (b) patch image 
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Then, the image patches with the flatten process enter the encoder transformer, with a layer 

normalization process for multi-head attention. Multi-head attention in the transformer model calculates the 

attention weight in (4), as explained in [19]. 

 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 ( 
 𝑄𝐾𝑡

√𝑑𝑘
 ) 𝑣 (4) 

 

A SoftMax function converts these attention values into a multi-head attention probability 

distribution. It also allows the model to focus on the input's more important or relevant parts based on the 𝑄 

and 𝐾 values and assign measured values to the selected information. After the attention process, it goes to 

the feed-forward network (FFN), which is a linear transformation operation [19], as shown in (5): 

 

𝐹𝐹𝑁(𝑥) = max(0, 𝑥𝑊1 + 𝑏1) 𝑊2 + 𝑏2 (5) 

 

Where 𝑥 is the input to the FFN, 𝑊1, and 𝑊2 are weight matrices, 𝑏1 and 𝑏2 are bias vectors. The operation 

involves first applying a linear transformation, followed by a ReLU activation function (represented by 

max(0,⋅)), and then applying another linear transformation. The operation 𝑥𝑊1  +  𝑏1 it is a linear operation 

in the first layer and the hidden layer, and then the result passes through the ReLU activation function. The 

result of the activation function is passed to the next layer, where it is multiplied by the weights 𝑊2 and 

added with the bias 𝑏2 to give the final output. The next step is to calculate the loss function, described in the 

(6). 

 

𝐿 = − 
1

𝑁
 ∑ 𝐿𝑜𝑔𝑁

𝑖=1 (𝑝𝑡𝑟𝑢𝑒) (6) 

 

Where L is the overall loss value for the batch of predictions, 𝑁 is the number of samples, and 𝑝𝑡𝑟𝑢𝑒 is the 

probability of the correct class with a loss function calculating how significant the difference is between the 

model's predicted probability and the actual label.  

 

3.5.  Model training and validation 

The next step involves training the model using the dataset for a total of 30 epochs, during which 

model parameters are adjusted to enhance performance. Validation data is utilized to assess the model's 

effectiveness throughout this process. The Adam optimizer is employed to optimize the model, ensuring 

efficient convergence during training. Training is conducted multiple times to cover all architectures being 

compared, including the proposed Con4Vit model, VGG16, VGG19, MobileNetV2, EfficientNetB2, 

InceptionV3, and ResNet50. This comprehensive approach allows for a thorough evaluation of each model's 

performance. 

 

3.6.  Model evaluation and performance evaluation 

In this study, the performance of the Con4ViT model for 3D food printing defect classification is 

evaluated using a confusion matrix [35]. This matrix summarizes the counts of true positives (TP), false 

positives (FP), true negatives (TN), and false negatives (FN). These four categories enable the calculation of 

key performance metrics: accuracy, recall, precision, and F1-score, defined by (7)-(10) [36].  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (7) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (8) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (9) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (10) 

 

Additionally, the gradient-weighted class activation mapping (Grad-CAM) method will be used to 

analyze the image regions that are crucial for determining classification results [37]. Grad-CAM is  

a visualization technique in deep learning that highlights important areas of an image that influence the 

model's predictions. It generates a heatmap indicating the significant regions for the predicted class, 

calculated using the (11). 
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𝐿𝑐 = 𝑅𝑒𝐿𝑈 (∑ 𝛼𝑘
𝑐

𝑘 𝐴𝑘) (11) 

 

Here, the weights are computed through global average pooling of the gradients as in (12). 

 

𝐴𝑘 =  
1

𝑍
 ∑ ∑

𝜗𝑦𝑐

𝜗𝐴𝑖𝑗
𝑘𝑗𝑖   (12) 

 

Where 𝐴𝑘 represents the activation from the kth filter in the last layer. Once the heatmap is generated, it is 

reshaped to 28×28 pixels and overlaid onto the original image, with color coding to highlight the important 

areas. Grad-CAM provides valuable visual insights into the regions that the model focuses on, enhancing 

interpretability and understanding of the model’s decision-making process. 

 

 

4. RESULTS AND DISCUSSION 

This section presents the results of data collection, data preprocessing, Grad-CAM analysis, and 

experiments for the performance evaluation of the proposed and developed Con4ViT model for defect and 

non-defect classification in 3D food printing. The comparative performance of the proposed model with other 

pre-trained based models is also explained in this section.  

 

4.1.  Data collection 

As a result of the data collection stage, we obtained 2,085 images as a combination of 527 print 

results image from a 3D food printing device and 1,558 print results from a 3D printing device. Based on the 

80:20 ratio, the training data consists of 1,669 images, and the validation data consists of 416 images.  

Figure 5 shows examples from the 3D food printing dataset, divided into defect and non-defect categories. 

 

 

 
 

Figure 5. Image dataset example from the 3D food printing device, utilizing chocolate as the material 

 

 

4.2.  Data preprocessing 

The technique of data preprocessing in the form of data augmentation that produces images as seen 

in Figure 6. Figure 6(a) shows the original image of 3D food printing, Figure 6(b) is a rotation with a value of 

10% from the initial position, Figure 6(c) enlarges the display with zoom_range from a scale of 20%. In 

Figure 6(d), width_share_range is also done by shifting the image by 20%, and in Figure 6(e), the image 

height adjusts to the height shift range with 20% of the original image. 

 



                ISSN: 2252-8938 

Int J Artif Intell, Vol. 14, No. 4, August 2025: 3311-3323 

3318 

 

 

 

 

 

 

 

 

 
(a)  (b)  (c)  (d)  (e) 

 

Figure 6. Result data preprocessing 3D food printing of (a) original image, (b) rotation, (c) zoom_range,  

(d) width_share_range, and (e) height_share_range 

 

 

4.4.  Training and validation 

In Figure 7, training and validation were performed on the Con4ViT model with 30 epochs. The 

model training process is seen in the blue line, while the model validation uses the red line. The results 

obtained are the accuracy results in training of 98.20% and the accuracy results in validation of 95.91%. 

 

 

 
 

Figure 7. Training and validation Con4ViT model 

 

 

4.3.  Model evaluation 

Figure 8 shows the confusion matrix of the Con4ViT model. In Figure 8(a), it can be seen that the 

proposed model with 416 validation data has good performance, with 199 images correctly classified as 

defect (TP) and 200 images correctly classified as non-defect (TN). 9 images correctly classified as defect 

(FP), 8 images correctly classified as non-defect (FN). In Figure 8(b), it can also be seen that the model used 

when using the entire data, namely 2,085 images, with 1,024 images correctly classified as defect (TP) and 

1,010 images correctly classified as non-defect (TN). 13 images correctly classified as defect (FP) 30 images 

correctly classified as non-defect (FN). With the results of the Con4ViT model evaluation performance using 

data validation, good results were obtained, namely, accuracy, precision, recall, and F1-score. The accuracy 

of the Con4ViT model reached 95.91%, with a precision of 95.69%, a sensitivity of 96.15%, and an F1-score 

of 95.92%. 

 

4.4.  Grad-CAM analysis 

This model was performed with additional analysis using visualization to visually understand which 

parts of the image are considered necessary and contribute to the model's predictions [37]. Figure 9 shows the 

heatmap visualization area, which is the critical area focused on by the 3D food printing image. The visual 

focus is close to the lighter or blue boundary of the heatmap, which shows the surrounding area that has the 

most significant influence on the model prediction. In applying Grad-CAM to the Con4ViT model,  

Figure 9(a) shows the orange and red colors on the edge of the design and slightly below the nozzle of the 3D 

food printing extruder. Figure 9(b) shows the red and orange areas around the print under the nozzle of the 

printing head, and the blue color is at the nozzle point. Figure 9(c) covers more surfaces around the print 

area, with the hot color spread over a wider area, while the blue color is in the inner part of the print process. 

Overall, Grad-CAM can recognize relevant visual features to identify or monitor print activity and indicate 

essential parts of the image for the predicted class. 
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(a) (b) 

 

Figure 8. Predicted label with confusion matrix of (a) model evaluation with data validation and  

(b) model evaluation with all data  

 

 

   
(a) (b) (c) 

 

Figure 9. Grad-CAM image of the 3D food printing of (a) Grad-CAM non defect, (b) Grad-CAM defect with 

nozzle focus, and (c) Grad-CAM defect with wider area 

 

 

4.5.  Comparison of Con4ViT model with another pre-trained model 

To further evaluate the model's performance, the proposed Con4ViT model was compared with 

other CNN models based on pre-trained learning, namely VGG16, VGG19, MobileNetV2, EfficientNetB2, 

InceptionV3, and ResNet50. Table 3 compares our proposed Con4ViT model performance with other pre-

trained deep-learning models. The resulting performance results were 95.91% accuracy, 95.69% precision, 

96.15% recall, and 95.92% F1-score. 

 

 

Table 3. Comparison of the Con4ViT model approach with other pre-trained models 
Model Parameter (million) Accuracy (%) Precision (%) Recall (%) F1-score (%) 

VGG16 17.9 77.88 85.89 66.80 75.15 

VGG19 23.2 86.30 86.10 86.83 86.46 

MobilenetV2 2.4 82.95 87.28 77.29 81.98 

Con4ViT 6.7 95.91 95.69 96.15 95.92 

EfficientNetB2 9.3 90.87 90.76 91.11 90.93 

InceptionV3  22.3 84.62 91.24 90.51 90.97 

ResNet50 23.8 93.83  96.84 96.56 96.70 

 

 

One of the key findings in this comparison is that the Con4ViT model has a relatively low parameter 

count of 6.7 million, especially when compared to larger models such as VGG19 (23.2 million) and 

ResNet50 (23.8 million). This smaller parameter count indicates that Con4ViT is more lightweight, making it 

a good choice for deployment in resource-constrained environments with limited computing power. Despite 

having fewer parameters, Con4ViT achieved the highest accuracy of 95.91%, far outperforming all other 

models listed in correctly predicting outcomes on the evaluation dataset. 
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When looking at precision, recall, and F1-score, Con4ViT consistently leads in all these metrics.  

It has an impressive precision of 95.69%, meaning that when it predicts the positive class, it is more likely to 

be correct, which is essential in applications where negative positives are detrimental. Its recall score is also 

high at 96.15%, indicating the model's ability to identify a large proportion of actual positive cases 

accurately. With an F1-score of 95.92%, Con4ViT stands out as the best-performing model in terms of 

overall balanced performance. 

In comparison, VGG16 and VGG19 have higher parameter counts but lower performance metrics, 

particularly in recall and F1-scores, indicating that they struggle to balance accuracy and efficiency. 

MobileNetV2, while lightweight with only 2.4 million parameters, does not achieve the same level of 

performance as Con4ViT across all metrics. EfficientNetB2 and InceptionV3 deliver competitive results, but 

both must catch up to Con4ViT's metrics. While EfficientNetB2 has a moderate parameter count  

(9.3 million) and solid accuracy, more is needed to achieve the overall performance level of Con4ViT, 

indicating that simply being efficient in terms of parameters does not guarantee better results. ResNet50 

achieves high metrics, particularly in the F1-score (96.70%), but does not outperform Con4ViT in any 

individual metrics and has a much larger parameter count.  

In conclusion, this analysis shows that the Con4ViT model outperforms all other comparison models 

in terms of accuracy, precision, recall, and F1-score. This makes it an excellent choice for tasks that require 

high accuracy and model efficiency. Its lower parameter count and excellent performance metrics suggest 

that this model can be very effective for a wide range of applications, especially where computational 

resources are a constraint. 

The results shown in Figure 10 showed that the training and validation performance of Con4ViT on 

3D food printing defect classification has low fluctuation. However, with few parameters, the final 

performance value on Con4ViT has good results. EfficientNetB2 is better at maintaining stable validation 

accuracy by showing better generalization. Overall, the tested pre-training models have good values, but the 

proposed Con4ViT model has good accuracy results so that it can be used in other research sets, such as large 

or small data sets. 

 

 

 
 

Figure 10. Training and validation performance compared to some other methods with Con4ViT 

 

 

5. CONCLUSION 

This paper proposes a hybrid method combining CNN with ViT on 3D food printing defect 

classification. For this purpose, we conducted experiments with 2,085 data from the 3D food printing 
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process. In the experiment, images obtained from a 3D food printing device are divided into two classes, 

namely defect and non-defect classes. Image preprocessing, including resizing and rescaling data 

augmentation, is very influential in this research. Then, a Con4ViT model is built with a combination of 

CNN and ViT features where multiple CNN layers extract local features, and the ViT model captures context 

on global features with a 4-block transformer encoder using a self-attention mechanism. Pre-trained models, 

including VGG16, VGG19, MobileNetV2, EfficientNetB2, InceptionV3, and ResNet50, are compared as a 

performance comparison. Con4ViT has good performance of defect classification on 3D food printing 

images compared to other pre-trained with 95.91% accuracy. The experimental results have few parameters 

and low computation, which will be easier to implement on IoT devices for smartphone-based defect 

monitoring in the future. 
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