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 Multi-target vehicle detection in urban traffic faces challenges such as poor 

lighting, small object sizes, and diverse vehicle types, impacting traffic flow 

prediction accuracy. This study introduces an optimized long short-term 
memory (LSTM) model using the Komodo Mlipir algorithm (KMA) to 

enhance prediction accuracy. Traffic video data are processed with YOLO 

for vehicle classification and object counting. The LSTM model, trained to 

capture traffic patterns, employs parameters optimized by KMA, including 
learning rate, neuron count, and epochs. KMA integrates mutation and 

crossover strategies to enable adaptive selection in global and local searches. 

The model's performance was evaluated on an urban traffic dataset with 

uniform configurations for population size and key LSTM parameters, 
ensuring consistent evaluation. Results showed LSTM-KMA achieved a root 

mean square error (RMSE) of 14.5319, outperforming LSTM (16.6827), 

LSTM-improved dung beetle optimization (IDBO) (15.0946), and LSTM-

particle swarm optimization (PSO) (15.0368). Its mean absolute error 
(MAE), at 8.7041, also surpassed LSTM (9.9903), LSTM-IDBO (9.0328), 

and LSTM-PSO (9.0015). LSTM-KMA effectively tackles multi-target 

detection challenges, improving prediction accuracy and transportation 

system efficiency. This reliable solution supports real-time urban traffic 
management, addressing the demands of dynamic urban environments. 
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1. INTRODUCTION 

With advancements in communication technology and computer science, intelligent transportation 

systems (ITS) have assumed an increasingly significant role in daily life [1]. Smart transportation has become 

a cornerstone in the development of technology-based ITS to meet the evolving needs of urban societies [2]. 

It refers to an approach that integrates modern technology into transportation systems to enhance urban 

mobility efficiency [3]. In the context of smart cities, cutting-edge technologies such as the internet of things 

(IoT), data analytics, and artificial intelligence (AI) serve as foundational pillars for creating intelligent and 

interconnected transportation ecosystems [4]. Smart mobility has become an integral part of daily life, with 

40% of the global population traveling for at least one hour each day [5]. By integrating technologies such as 

computer vision, AI, and ITS, cities can more accurately detect traffic conditions, identify vehicle types, and 

https://creativecommons.org/licenses/by-sa/4.0/
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predict congestion. This integration helps address urbanization challenges, such as pollution, traffic 

accidents, and excessive resource consumption [6]. 

Traffic flow prediction is a critical element in ITS as it provides valuable insights for traffic control, 

route planning, and operational management [7]. Traditional traffic flow prediction models often fail to 

adequately account for the complex and dynamic characteristics of urban traffic networks [8]. With the 

acceleration of urbanization and advancements in ITS, short-term traffic flow prediction has emerged as an 

increasingly significant area of research [9]. Accurate predictions offer substantial benefits, including 

optimized traffic planning, improved road utilization, reduced congestion, fewer traffic accidents, and 

decreased environmental pollution [10]. 

Accurate traffic flow prediction requires the efficient extraction and analysis of large-scale urban 

traffic data, including the appropriate selection of data sample sizes. Technological advancements, such as 

roadside closed-circuit television (CCTV) cameras and unmanned aerial vehicles (UAVs), provide new video 

data that enable more comprehensive traffic information collection through computer vision techniques [11]. 

These advancements support accident-based safety analysis and facilitate real-time traffic control, route 

guidance, policy formulation, and more effective traffic allocation. Together, these efforts enhance traffic 

efficiency and improve the quality of urban life [12]. In practice, computer vision models such as YOLO and 

its advancements are widely applied to detect and analyze urban traffic conditions [13]–[18]. 

In ITS, traditional object detection algorithms face various challenges, particularly in dealing with 

complex environments and varying lighting conditions. These challenges become more significant when 

detecting small objects or analyzing multimodal data [16]. To address these limitations, enhancing data 

quality and diversity through augmentation techniques is a common approach [19]. Previous research has 

demonstrated that combining object detection with long short-term memory (LSTM) algorithms can 

effectively predict traffic volume [20]. Additionally, studies have proposed the development of new models 

leveraging and optimizing LSTM, which has proven effective in handling time-series data and improving the 

accuracy of urban traffic density predictions [20]–[25]. Recent trends suggest an increasing focus on 

optimizing LSTM parameters through metaheuristic approaches to improve traffic prediction performance 

[22], [26]–[28]. Such an approach is anticipated to tackle the challenges of creating more reliable and 

efficient predictive models for various traffic conditions. 

The Komodo mlipir optimization algorithm (KMA) draws inspiration from two unique phenomena: 

the behavior of Komodo dragons native to East Nusa Tenggara, Indonesia, and the traditional Javanese 

walking style known as mlipir [29]. In the context of the traveling salesman problem (TSP), KMA has 

exhibited superior performance compared to algorithms like the dragonfly algorithm (DKA), ant colony 

optimization (ACO), particle swarm optimization (PSO), genetic algorithm (GA), black hole (BH), dynamic 

tabu search algorithm (DTSA), and discrete jaya algorithm (DJAYA) [30]. In our proposed research, LSTM is 

combined with KMA for traffic volume prediction. The LSTM-KMA model is then compared with the 

standard LSTM and other state-of-the-art combinations, namely LSTM-improved dung beetle optimization 

(IDBO) and LSTM-PSO. Previous studies have shown that LSTM-IDBO outperforms methods such as gray 

wolf optimization (GWO), sparrow optimization algorithm (SSA), whale optimization algorithm (WOA), and 

nighthawk optimization (NGO) [26]. Similarly, LSTM-PSO has proven superior to methods like standard 

LSTM, random forest regression (RFR), k-nearest regression (KNR), and decision tree regression (DTR) [28]. 

The main problem addressed in this study is the low accuracy in predicting complex and dynamic 

traffic volumes, particularly under real-world conditions that often involve challenges such as poor lighting, 

occlusions, and diverse vehicle types. To address this issue, the study aims to develop a traffic prediction 

model that integrates the LSTM algorithm with the KMA as an optimization method, supported by real-time 

vehicle detection data using YOLO. This research specifically focuses on how the integration of KMA can 

improve the predictive accuracy of LSTM in modeling dynamic traffic volumes, and evaluates the potential 

implementation of the YOLO-LSTM-KMA system under real traffic conditions. The main contribution of 

this study is the development of an intelligent predictive model capable of improving traffic flow prediction 

accuracy, offering both theoretical contributions in the field of optimization and time-series forecasting, and 

practical contributions in supporting data-driven decision-making within ITS. 

 

 

2. METHOD 

2.1.  Vehicle object detection 

Data collection was conducted using YOLO as the object detection model for identifying vehicles in 

traffic. Specifically, the YOLOv8n model was used because of its high-performance ability to detect vehicles 

in complex traffic conditions. To improve detection accuracy, multi-augmentation techniques were applied, 

combining scaling, zoom-in, brightness adjustment, color jitter, and noise injection. Table 1 presents the 

specific values for each augmentation technique used in the study. 
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Table 1. Augmentation values 
No Aug Value Augmentation factor (image) References 

1 2 3 

1 Brightness adjustment Brightness factor - 0.8 1.2 [31] 

2 Color jitter (Brightness, contrast, 

saturation) and hue 
- 

Rand (0.6,1.4) and 

Rand (-0.1,0.1) 

Rand (0.6,1.4) and 

Rand (-0.1,0.1) 

[32] 

3 Noise injection Gaussian noise - Rand (0, 0.1) Rand (0, 0.1) [33] 

4 Scaling Scale image - Rand (0.8, 1.2) Rand (0.8, 1.2) [34] 

5 Zoom in Zoom in - 1.2 1.5 [35] 

 

 

In the image augmentation process summarized in Table 1, brightness adjustment was performed 

with a brightness factor of 0.8 for image 2 and 1.2 for image 3. For the color jitter technique, the brightness, 

contrast, and saturation factors were randomized within the range of 0.6 to 1.4, while the hue factor was 

randomized between -0.1 and 0.1. Noise injection utilized Gaussian noise with values randomized between  

0 and 0.1 for both images. The scaling technique was applied with a factor range of 0.8 to 1.2 for both  

image 2 and image 3, while the zoom-in technique utilized a factor of 1.2 for image 2 and 1.5 for image 3. 

This combination of values was designed to create significant image variations, thereby improving the 

model's performance under diverse conditions. 

Based on the conducted experiments, YOLOv8n outperformed YOLOv9t, achieving the highest 

mAP50-95 value of 0.536. A detailed performance analysis is presented in a manuscript titled "boosting real-time 

vehicle detection in urban traffic using a novel multi-augmentation". The experimental results identified the best-

performing model, named best.pt, as the foundation for the vehicle detection process in this study. The model 

workflow is depicted in Figure 1, detailing the steps from data preprocessing to numeric feature extraction. 
 

 

 
 

Figure 1. Numerical feature extraction process from YOLO model 
 

 

The model workflow, as illustrated in Figure 1, begins with the collection of video data from traffic 

CCTV recordings. This video data is processed through a preprocessing stage where it is converted into 

individual frames for further analysis. Each frame is manually annotated using the Roboflow application to 

label vehicle objects, which include motorcycles, cars, trucks, and buses. The annotation process involved 

creating four vehicle classes and drawing bounding boxes around each object in every frame. In total, the 

dataset contains 720 images with 45,347 annotations, consisting of 31,481 motorcycles, 12,402 cars,  

1,184 trucks, and 280 buses. The dataset is divided into two parts: 80% for training and 20% for validation 

[36], [37]. This 80:20 split is commonly used in machine learning experiments to ensure that the model has 

sufficient data to learn patterns during training while maintaining an adequate portion of unseen data for 

unbiased validation, allowing for accurate evaluation of the model’s generalization ability. The training 

subset includes 22,136 motorcycles, 8,804 cars, 839 trucks, and 199 buses, while the validation subset 

contains 9,345 motorcycles, 3,598 cars, 345 trucks, and 81 buses. 
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To increase data diversity and improve model generalization, augmentation techniques were applied 

to the training dataset. These techniques include scaling, zoom-in, brightness adjustment, color jitter, and 

noise injection. Each technique was applied using two parameter values, resulting in a tenfold increase in the 

amount of training data. The original training dataset consists of 576 images without augmentation, while the 

augmented dataset consists of 5,760 images, as shown in Table 1. The YOLO model was trained using this 

enhanced dataset, and its performance was evaluated periodically using the mAP50-95 metric. If the model 

did not meet the desired accuracy threshold, training was continued. Once the best-performing model was 

obtained, it was used to detect vehicles in each frame and predict their classes. The detection results were 

then converted into numerical features, such as vehicle counts by type, which were further processed into 

traffic flow data for subsequent analysis. 

 

2.2.  Long short-term memory-Komodo Mlipir algorithm 

The integration of LSTM and KMA leverages the strengths of each method in data analysis and 

optimization. LSTM is highly effective at capturing temporal patterns in time-series data, making it suitable 

for both short-term and long-term prediction tasks [38]. Previous studies have shown that hyperparameter 

optimization using metaheuristic approaches often yields better results compared to conventional methods, 

further reinforcing the advantage of combining these techniques to improve model performance [39].  

The incorporation of KMA in this approach is anticipated to surpass the performance of other metaheuristic 

algorithms. The integration of LSTM and KMA not only accelerates the optimization process but also 

enhances the likelihood of identifying optimal hyperparameter configurations, thereby significantly 

improving the performance of the LSTM model in traffic flow prediction applications. This proposed 

approach is depicted in Figure 2. 
 

 

 
 

Figure 2. Proposed model 
 

 

Figure 2 illustrates the LSTM-KMA computation process, beginning with data reading and 

preprocessing, followed by dividing the dataset into training and testing sets, allocating 80% for training and 

20% for testing [40], [41]. The KMA is then initialized with specific parameters. This step involves 

initializing a population of candidate solutions and applying crossover and mutation operations [42]. The 

fitness of each candidate solution is evaluated to determine the suitability of the parameters for the LSTM 

model using the mean absolute error (MAE) metric. The LSTM parameters being optimized include the 

number of neurons, learning rate, and epochs [26]. KMA iteratively updates the candidate solutions through 

an optimization loop until the optimal parameters are identified. The optimized parameters are then applied to 

train the final LSTM model. The trained model is subsequently tested using the test data, with root mean 

square error (RMSE) and MAE calculated as accuracy measures for the predictions. The concept of KMA in 

LSTM parameter optimization is illustrated through the pseudocode presented in Algorithm 1. 
 

Algorithm 1: Komodo Mlipir for optimizing LSTM parameters 
Input: 

Maximum number of iterations (𝑇), population size (𝑛). 
Range of LSTM parameters to be optimized (neurons, learning rate, and epochs). 

Step 1: Initialization 

Initialize a population of 𝑛 individuals (komodo) with random combinations of LSTM 
parameters. 
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Each individual 𝑞 in the population is represented as 𝑃𝑞 =  [𝑋𝑞, 𝑌𝑞, 𝑍𝑞], where 𝑋𝑞, 𝑌𝑞, and 𝑍𝑞 
respectively denote neurons, learning rate, and epochs. 

Step 2: Fitness Evaluation 

Evaluate the initial fitness of each candidate solution by measuring the LSTM’s 

performance on the validation dataset. 

Use the objective function: Minimize F=MAE. 

Sort the individuals based on their fitness scores and categorize them into three 

groups: 

- Large males (elite, top performers) 

- Females (moderate performance) 

- Small males (low performers) 

Step 3: Main Loop 

𝑊ℎ𝑖𝑙𝑒 (𝑡 ≤  𝑇):  
1. Reassess each individual's fitness score. 

2. Update their positions as follows: 

- Large males: Adjust positions using exploitation strategies. 

- Females: 

- Mate with the top-performing large male using exploitation method. 

- Reproduce asexually via parthenogenesis using exploration strategies. 

- Small males: Explore the solution space randomly using exploration 

strategies. 

3. Apply selection process: 

- Retain the best-performing individual (elitism). 

- Improve weaker individuals using update strategy in equation. 

4. Increment the iteration count (𝑡 =  𝑡 +  1). 
End While 

Step 4: Output the Best Solution 

Output the best LSTM parameters (𝑃_𝑏𝑒𝑠𝑡) and the best fitness value (𝐹_𝑏𝑒𝑠𝑡). 
Output: 

Optimal LSTM parameters 

 

Algorithm 1 is the pseudocode of the KMA used to optimize the parameters of the LSTM model. 

This algorithm aims to find the best combination of neurons, learning rate, and number of epochs by 

minimizing the MAE. The step-by-step procedure is outlined in the pseudocode above. To facilitate 

understanding, the workflow of this algorithm is also illustrated in the flowchart, as shown in Figure 3. 
 

 

 
 

Figure 3. Optimization workflow of the LSTM model using KMA 
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3. RESULTS AND DISCUSSION 

3.1.  Data and environment 

In this study, the data used for traffic flow prediction was collected from CCTV cameras installed in 

Fatmawati, Semarang City. The data collection period spanned from December 19, 2023, to February 15, 2024. 

Data was gathered by extracting images from recorded videos at 5-minute intervals. The frame interval was 

determined by multiplying the frames per second (FPS) by 60 and the specified number of minutes. With an 

FPS of 25, the resulting frame interval was 25×60×5=7,500 frames. This means the program extracted one 

image for every 7,500 frames. From this extraction process, a total of 720 images were obtained. A total of 

45,347 annotations were generated from these images, comprising 31,481 motorcycles, 12,402 cars,  

1,184 trucks, and 280 buses. In addition to vehicle types, date and time information was also extracted from 

the dataset. The dataset was then divided into two subsets: a training subset and a validation subset, to 

facilitate model training and evaluation. The distribution of vehicle annotations in the training set includes 

22,136 motorcycles, 8,804 cars, 839 trucks, and 199 buses. The validation set consists of 9,345 motorcycles, 

3,598 cars, 345 trucks, and 81 buses. This structured data collection and preprocessing process provides a 

solid foundation for developing traffic flow prediction models, ensuring that the dataset is representative and 

well-annotated for effective model training and evaluation. 

This study utilized Google Colab Pro for experimental configuration. Google Colab offers cloud-

based and open-source computing services to handle the extensive processing requirements needed for model 

training [43]. The runtime environment included Python 3 and an NVIDIA T4 GPU. The programming 

language utilized was Python 3.10.12, and the PyTorch framework version 2.3.0 was implemented with 

CUDA version 12.1 support. 
 

3.2.  Parameter settings and model optimization 

In this study, the parameters for the metaheuristic method were standardized by setting the 

population size to 30, as referenced in previous studies [26]. The parameter ranges optimized for the LSTM 

model include the number of neurons (300-500), learning rate (0.001-0.01), and number of epochs (1-150). 

These ranges were initially adopted based on prior literature and then further refined through multiple  

trial-and-error experiments to obtain optimal performance. For the conventional LSTM model, the analysis 

was conducted using the highest values in each range-500 neurons, a learning rate of 0.01, and 150 epochs. 

Detailed configurations of other parameters used for each model can be found in Table 2. 

Table 2 presents the parameter settings used for various algorithms in optimizing the LSTM model. 

For LSTM-KMA, the size of the population involved in the selection process is set to 10. In the LSTM-IDBO 

algorithm, the coefficient of variation is set to 0.1, and the scaling parameter for balancing exploration and 

exploitation is set to 0.5. The LSTM-PSO algorithm uses a self-learning factor of 1.5 and a group learning 

factor of 2. 
 

 

Table 2. Parameter setting of the various algorithms 
Algorithm Parameters Settings Reference 

LSTM-KMA Size of population involved in selection 10 [42] 

IDBO-LSTM Coefficient of variation 

Scale or parameter for setting exploration and exploitation 

0.1 

0.5 

[26] 

LSTM-PSO Self-learning factor 

Group learning factor 

1.5 

2 

[28] 

 

 

3.3.  Evaluation criteria 

The appropriate performance evaluation metrics for continuous data obtained in real-time are 

regression loss functions [44]. Therefore, the performance evaluation metrics used in this study are RMSE 

and MAE. RMSE reflects the degree of deviation of predicted values from actual values. The formula for 

RMSE is provided in (1) [45]. MAE represents the mean of absolute errors, where absolute error is the 

difference between predicted and actual values. A low MAE value indicates that the model predicts values 

close to the actual values. The formula for MAE is provided in (2) [26]. 
 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ |𝑦𝑖 − 𝑦𝑖̂|

𝑛
𝑖=1

2
    (1) 

 

𝑀𝐴𝐸 =  
1

𝑛
 ∑ |𝑦𝑖 − 𝑦𝑖̂|

𝑛
𝑖=1   (2) 

 

RMSE and MAE are two evaluation metrics used to measure the prediction errors of a model.  

In the RMSE formula, the difference between the actual value (𝑦𝑖) and the predicted value (𝑦𝑖̂) is squared to 
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calculate (𝑦𝑖 − 𝑦𝑖̂)
2, giving greater weight to larger errors, and then the square root is taken. RMSE provides 

additional insights by reflecting the degree of deviation between predicted values and actual values,  

being more sensitive to large errors. MAE has a similar formula but with a different approach. In this 

formula, 𝑛 represents the total number of data points or observations in the dataset, indicating the number of 

data points analyzed. 𝑦𝑖 is the actual value of the 𝑖-th data point, representing the true data to be predicted, 

such as the actual number of vehicles in traffic prediction. On the other hand, 𝑦𝑖̂ is the predicted value 

generated by the model for the 𝑖-th data point, reflecting the estimated number of vehicles. The absolute 

difference between actual and predicted values is calculated as |𝑦𝑖 − 𝑦𝑖̂|, providing an error measure without 

regard to error direction. All these absolute differences are summed and divided by the total number of data 

points (𝑛) to yield the MAE.  

Therefore, RMSE and MAE provide an overall measure of how close the model's predictions are to 

the actual values. The prediction results of the LSTM, LSTM-KMA, LSTM-IDBO, and LSTM-PSO models 

are compared with the actual data. The prediction outcomes of the utilized models are shown in Figure 4. 

Figure 4 illustrates the comparison between the actual traffic flow data (TRUE) and the predicted results 

from several models, namely LSTM, LSTM-KMA, LSTM-IDBO, and LSTM-PSO. The graph shows how 

each model's predictions align with or deviate from the actual traffic flow values over time, highlighting the 

accuracy and performance differences among the models. 
 

 

 
 

Figure 4. Prediction results of each model 

 
 

3.4.  Results and performance analysis 

The developed model, LSTM-KMA, is compared with the baseline LSTM model. In addition, two 

other LSTM models optimized using metaheuristic algorithms, namely LSTM-IDBO and LSTM-PSO, are 

also included in the comparison. The performance of each model based on the RMSE is shown in Figure 5. A 

separate comparison using the MAE metric is presented in Figure 6. This figure highlights the average 

prediction error for each model. The lower the MAE value, the closer the model's predictions are to the actual 

data. To support the visual comparison, both RMSE and MAE values are summarized in Table 3. This table 

provides a clearer view of each model’s numerical performance. It complements the graphical results shown 

in the Figures 5 and 6. 
 

 

  
 

Figure 5. RMSE comparison of models 
 

Figure 6. MAE comparison of models 
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Table 3. The RMSE and MAE values of the models were evaluated individually 
Model RMSE MAE 

LSTM 16.6827 9.9903 

LSTM-KMA 14.5319 8.7041 

LSTM-IDBO 15.0946 9.0328 

LSTM-PSO 15.0368 9.0015 

 

 

Table 3 shows that the LSTM-KMA model achieves the lowest RMSE value of 14.5319, indicating 

the best performance compared to the other models. In contrast, the baseline LSTM model records the highest 

RMSE value of 16.6827, indicating the lowest prediction accuracy. The LSTM-IDBO and LSTM-PSO models 

achieve RMSE values of 15.0946 and 15.0368, respectively, demonstrating improved performance compared 

to the baseline LSTM but still falling short of LSTM-KMA. In terms of MAE, LSTM-KMA also demonstrates 

the best performance with the lowest value of 8.7041, compared to the baseline LSTM (9.9903), LSTM-IDBO 

(9.0328), and LSTM-PSO (9.0015). Based on this analysis, optimization using the KMA has proven to be the 

most effective method for enhancing the performance of the LSTM model in terms of both RMSE and MAE, 

making it the recommended approach in this study. 

 

3.5.  Challenges 

Object detection using YOLO on this dataset faces several key challenges, primarily due to 

variations in lighting and traffic density. Light reflections, poor illumination, and high traffic congestion 

significantly reduce detection accuracy. Additionally, the presence of multiple object types in a single frame 

such as motorcycles, cars, trucks, and buses makes it difficult for the model to distinguish overlapping 

objects, especially for less dominant classes like trucks and buses. Meanwhile, the use of metaheuristic 

algorithms to optimize LSTM parameters yields better prediction accuracy. However, the drawback lies in 

the longer runtime compared to conventional methods, as the search for optimal parameters involves 

complex and iterative processes. 

 

3.6.  Practical implications for intelligent transportation systems deployment 

The proposed YOLO-LSTM-KMA framework demonstrates promising potential for real-world 

deployment in ITS. By integrating real-time object detection with time-series traffic prediction, this approach 

supports automated traffic monitoring and data-driven decision-making. However, several practical aspects 

must be considered: 

‒ Scalability: the framework is designed to handle large volumes of traffic video data, making it suitable 

for deployment in urban environments with high traffic density. However, the annotation and training 

process still require considerable effort, which may need automation or semi-supervised techniques for 

broader scalability. 

‒ Computational requirements: real-time detection using YOLO and prediction with LSTM-KMA 

demands sufficient computational resources, particularly during model training and optimization. 

Deployment in the field would require edge computing or cloud-based infrastructure to meet latency 

constraints, especially for continuous traffic flow analysis. 

‒ Integration challenges: integrating this model into existing ITS infrastructure may involve challenges 

such as data compatibility, synchronization across sensors and cameras, and ensuring reliability in 

variable conditions (e.g., weather, lighting, and occlusion). Robust preprocessing and adaptive 

retraining strategies could help mitigate these issues. 

 
3.7.  Comparison with related studies 

The results of this study were compared with several existing approaches in the literature: 

‒ Baseline and conventional models: traditional LSTM models often struggle with optimizing 

hyperparameters effectively, leading to suboptimal predictions. The integration of KMA in this study 

outperforms the standard LSTM by achieving higher accuracy and better generalization, particularly 

under complex traffic scenarios. 

‒ Metaheuristic-based models: compared to other metaheuristic-integrated models such as LSTM-IDBO 

and LSTM-PSO, the proposed LSTM-KMA model provides competitive or superior performance in 

terms of prediction accuracy. However, like other metaheuristic approaches, it incurs a higher 

computational cost due to its iterative search mechanism. 

‒ Advancements and differences: unlike previous works that focus either on detection or prediction alone, 

this study presents a complete pipeline from real-time vehicle detection to traffic flow prediction. This 

integrated design contributes to improved performance and practical applicability for ITS, aligning with 
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the direction of recent studies while introducing a novel optimization algorithm tailored to traffic data 

characteristics. 

Overall, the study contributes to bridging the gap between academic models and real-world ITS 

implementation by addressing both detection accuracy and prediction robustness, while acknowledging the 

trade-offs in computation and integration complexity. 

 

 

4. CONCLUSION 

Multi-target vehicle detection in urban traffic faces significant challenges, including poor lighting, 

small object sizes, and variations in vehicle types, all of which affect the accuracy of traffic flow predictions. 

To address these challenges, this study proposes the use of a LSTM model optimized with the KMA. The 

analysis results show that the LSTM-KMA model achieves the lowest RMSE of 14.5319, outperforming the 

baseline LSTM (16.6827), LSTM-IDBO (15.0946), and LSTM-PSO (15.0368). Furthermore, LSTM-KMA 

also delivers the best performance based on the MAE, with the lowest value of 8.7041, superior to the 

baseline LSTM (9.9903), LSTM-IDBO (9.0328), and LSTM-PSO (9.0015). This demonstrates that 

optimization using KMA significantly improves the accuracy of the LSTM model's predictions when 

addressing the complexity of multi-target vehicle detection in urban traffic. Thus, this research makes a 

significant contribution to the development of predictive models that not only address the challenges in 

multi-target vehicle detection but also support real-time traffic management systems. 
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