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 Despite advancements in computer vision, deploying deep learning 

algorithms for automated optical inspection (AOI) in printed circuit board 

(PCB) manufacturing remains challenging due to the need for large, diverse, 
and high-quality training datasets. AOI programs must be developed 

quickly, often as soon as the first PCB is assembled, to meet tight production 

timelines. However, deep learning models require extensive datasets of 

defect images, which are both scarce and time-consuming to collect. As a 
result, AOI software developers frequently resort to traditional rule-based 

methods. This study introduces a novel framework that leverages generative 

AI and discriminative AI to address dataset limitations. By applying a 

diffusion model to systematically add and remove Gaussian noise, the 
framework generates realistic defect images, expanding the available 

training data. This data augmentation accelerates the learning process of 

deep learning models, enhancing their robustness and generalizability. 

Experimental results demonstrate that this approach improves AOI system 

performance by producing balanced datasets across various defect classes. 

The framework shortens training times while maintaining high inspection 

accuracy, facilitating faster deployment of AOI systems in manufacturing. 

This advancement enhances quality control processes, contributing to more 
efficient, and reliable mass production of PCBs. 
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1. INTRODUCTION 

The domain of computer vision, particularly in machine inspection has experienced significant 

advancements with the advent of deep learning algorithms [1]–[4]. In the context of printed circuit board 

(PCB) manufacturing, automated optical inspection (AOI) system has become a widely accepted standard for 

vision-based inspection fully integrated into the manufacturing lines [5], [6]. However, the vision system 

continues to face challenges in achieving accurate inspections in real-world industrial settings due to the 

highly specular nature of solder joint surfaces [7], [8].  

To address these concerns, researchers have proposed numerous innovative machine learning 

approaches [9]–[12]. Among them, convolutional neural networks (CNN) are highly recommended for solder 

joint defect detection tasks due to their efficient spatial processing capabilities [13]–[21]. Despite the promising 

developments, the industrial application of CNN-based algorithms for solder joint quality inspection in AOI 

systems remains limited. The primary hurdle is due to defective samples are significantly fewer than good ones, 

leading to an imbalanced dataset, significantly affect the classification accuracy [22]–[25]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Numerous studies have been proposed to mitigate this issue of imbalanced dataset due to limited 

defective samples [26]–[28]. However, risk of bias and overfitting caused by imbalanced dataset remains 

unresolved. Generative artificial intelligence (Gen AI) has recently emerged as powerful tool across various 

domains for content creation. However, its application in creating synthetic datasets for AOI model training 

remains underexplored. Techniques such as diffusion models offer vast potential for augmenting training 

dataset, particularly the scarcely available defective data [29]–[31].  

This study aims to tackle the challenge of data imbalance by proposing a novel approach inspired by 

the diffusion process used in Gen AI for defective data augmentation. The method involves progressively 

adding noise to original images (forward diffusion) and then denoising them (reverse diffusion) to generate 

synthetic images that closely match the desired data distribution. This approach accelerates training process 

without sacrificing classification accuracy, facilitating rapid model deployment in the industrial aligned with 

the practical requirements. 

In industrial PCB assembly manufacturing, ensuring the effectiveness of AOI for solder joint quality 

is crucial during mass production. While CNN-based algorithms offer advanced defect detection capabilities, 

their development requires extensive and balanced datasets across various defect categories to perform 

reliably. During early AOI program development phase, defective samples are often limited as compared to 

good ones, resulting in an imbalanced dataset. Training CNN models on such dataset could compromise 

generalization and increase the risks of bias and overfitting. To meet the stringent time-to-market demands, 

AOI programs often developed using rule-based approaches, which do not require large and balanced 

training datasets but sacrifice the advanced learning capabilities of deep learning algorithms. This study aims 

to address the key challenge posed by the scarcity of defective sample data. 

This research intents to address the following gaps: 

‒ Limited availability of defect data. In real-world industrial environments, particularly in PCB assembly, 

defective solder joint images are scarce. Deep learning models rely on large, well-balanced datasets, 

which are often unavailable, leading to bias and overfitting.  

‒ Reliance on rule-based approaches. Due to the limited availability of defect data, AOI systems in 

manufacturing often depend on traditional rule-based methods instead of more advanced deep learning-

based approaches. These rule-based systems lack flexibility and robustness.  

‒ Underexplored application of Gen AI for data augmentation. Although Gen AI, particularly diffusion 

models, have proven effective for data augmentation across various domains, their applications in solder 

joint inspection remains largely unexplored. This study aims to address this gap by demonstrating the 

potential of generative AI in creating synthetic defect images to enhance deep learning model 

performance.  

 

 

2. METHOD 

The proposed technique is evaluated through five sequential stages, as depicted in Figure 1. The 

process begins with data preparation, followed by model training, data augmentation and data synthetization, 

then concludes with performance evaluation. Each of these stages will be described in detail in the 

subsequent sections. 

 

 

 
 

Figure 1. Step-by-step evaluation of the proposed technique 

 

 

2.1.  Dataset preparation (step 1) 

In order to ensure transparency and reproducibility, this study utilizes an open-source public dataset 

obtained from the Kaggle repository at https://www.kaggle.com/datasets. In this paper, the downloaded 

dataset is referred as “Data_Origin_1”. It contains 323 images of good solder leads and 30 images of defect 

solder leads. These images are segmented region-of-interest focus on the solder joint leads of surface-mount 

devices, typically found in packages like small outline integrated circuit (SOIC), small outline package 

https://www.kaggle.com/datasets
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(SOP), and quad flat package (QFP). Figure 2 presents sample images from “Data_Origin_1,” while Figure 3 

provides a closer view of the solder joints on the component leads.  

 
 

 
 

Figure 2. Examples of good and defect images from “Data_Origin_1” dataset 
 

 

 
 

Figure 3. Close-up view of solder joints at leads 

 
 

To construct the testing dataset, referred as “Data_Test”, three good images and three defect images 

were randomly sampled from the “Data_Origin_1” dataset downloaded from the repository. The remaining 

images, comprising 320 good images and 27 defect images, are called “Data_Origin_2”. The dataset 

partitioning is illustrated in Figure 4. 
 
 

 
 

Figure 4. Downloaded dataset is divided into training and testing datasets 
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2.2.  CNN model training (step 2) 

Given that the “Data_Origin_2” dataset is a collection of grayscale images with dimensions of 

179×38 pixels, a simple CNN-based algorithm with a linear structure was chosen. A Python script, using 

OpenCV and TensorFlow libraries, was developed for image loading and model training.  

The “Data_Origin_2” dataset was used for training. After 10 epochs, the model achieved a test accuracy of 

98.57% with a test loss of 2.18%. 

 

2.3.  Dataset augmentation (step 3) 

Many techniques were reported suitable for data augmentation [32]–[34]. Common augmentation 

methods are rotation, scaling, flipping, and cropping. However, as “Data_Origin_2” dataset consists of only 

segmented images, hence the most relevant image augmentation will be pixel value modification. To address 

the imbalance in “Data_Origin_2” (320 good images versus 27 defect images), data augmentation was 

performed exclusively on the defect images. Five defect images were randomly sampled and their 

synthesized counterparts were generated progressively based on a diffusion model. The synthesized image 

from each augmentation loop is loaded to the trained CNN model from step 2 to evaluate the classification 

results. Synthesized images with a confident level under 95% were discarded. Figure 5 shows original and 

synthesized images after augmentation process. Through experimentation, it was found that applying 

Gaussian noise with a mean of 0 and a standard deviation up to 40 preserved key image features, achieving 

confidence levels above 95%. 

Each defect image was synthesized five times to generate in a total of 25 synthesized images.  

To preserve the consistency of ratio between good and defect images, three synthesized images were 

deliberately excluded. The final set of 22 synthesized images, along with the original 5 defect and 320 good 

images from “Data_Origin_2”, constituted a new dataset labelled “Data_Syn_A”. The composition of this 

dataset is summarized in Figure 6. 

 

 

 
 

Figure 5. Original image is augmented to five synthesized images 

 

 

 
 

Figure 6. Forming a new dataset from original and synthesized images 
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2.4.  Synthesized dataset training (step 4) 

In this step, the CNN model was trained using the “Data_Syn_A” dataset. To ensure repeatability 

and reproducibility, the same training procedure described in step 2 was applied. Upon completion of  

10 epochs, the model achieved a test accuracy of 100% with a corresponding test loss of 1.60%. 

 

2.5.  Performance evaluation (step 5) 

To compare the classification performance, both models trained on “Data_Origin_2” and 

“Data_Syn_A” were tested using a synthesized testing dataset, “Data_Test_Syn,” created through 

augmentation of the original “Data_Test”. The augmented “Data_Test_Syn” dataset comprised  

15 synthesized images each for the good and defect classes, in addition to the original three good and three 

defect images. Figure 7 illustrates this augmentation process. 

 

 

 
 

Figure 7. Data augmentation of the testing dataset 

 

 

The CNN model operates under a two-class classification framework, categorizing predictions as 

positive (P) or negative (N). Classification outcomes include: i) true positive (TP) the model correctly 

predicts P for an actual P sample; ii) false positive (FP) the model incorrectly predicts P for an actual N 

sample; iii) true negative (TN) the model correctly predicts N for an actual N sample; and iv) false negative 

(FN) the model incorrectly predicts N for an actual P sample. Performance was evaluated using accuracy, 

precision and recall defined as follows: 

‒ Accuracy: proportion of correctly predicted samples among all samples. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
 (1) 

 

‒ Precision: proportion of TP predictions among all positive predictions. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
 (2) 

 

‒ Recall: proportion of TP predictions among all actual positives. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
 (3) 

 

 

3. RESULTS AND DISCUSSION 

Table 1 presents the performance of CNN models trained on different datasets. Although the results 

reveal only minor differences overall, the model trained on “Data_Syn_A” demonstrates a noticeable bias 

towards the good class. Specifically, 2 out of 18 defect images were misclassified as good, while all 18 good 

images were correctly classified with a very high confidence level. This bias is likely attributed to the dataset’s 

imbalance, where the ratio of good to defect images is 12:1. 

To verify whether the issue is caused by dataset imbalance, defect images in “Data_Origin_2” were 

synthesized five times using the procedure similar to that described in step 3. This process resulted in an 

expanded dataset referred to as “Data_Syn_B”. Figure 8 illustrates the dataset expansion process in detail. 

Following the data augmentation, the ratio of good to defect images was adjusted to 2:1. 
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Table 1. Comparing performance of “Data_Origin_2” against “Data_Syn_A” dataset 
 Accuracy (%) Precision (%) Recall (%) 

Model trained by “Data_Origin_2” 100 100 100 

Model trained by “Data_Syn_A” 94.4 100 90 

 

 

 
 

Figure 8. Data augmentation of defect images to balance the dataset 

 

 

The “Data_Syn_B” dataset was then loaded into the same CNN model for training and evaluated 

using the same test image dataset, “Data_Test_Syn”. The results indicate that accuracy, precision and recall 

indicators achieved having the level equivalent to those with “Data_Origin_2”. In addition, the average 

classification confidence level showed a notable improvement. Table 2 provides a summary of the 

performance metrics of “Data_Syn_B” compared to those of “Data_Origin_2”. 

 

 

Table 2. Comparison of “Data_Origin_2” against “Data_Syn_B” datasets 
 Accuracy (%) Precision (%) Recall (%) Average confidence level (%) 

Model trained by “Data_Origin_2” 100 100 100 96.33 

Model trained by “Data_Syn_B” 100 100 100 99.99 

 

 

4. CONCLUSION 

This study presents an innovative framework leveraging generative AI, specifically the diffusion 

model, to address the inherent challenge of limited defect image data in AOI systems. By augmenting the 

dataset with synthesized images, the proposed approach enhances the performance of CNN-based classifiers, 

yielding a more balanced and representative training set. The diffusion model enables progressive image 

synthesis through the addition and removal of Gaussian noise, thereby enriching the dataset while 

maintaining characteristics to the original defect distribution. This process ensures the preservation of critical 

visual features, which is essential for achieving robust classification performance. The experimental 

outcomes validate the efficacy of this generative approach, demonstrating classification results that are 

comparable to models trained on real-world defect data. The methodology supports rapid dataset preparation, 

facilitating the deployment of CNN-based models in industrial settings where reduced time-to-market is a 

strategic priority. Moreover, it underscores the complementary role of generative learning in augmenting 

traditional discriminative methods, especially during the early phases of mass production when defect 

samples are scarce. This study used a manual and iterative approach for image synthesis, which inherently 

limited the exploration of diverse noise models and augmentation techniques. There is a need for 

comprehensive software tools capable of supporting various noise modeling techniques, automating 

simulation processes and optimizing the selection of noise types and intensities. Developing such advanced 

software solution in the future will be crucial to streamline and enhance dataset augmentation. Meanwhile, 

this paper focuses exclusively on a single type of soldering defect. In practical, a wider spectrum of 

soldering-related anomalies, such as solder bridging, nonwetting, excessive solder, and disturbed solder joints 

are commonly encountered but not addressed in the present study. Future research should extend the 

framework to include these additional defect types, thereby improving the generalizability and industrial 

relevance of the findings. Lastly, scaling the dataset size is recommended to reinforce the robustness and 

reliability of the model performances. 
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