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 Liver tumors are identified in computed tomography (CT) images, which are 

crucial for accurate disease diagnosis and treatment planning as they enable 

clear delineation of tumors. Hence, it is vital in the field of medical 

radiology to segment and classify CT images of liver tumors effectively. 

However, liver tumor locations are not captured accurately at the boundaries 

in terms of size and depth within the liver due to downsampled images, 

leading to reduced segmentation and classification results. This research 

proposes a grid-graph convolutional network-based cyclical learning rate 

EfficientNet (GGCN-CLREN) to accurately segment and classify liver 

tumors. GGCN addresses inaccurate liver tumor segmentation due to 

downsampled images, which capture spatial relationships effectively and 

preserve tumor boundaries as well as depth information. For classification, 

CLREN optimizes classification by adjusting the learning rate, which 

enhances convergence and accuracy. Therefore, GGCN-CLREN ensures 

enhanced segmentation and classification by addressing size and depth 

inaccuracies. Golden sine gray wolf optimization (GSGWO) selects the most 

appropriate features effectively. The GGCN-CLREN achieves commendable 

accuracies of 99.80% and 99.96%, respectively, for the LiTS17 and CHAOS 

datasets when compared to the existing techniques: enhanced swim 

transformer network with adversarial propagation (APESTNet) and adding 

inception module-UNet (AIM-UNet). 
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1. INTRODUCTION 

Liver tumors are one of the primary and lethal forms of cancer all over the world, causing a large 

number of deaths every year. Primary liver cancers are often caused by cirrhosis, resulting from hepatitis B 

or C, alcohol consumption, or fatty liver disease [1]. Numerous imaging tests, such as ultrasound, computer 

tomography (CT), and magnetic resonance imaging (MRI), assist in diagnosing cirrhosis. Among these, CT 

is the primary method used for diagnosis. CT provides comprehensive cross-sectional abdomen images that 

enable it, inclusive of all tests [2], [3]. This is because the contrast enhancement in CT images helps 

distinguish the tumor region from liver parenchyma [4]. Hence, it is significant in the medical radiology field 

for segmenting CT images of liver tumors accurately [5]. Glycogen storage, regulation of hormone 

production, and red blood cell (RBC) degradation are various metabolic processes carried out in the liver [6]. 

Annotating liver tumors from a large number of abdominal images is time-consuming and laborious, 

requiring medical expertise. Moreover, partial volume effect and low-dose artifacts in medical imaging make 

it even more challenging to delineate accurate lesion boundaries, resulting in intra-rater variations [7], [8]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Segmentation is essential for post-interventional tracking of ablated liver tissue, as it helps assess 

negative tissue margins and allows clinicians to evaluate the effectiveness of the process [9]. Additionally, 

liver tumor segmentation permits structural analyses, like tumor volume estimation, which is significant in 

follow-up diagnosis, image-driven surgery, and therapy [10]. Accurate segmentation enables the evaluation 

of volume-based quantitative data, including the textural features, which help in liver therapy planning and 

generate a more consistent hepatic tumor classification, therapeutic response classification, and patient 

survival prediction [11]. The categorization of segmentation techniques is often subjective, as they are 

categorized depending on the extent of human intervention or methodology. The methodology-based 

classification includes model-based approaches based on statistical shape, active contours, graph cuts, and 

region growing [12], [13]. Model-based techniques are inclined to achieve better segmentation performance 

than intensity-based techniques due to their mathematical and accurate statistical modeling that captures the 

region of interest (RoI) [14], [15]. However, the locations of liver tumors are not accurately captured at the 

boundaries for size and depth due to downsampled images, further leading to reduced segmentation and 

classification accuracy. To overcome this issue, grid-graph convolutional network-based cyclical learning 

rate EfficientNet (GGCN-CLREN) is proposed to accurately segment and classify liver tumors by leveraging 

graph convolutional network (GCN) and dynamic learning rate adjustments, which ensure accurate 

delineation and tumor classification. 

The main contributions to liver tumor segmentation are explained as follows: 

‒ GGCN learns the structural data by representing the image as a graph, which models the relationships 

among regions or neighborhood pixels more effectively, leading to accurate segmentation. 

‒ Gray wolf optimization (GWO) integrates the effective exploration capabilities with search diversity 

enhancement provided by the golden sine strategy, which assists in navigating the search space 

effectively to identify appropriate features for classification. 

‒ Cyclical learning rate (CLR) adjusts the learning rate dynamically during training, which further 

increases model convergence and generalization. This approach assists EfficientNet in effectively 

learning complex features, which improves classification accuracy and robustness. By performing all 

these processes, the proposed approach achieves better performance in liver tumors. 

The research paper is organised as follows: section 2 details the literature review of existing 

techniques. Section 3 presents detailed information about the proposed methodology. Section 4 analyzes the 

experimental results of the existing techniques and proposed methodology. Section 5 provides the conclusion 

of this research paper. 

 

 

2. LITERATURE SURVEY 

The related works of liver tumor segmentation based on CT images are briefly explained in this 

section, along with their benefits and limitations. These methods improve accuracy by capturing detailed 

tumor boundaries and leveraging spatial information. As a result, they contribute to improved diagnosis and 

treatment planning in medical imaging. 

Wang et al. [16] suggested an EfficientNetB4, attention gate, and residual learning (EAR-UNet) 

approach to attain automatic and accurate segmentation of liver tumors. Initially, EfficientB4 was performed as 

the encoder for extracting more features during the encoding phase. Then, an attention gate was applied in the 

skip connection to remove inappropriate regions and highlight specific regions. At last, decoder convolution in 

UNet was replaced with a residual block to reduce the vanishing gradient issue, which enhanced the 

convergence speed. However, EfficientNetB4 struggled to manage heterogeneous tumor textures due to the 

variability of tumor appearance that challenged the model’s ability to generalize effectively. 

Di et al. [17] implemented an automated approach based on hierarchical iterative superpixels and 

local statistical features to segment liver tumors. Initially, 3D UNet was used for extracting liver regions, and 

a hierarchical superpixel approach was applied to detect tumor boundaries accurately. Each pixel in the liver 

region was then categorized into non-tumor or tumor using a support vector machine (SVM). A Euclidean 

distance voting approach was employed, which incorporated superpixel segmentation and pixel-wise 

classification to effectively and automatically identify tumor regions. Nevertheless, this approach did not 

capture complex spatial relationships and variations within tumors, as it relied on predefined local structures, 

resulting in inaccurate results. 

Manjunath and Kwadiki [18] presented a modified residual UNet (ResUNet) based on a 

convolutional neural network (CNN) to segment the liver from CT images and lesions from segmented 

lever portions. In the pre-processing phase, each image was resized, and a normalization technique  

was applied to every image to obtain a value between zero and one. The presented approach represented 

the ability to segment the liver accurately by automated tumor segmentation. However, the modified 

ResUNet struggled with significant inter-patient variability in liver shape and lesion appearance  
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because its learned features did not generalize well across different pathologies, which resulted in 

inaccurate segmentation. 

Lv et al. [19] introduced deep supervision (DS) and atrous inception (AI) with conditional random 

field (CRF) to segment liver regions. Initially, the encoder’s standard convolution was replaced by a residual 

block, which enhanced the network’s depth. Then, the AI approach was applied to interconnect the encoder 

and decoder blocks, which enabled to obtain the multi-scale features. The CRF was performed to enhance the 

adjacent data’s labeling deviation, which led to the refinement of overall liver boundaries. However, this 

approach resulted in over or under-segmentation errors for level tumors situated at the boundaries due to their 

complex spatial relationships and variations. 

Popescu et al. [20] developed advanced CNN techniques to segment the liver and hepatic tumors by 

incorporating four effective neural networks like ResNeXt101, ResNet152, DenseNet201, and InceptionV3. 

Global segmentation was performed by training separate individual classifiers and then integrating its 

decision into a unified system. The images underwent a post-processing process that effectively removed 

artifacts after segmentation based on the neural networks. However, the CNN suffered from limited 

generalization across diverse imaging conditions because of variations in image quality and anatomical 

differences among patients.  

Balasubramanian et al. [21] presented an enhanced swim Transformer network with adversarial 

propagation (APESTNet) to segment and classify liver tumors. Medium filtering and histogram equalization 

were utilized in the pre-processing phase, which improved the input images. The enhanced mask region CNN 

(R-CNN) was applied for segmenting the liver tumor, and APESTNet was employed to categorize the liver 

tumor. Overfitting problems were solved using the swim Transformer model by constructing adversarial 

propagation in the classifier. However, APESTNet faced challenges in adapting to different tumor 

appearances and anatomical variations, as a result of capturing subtle features specific to different  

tumor types. 

Kolli et al. [22] implemented an improved probabilistic neural network and Bayesian optimization 

(IPNN-BO) to classify liver tumors. The fully automated approach was used to separate malignancies and the 

liver from CT scans. Optimal hyperparameter tuning was automatically applied by utilizing BO with IPNN 

approach, which achieved accurate segmentation and classification results. However, the implemented 

approach faced struggles with intricate interactions among tumor characteristics due to complex and  

non-linear relationships among various features. 

Özcan et al. [23] suggested adding inception module-UNet (AIM-UNet) by integrating UNet and 

InceptionV3 to segment liver tumors. Data augmentation, image rotation, resizing, and slicing were utilized 

in the pre-processing stage to increase the dataset size and resize the images. AIM-UNet was developed by 

placing convolutional layers of various filter sizes on a skip connection. The suggested approach provided 

better performances by processing edge data and morphology features to a greater extent. However, AIM-

UNet suffered from increased memory usage and potential overfitting due to a large number of parameters 

introduced by Inception modules, which impacted the model’s performance. 

Xia et al. [24] developed a multiview information fusion and CRF to segment liver tumors. Initially, 

the dual self-attention (DSA) approach was employed to determine the significant spatial structures and 

patterns, as well as capture relationships among various feature dimensions and channels. A lightweight 3D 

network was constructed to combine segmentation results from different views and produce a 3D outcome. 

At last, CRF was generated for 3D segmentation refinement, which eliminated over-segmented errors and 

enhanced segmentation accuracy. Nevertheless, the developed approach was a pseudo-3D technique that 

extracted 3D feature data by combining 2D segmentation outcomes from various perspectives, which resulted 

in the loss of certain subtle patterns. 

Xie et al. [25] introduced a multi-scale context integration network (MCI-Net) to segment liver 

images. The residual approach was constructed to avoid network degradation. The multi-scale context 

extraction module was deployed by integrating hybrid dilated convolutions to capture deeper and broader 

features at different scales. A boundary correction block was generated, which enhanced the localization 

capability of boundary information. However, the 2D CNN was utilized for segmenting 3D medical images, 

which led to the loss of spatial data, thereby affecting segmentation accuracy. 

Khan et al. [26] presented a residual multi-scale UNet (RMS-UNet) to segment the liver and lesion 

effectively. Instead of using various kernel sizes, a multi-scale context layer with different dilation rates was 

applied to enhance the unique and valuable data from every layer. Residual blocks were included to 

compensate for training loss because of the increase in the amount of convolution layers. Batch normalization 

was applied in RMS-UNet to enhance learning without any loss of valuable information. However,  

RMS-UNet struggled with training stability due to complex interactions among residual and multi-scale 

components, which triggered convergence problems. 

Kushnure et al. [27] suggested a lightweight multi-level multiscale network with a deep  

residual approach (LiM-Net) to segment the liver tumor using CT images. The computationally effective 
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pre-activated Res2Net with channel-wise attention (PARCA) was employed in the UNet for extracting 

multi-scale fine-grained features to enhance decoder competence. The network was optimized by  

utilizing a custom loss function that effectively managed class imbalances. Nonetheless, LiM-Net 

exhibited inaccurate segmentation because its lightweight design did not capture the complex tumor 

information effectively. 

Ou et al. [28] implemented a ResTransUNet that integrated UNet and Transformer for liver tumor 

segmentation. The squeeze and excitation (SE) block were incorporated in UNet to capture more salient 

image features. A dual-path approach was employed in the encoding structure, where features were 

separately extracted utilizing both CNN and Transformer. An efficient feature enhancement unit was 

constructed for transferring the global extracted features by the Transformer to CNN, which enhanced its 

performance. Nevertheless, ResTransUNet had difficulties with training stability and convergence due to the 

integration of convolution and attention mechanisms, which struggled to effectively learn and optimize  

its parameters. 

From the overall analysis, the existing methods are seen to have limitations as follows: over or 

under-segmentation errors, struggles in generalization ability, interpretability, and transparency. Moreover, it 

does not capture accurate boundaries in terms of size and depth. In order to address this issue, GGCN-CLR 

EfficientNet is proposed to accurately segment and classify liver tumors by using GCN and dynamic learning 

rate adjustments, which enable accurate delineation and tumor classification. 

 

 

3. PROPOSED METHODOLOGY 

In this research, GGCN-CLREN is proposed for segmenting and classifying liver tumors from CT 

images. LiTS17 and CHAOS are the two standard benchmark datasets used to determine the performance of 

the proposed approach. A median filter and data augmentation are used in the pre-processing phase to 

remove noise and increase the image size. Further, the GGCN is used to segment images while ResNext50 is 

applied to extract the features. Then, the golden sine gray wolf optimization (GSGWO) is established to 

select the extracted features. At last, CLREN classifies the liver tumors accurately. Figure 1 indicates a block 

diagram for the proposed approach. 

 

 

 
 

Figure 1. Block diagram for the proposed approach 

 

 

3.1.  Datasets 

In this research, LiTS17 [29] and CHAOS [30] datasets are used for liver tumor segmentation. 

These two datasets are based on CT scans, which have many slice sizes, spacing, and thickness. A brief 

description of these datasets is explained as follows. 

 

3.1.1. LiTS17 

It contains a training set with 131 CT scans and a test set with 70 CT scans. Every CT contains 

varying slices, ranging from 42 to 1026, with 512×512-pixel resolution and a slice thickness ranging from 

0.45 to 6.0 mm. The volume of the 131 CT scans is divided randomly into two parts: 30 cases for testing and 
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101 cases as training data. Figure 2 represents a sample image from the LiTS17 dataset, with Figure 2(a) 

representing the original image and Figure 2(b) representing the mask image. 

 

 

 
(a) 

 
(b) 

 

Figure 2. Sample images for LiTS17 dataset of (a) original image and (b) true mask 

 

 

3.1.2. CHAOS 

This dataset has CT images with varying slices, ranging from 42 to 1,026, with 512×512-pixel 

resolution, and slice thickness, including 6,407 sections from 40 patients. It is composed of 20 sets of 

unlabeled and 20 sets of labeled data. The 16 sets of CT images are selected randomly, with 416 sections for 

testing and 2,458 sections for training sets. The number of slices ranges from 81 to 266, with 512×512-pixel 

resolution and slice thickness ranging from 2.0 to 3.2 mm. Figure 3 indicates a sample image for the CHOAS 

dataset. Table 1 denotes the datasets description, and Figure 3 depicts the sample images from the CHAOS 

datasets in Figure 3(a) representing the original image and Figure 3(b) representing the true mask. 

 

 

 
(a) 

 
(b) 

 

Figure 3. Sample images for CHAOS dataset of (a) original image and (b) true mask 

 

 

Table 1. Dataset description 
Dataset Slice Size of slice Slice thickness (mm) Slice spacing (mm) 

LiTS17 42~1026 512×512  0.45~6.0 0.55~1.0 

CHAOS 81~266 512×512  2.0~3.2 0.57~0.79 

 

 

3.2.  Pre-processing 

The gathered input images are pre-processed utilizing two approaches: median filtering and data 

augmentation. These approaches enhance the image quality and increase the robustness and segmentation 
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performance of the model by generating more diverse training images in liver tumor, like padding, cropping, 

flipping, and random rotation. A detailed explanation of these methods is explained as follows. 

 

3.2.1. Median filtering 

A median filter [31] is a non-linear digital filter because it preserves the edges while removing 

impulse noise, such as salt and pepper noise, from the image of a liver tumor. This type of noise appears as 

dark pixels or isolated bright spots, which degrade the image quality. The median filter replaces each pixel 

with the median value from a local neighborhood, which effectively smoothes out noise-induced outliers 

while preserving significant image information and edges. Initially, the image’s median value is acquired to 

read the pixel values, and then it is computed by choosing the middle value to modify the pixel’s intensity 

value (𝑥, 𝑦). The process of median filtering is represented in (1). Here, 𝜔 represents the neighborhood pixel 

fixed at the [𝑚, 𝑛] location in the CT image, 𝑦[𝑚, 𝑛] denotes the output value of the filtered image, and 

𝑥[𝑡, 𝑓] determines the input value in the original image. This process increases the image quality while 

preserving the significant edge information. 

 

𝑦[𝑚, 𝑛] = 𝑚𝑒𝑑𝑖𝑎𝑛 {𝑥[𝑡, 𝑓]}, (𝑡, 𝑓) ϵ ω (1) 

 

3.2.2. Data augmentation 

Data augmentation assists in increasing the diversity of training data, which minimizes limited 

annotated images. Deep learning (DL) approaches require a significantly huge amount of labeled data for 

training. To solve this issue, data augmentation is performed to enhance the available data for training. It 

extends the data by utilizing various approaches like padding, cropping, random rotation, and horizontal 

flipping to create diverse variations of training images for DL method. Before efficiently deploying the DL 

approach, the data size is increased through synthetic augmentation for CT segmentation. It enhances model 

robustness by generating different transformations of the original images, which leads to better generalization 

and enhanced segmentation accuracy. Figures 4 and 5 represent sample augmented images for the  

LiTS17 and CHAOS datasets, which is demonstrated in: Figures 4(a) and 5(a) show the padding,  

Figures 4(b) and 5(b) show the cropping, Figures 4(c) and 5(c) show the random rotation, and  

Figures 4(d) and 5(d) show the horizontal flipping. The pre-processed data is fed as input to the segmentation 

process using GGCN. 
 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 4. Sample augmented images for LiTS17 dataset of (a) padding, (b) cropping, (c) random rotation, and 

(d) horizontal flipping 
 

 

    
 

Figure 5. Sample augmented images for CHAOS dataset of (a) padding, (b) cropping, (c) random rotation, 

and (d) horizontal flipping 
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3.3.  Segmentation 

After pre-processing, GGCN is used to segment the liver tumor effectively. GGCN captures spatial 

relationships and dependencies effectively through a graph representation, which ensures model 

understanding of the various context tissues and organs. GGCN preserves structural data by representing the 

image as a graph and better models the relationships among regions or neighborhood pixels, which leads to 

more accurate segmentation. GGCN employs a coverage-aware grid query (CAGQ) by leveraging grid space 

efficiency and enhancing spatial coverage. For every point group generated by CAGQ, the GCA is employed 

for aggregating features from points of the node to the group center. Initially, a local graph 𝐺(𝑉, 𝐸) is 

constructed, where V is the group center, and K is the point of the node generated by CAGQ. Then, every 

node point is connected to the group center and develops node point features 𝑓𝑖 to 𝑓𝑖̃. The GCA computes 𝑓𝑖̃ 

and aggregates every feature as a center feature depending on the edge relation between the node and the 

center. The mathematical GCA module is expressed in (2) and (3). The 𝑓𝑖̃ represents the node contribution, 𝑋𝑖 

denotes the 𝑥𝑦𝑧 node location, ℳ determines the multi-layer perceptron (MLP), 𝑒 shows the edge attention 

function, and 𝐴 explains the aggregation function. The edge attention function is employed by using the 

center 𝑋𝑐 and 𝑋𝑖 node to model edge attention as a geometric relation function. Figure 6 represents the 

GGCN architecture. 
 

𝑓𝑐,𝑖̃ = 𝑒(𝑋𝑖 , 𝑓𝑖) ∗ ℳ(𝑓𝑖) (2) 

 

𝑓𝑐̃ = 𝐴({𝑓𝑐,𝑖̃}, 𝑖𝜖1, … , 𝐾) (3) 

 

 

 
 

Figure 6. Architecture of GGCN 

 

 

Moreover, the formulation disregards the underlying contribution of every node point from prior 

layers. The coverage weight is defined as the number of points aggregated to a node in prior layers. This 

value is calculated easily in CAGQ, and the coverage weight is a significant feature in computing edge 

attention. Semantic relation is another essential aspect of computing edge attention. The semantic relation is 

encoded by utilizing features of the group center 𝑓𝑐 and the feature’s node point 𝑓𝑖, which needs a center of 

the group to be chosen from the node points. The grid context pooling is established, which extracts the 

context features 𝑓𝑐𝑥𝑡 by pooling from every context point in CAGQ that sufficiently covers the local graph’s 

whole grid space. Grid context pooling determines the following benefits: 

‒ 𝑓𝑐𝑥𝑡 models the virtual group center features that enable the estimation of semantic relations among 

node points and centers. 

‒ Even while the group center is selected at a physical point, 𝑓𝑐𝑥𝑡 is significant in feature representation 

because it covers more points in a neighborhood instead of only graph points.  

‒ In CAGQ, the context points are associated with their center voxel, and there are no extra query 

overhead points. In a local graph, 𝑓𝑐𝑥𝑡 is shared among every edge computation, and the pooling is a 

lightweight operation requiring no learnable weight and less computational overhead. The edge 

attention function is formulated in (4). 

 

𝑒 = 𝑚𝑙𝑝(𝑚𝑙𝑝𝑔𝑒𝑜(𝑋𝑐 , 𝑋𝑖 , 𝑤𝑖), 𝑚𝑙𝑝𝑠𝑒𝑚(𝑓𝑐𝑥𝑡 , 𝑓𝑖)) (4) 

 

Medical images vary significantly in pathology and anatomy. The GGCNs manage the irregular 

shapes of liver tumors by using graph structures, which leads to enhanced accuracy and robustness. 

Additionally, GGCN incorporates multi-scale data, which generates more data and accurate segmentation. 

Figure 7 indicates the segmented sample images, which are shown in Figure 7(a) representing the LiTS17 
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dataset and Figure 7(b) representing the CHAOS dataset. Then, the segmented input is fed into the feature 

extraction process using ResNext50. 

 

 

 
(a) 

 
(b) 

 

Figure 7. Sample for segmented images of (a) LiTS17 and (b) CHAOS 

 

 

3.4.  Feature extraction 

After segmentation, ResNext50 [32] is performed to extract features effectively from liver tumors. 

ResNext50 enhances outcomes by using a highly modular architecture with grouped convolutions that 

improve feature extraction efficiency and model scalability. Its cardinality enhances the network’s ability to 

learn diverse and rich features, which help in capturing the liver tumor’s complex pattern. This model 

significantly minimizes computational demands while preserving information richness. The 1st convolution 

layer utilizes a 7×7 convolutional kernel with a 2-stride, succeeded by 3×3 layers of max-pooling with a  

2-stride. The second convolutional module has 3 kinds of convolutions: a 1×1 convolutional with  

128 channels, a 3×3 convolutional with 128 channels, and a 1×1 convolutional with 256 channels. The third 

convolutional has a 1×1 convolutional with 256 channels, 3×3 convolutional with 256 channels split into  

32 convolutional groups, and a 1×1 convolutional with 512 channels prepared in 4 groups. The fourth 

convolutional has a 1×1 convolutional kernel with 512 channels, a 3×3 convolutional with 512 channels split 

into 32 convolutional groups, and a 1×1 convolutional with 1,024 channels, repeated in 6 groups. The fifth 

convolutional has a 1×1 convolutional kernel with 1,024 channels, a 3×3 convolutional with 1,024 channels, 

which split into 32 convolutional groups, and a 1×1 convolutional with 2,048 channels, which are repeated in 
3 groups. Then, the outcome is generated by using the average pooling layer and a fully connected (FC) 

layer. ResNext50 extracts 2,048 features effectively and increases the model’s ability significantly, to capture 

diverse and intricate features within the segmented images. Also, ResNext50’s depth and residual 

connections enable robust learning for more accurate and reliable tumor results. 

 

3.5.  Feature selection 

After extracting features, the GSGWO is established to select the features from the LiTS17 and 

CHAOS datasets for liver tumors. The feature selection process is essential to increase the model’s 

performance by minimizing dimensionality and focusing on the most appropriate features, which reduce 

overfitting and improve interpretability. GWO effectively explores and exploits the search space, leading 

to optimal feature subsets. This results in enhanced accuracy by choosing the most appropriate features 

from the extracted features. GWO [33] imitates the wolf-hunting approach for optimization. This approach 

splits the wolves into head wolf ∝, 𝛽, and 𝛿, which helps the head wolf in hunting and is responsible for 

sentry, reconnaissance, along with another wolf ω. The wolves' hunting behavior is primarily split into 

three phases: encirclement, attack, and pursuit. In the encirclement stage, the GWO updates the position by 

utilizing (5) to (8). 

 

𝑋(𝑡 + 1) = 𝑋𝑝(𝑡) − 𝐴. |𝐶. 𝑋𝑝(𝑡) − 𝑋(𝑡)| (5) 

 

𝐴 = 2𝑎1. 𝑟1 − 𝑎1 (6) 

 

𝐶 = 2𝑟2 (7) 
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𝑎1 = 2 − 2𝑡/𝑡𝑚𝑎𝑥  (8) 

 

Where 𝑋, 𝑋𝑝 denote the gray wolf and prey wolf’s position, 𝐴, 𝐶 define the coefficient vectors, 𝑎1 

determines the convergence factor, 𝑟1, 𝑟2 determine the random number among [0, 1], 𝑡 indicates the present 

number of iterations, and 𝑡𝑚𝑎𝑥  represents the maximum number of iterations. In the pursuit and attack stage, 

the GWO updates the position by (9) and (10). The 𝑋1, 𝑋2, and 𝑋3 define the location update, which 

influences the factors of 𝛼, 𝛽, and 𝛿 wolves. 

 

{

𝑋1 = 𝑋𝛼 − 𝐴1. |𝐶1. 𝑋𝛼 − 𝑋
𝑋2 = 𝑋𝛽 − 𝐴2 . |𝐶2. 𝑋𝛽 − 𝑋

𝑋3 = 𝑋𝛿 − 𝐴3 . |𝐶3. 𝑋𝛿 − 𝑋
 (9) 

 

𝑋(𝑡 + 1) = (𝑋1 + 𝑋2 + 𝑋3)/3 (10) 

 

3.5.1. Golden sine algorithm 

It is a meta-heuristic approach that transverses each point on a circle by the sine function and 

minimizes the search space by the golden coefficient, thereby enabling the model to achieve high search 

efficiency, jumping out of the local optima. The golden sine approach’s position update equation is expressed 

in (11) and (12). The 𝑋′(𝑡 + 1) defines the model’s convergence direction, 𝑟1, 𝑟2 denote the random numbers 

among [0, 2𝜋] and [0, 𝜋]. The 𝑠1 and 𝑠2 represent the golden algorithm coefficient, while 𝜏 determines the 

number of golden sections. The maximum accuracy is used as a fitness function, which is calculated in (13). 

 

𝑋′(𝑡 + 1) = 𝑋(𝑡 + 1). |𝑠𝑖𝑛𝑟1| − 𝑟2. 𝑠𝑖𝑛𝑟1. |𝑠1. 𝑋1 − 𝑠2 . 𝑋(𝑡 + 1)| (11) 

 

{
𝑠1 = 𝑎. 𝜏 + 𝑏. (1 − 𝜏)

𝑠2 = 𝑎. (1 − 𝜏) + 𝑏. 𝜏′ (12) 

 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 (𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦) (13) 

 

The golden sine approach effectively performs secondary population convergence, optimizes the 

approach, and increases the algorithm’s searchability. It selects 1,980 and 1,890 features for the LiTS17 and 

CHAOS datasets. The GSGWO provides an effective approach by incorporating local and global search 

abilities, ensuring accurate and optimal tumor delineation. After selecting the features, the GGCN-CLREN is 

performed for liver tumor classification. 

 

3.6.  Classification 

Once the features are selected from the extracted features, EfficientNet classifies the liver tumor by 

leveraging a scalable architecture that balances the width, depth, and resolutions. It is a CNN model and 

scaling approach that applies compounded coefficients for scaling the dimensions evenly in the liver tumors. 

EfficientNet has 8 models between B0 and B7. As the number of models increases, the number of parameters 

does not rise significantly, but the accuracy decreases remarkably. The use of DL approach is to disclose 

more effective models with smaller approaches. EfficientNet achieves more efficient results by evenly 

scaling width, resolution, and depth when scaling down the approach. The main building block is an inverted 

MBConv bottleneck, which is generated in MobileNetV2 for EfficientNet. In MBConv, the blocks have a 

layer that is initially compressed and then enlarges the channel. Among bottlenecks, straight connections 

associated with fewer channels compared to the expanded layers are employed. Furthermore, this structure 

has in-depth separable convolutions that reduce the calculation by a 𝐾2 factor, where the 𝐾 kernel size 

denotes the height and width of the convolution window. The compound coefficient 𝜃 is utilized for scaling 

evenly, which is expressed in (14). 

 

𝑊𝑖𝑑𝑡ℎ: 𝑊 = 𝒳𝜁   

𝐷𝑒𝑝𝑡ℎ: 𝐷 = 𝛽𝜁   

𝑅𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛: 𝑅 = 𝛿𝜁  

𝛽 ≥ 1, 𝒳 ≥ 1, 𝛿 ≥ 1 (14) 

 

Where 𝛽, 𝒳, 𝛿 denotes a constant that is calculated by grid search, and 𝜃 is determined as a user-defined 

coefficient that handles the available resources to scale the model. The floating-point operations per second 

(FLOPS) are proportional to 𝐷, 𝑊2, 𝑅2. Computing costs in convolution networks are greater owing to the 
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convolution operation, while scaling convolutional networks increases the FLOPS network by approximately 

(𝛽, 𝒳2, 𝛿2)𝜃(𝛽, 𝒳2, 𝛿2)𝜃. The compound scaling approach scales this model in 2 stages: 

‒ Stage 1: considering that there are more than two available resources, a grid search is performed with 

𝜃 = 1, and ideal values are established from 𝛽, 𝒳, and 𝛿. 

‒ Stage 2: the obtained 𝛽, 𝒳, and 𝛿 values are determined as constants, and the standard network is scaled 

up to obtain EfficientNet-B1 to B7 with varying 𝜃 values. 

The rectified linear unit (ReLU) is used as an activation function for the liver tumors. CLR is used 

to acquire the optimal learning rate in liver tumors by fluctuating between the maximum learning rate of 10 

and a base learning rate of 1e-8. With a step size of 50 and a cycle length of 100, the CLR adjusts the 

learning rate within this range over 100 iterations by utilizing a batch size of 32. The overfitting issue is 

solved by using CLR during training, allowing the model to explore a wider range of learning rates. The max 

and base learning rates determine a range boundary where the rate of learning is fluctuated. These dynamic 

adjustments enable the model to train more effectively by rapid convergence. Incorporating CLR and 

EfficientNet enhances training stability, optimizes learning rate for better performance, and obtains a high 

accuracy with fewer resources, which renders this approach highly effective for the classification of  

liver tumor. 

 

 

4. EXPERIMENTAL RESULTS 

The results and discussion of the performance analysis are presented in this section. The proposed 

approach is evaluated using software tools: Anaconda Navigator 3.5.2.0 (64-bit), Python 3.10.12 with 

Windows 10 operating systems, i5 Intel-core, and 8 GB RAM. The frameworks and libraries used here are 

Transformers, Tensorflow, Keras, Sklearn frameworks, and Matplotlib library to plot. The performance 

metrics utilized in this research are dice similarity coefficient (DSC), accuracy, recall, precision, volumetric 

overlapping error (VOE), and relative volume difference (RVD), which are expressed in (15) to (21). The 

𝑇𝑃, 𝐹𝑁, 𝑇𝑁, and 𝐹𝑃 represent true positive, false negative, true negative, and false positive, and |𝑋| and |𝑌| 
indicate the volumes of 𝑋 and 𝑌, respectively. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (15) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (16) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (17) 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
 (18) 

 

𝐷𝑖𝑐𝑒 (𝑋, 𝑌) =
2|𝑋⋂𝑌|

|𝑋|+|𝑌|
 (19) 

 

𝑅𝑉𝐷 (𝑋, 𝑌) =
|𝑌|−|𝑋|

|𝑋|
 (20) 

 

𝑉𝑂𝐸(𝑋, 𝑌) = 1 −
2|𝑋⋂𝑌|

|𝑋|+|𝑌|
 (21) 

 

4.1.  Performance analysis 

Table 2 presents the performance analysis of segmentation methods using the LiTS17 and CHAOS 

datasets. The existing approaches of UNet, Superpixel segmentation, and GCN are compared with the GGCN 

approach. When compared to these existing approaches, GGCN achieves a better DSC of 98.50% and 

97.95% using the LiTS17 and CHAOS datasets due to it effectively integrating the spatial structure of grid 

data with GCN, which enables more accurate modeling of complex tumor shapes and spatial relationships. 

Also, it employs both global and local contexts, which increase its ability to capture complex boundaries  

and variations. 

Table 3 denotes a performance analysis of feature selection methods for LiTS17 and CHAOS 

datasets. Particle swarm optimization (PSO), ant colony optimization (ACO), and GWO are compared with 

GSGWO, which achieves a better accuracy of 99.80% and 99.96%. As the proposed approach enhances 

exploitation and exploration balance by including the golden sine strategy, the convergence speed is 

improved, alongside avoiding the local optima issue. This approach integrates the strengths of the sine cosine 
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mechanism with the adaptive hunting behavior of gray wolves, which leads to more accurate and  

effective optimization. 

 

 

Table 2. Performance analysis of segmentation methods 
Dataset Methods DSC (%) VOE (%) RVD (%) 

LiTS17 Unet 95.23 5.06 1.25 

Superpixel segmentation 91.25 5.85 2.14 

GCN 90.56 6.54 2.77 

GGCN 98.50 4.33 0.11 

CHAOS Unet 87.69 6.83 2.55 
Superpixel segmentation 92.58 5.69 1.27 

GCN 88.45 6.12 2.04 

GGCN 97.95 3.78 0.13 

 

 

Table 3. Performance analysis of feature selection methods 
Dataset Methods Accuracy (%) Precision (%) Recall (%) F1-score (%) 

LiTS17 PSO 82.53 81.00 80.00 80.49 
ACO 89.50 89.00 87.00 87.98 

GWO 78.38 79.00 78.00 78.49 

GSGWO 99.80 99.52 99.50 99.51 

CHAOS PSO 85.42 85.00 84.00 84.49 

ACO 70.69 72.00 70.00 70.98 
GWO 79.53 79.00 78.00 78.89 

GSGWO 99.96 99.89 99.90 99.89 

 

 

Table 4 shows a performance analysis of classification with default features. The CLREN exhibits 

superior accuracy of 95.35% and 96.24% when compared to fully convolution networks (FCN), visual 

geometry group (VGG), and InceptionV3, as the proposed approach combines EfficientNet with CLR that 

adjusts dynamic learning rates to escape local minima and increase convergence. This approach enhances 

generalization abilities, which leads to superior performance in classifying liver tumors. 

 

 

Table 4. Performance analysis of classification with default features 
Dataset Methods Accuracy (%) Precision (%) Recall (%) F1-score (%) 

LiTS17 FCN 88.26 85.37 84.06 84.70 
VGG 62.85 65.12 69.01 67.00 

InceptionV3 74.25 72.06 74.58 73.29 

CLREN 95.35 94.05 92.14 93.08 

CHAOS FCN 86.64 85.14 85.58 85.35 

VGG 89.25 85.24 86.32 85.77 
InceptionV3 70.47 69.21 70.43 69.81 

CLREN 96.24 95.14 93.28 94.20 

 

 

Table 5 determines the performance analysis of classification with optimized features. When 

compared to FCN, VGG, and InceptionV3, CLREN achieves a better accuracy of 99.80% and 99.96% 

using the LiTS17 and CHAOS datasets, as it employs the compound scaling method of EfficientNet, 

which optimizes the depth, resolution, and width for an improved performance. Also, CLR increases  

the training process by adjusting dynamic learning rates, which results in effective learning and  

enhanced accuracy. 

 

 

Table 5. Performance analysis of classification with optimized features 
Dataset Methods Accuracy (%) Precision (%) Recall (%) F1-score (%) 

LiTS17 FCN 98.05 98.00 98.00 98 

VGG 75.5 75.00 74.50 74.74 
InceptionV3 80.13 80.00 80.00 80 

CLREN 99.80 99.52 99.50 99.51 

CHAOS FCN 97.90 97.00 97.00 97 

VGG 98.60 98.10 98.00 98.04 

InceptionV3 73.00 73.00 73.00 73 
CLREN 99.96 99.89 99.90 99.89 
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Table 6 demonstrates the performance of K-fold validation. When K =5, fold validation provides a 

good balance among bias and variance. With fewer folds, K =3, the training sets are larger but the validation 

is smaller, resulting in higher variance in validation outcomes. With K =7 folds, the training sets are smaller, 

leading to high bias. K =5 provides a balance and produces more stable and reliable performance. 

Figure 8 illustrates the performance analysis of epoch vs. accuracy for CLREN, where Figure 8(a) 

shows results of LITS17 and Figure 8(b) displays results of CHAOS datasets. The blue line indicates training 

accuracy, which increases gradually, after which the model learns from the training data. The orange line 

represents validation accuracy that enhances and levels off, which performs well on new data. Both 

accuracies increase rapidly, which indicate that the model offers an improved performance. 

Figure 9 determines a performance analysis of epoch vs. loss, where Figure 9(a) shows results of 

LITS17 and Figure 9(b) displays results of CHAOS datasets using proposed CLREN. The blue line indicates 

the training loss, while the orange line shows validation loss over 10 epochs. Both losses decrease rapidly, 

indicating that the model learns and improves its performance on both training and validation data. The 

validation loss is slower than the training loss, which implies that the model generalizes well on unseen data. 

 

 

Table 6. Performance analysis of K-fold validation 
Dataset K-fold Accuracy (%) Precision (%) Recall (%) F1-score (%) 

LiTS17 3.00 82.54 81.56 79.23 80.37 

5.00 99.80 99.52 99.50 99.51 

7.00 85.27 84.57 81.05 82.77 

9.00 89.39 88.26 86.56 87.40 

CHAOS 3.00 84.21 83.74 83.43 83.58 
5.00 99.96 99.89 99.90 99.89 

7.00 86.87 85.34 83.47 84.39 

9.00 91.34 90.23 89.15 89.68 

 

 

 
(a) 

 
(b) 

 

Figure 8. Performance analysis of epoch vs. accuracy of (a) LiTS17 and (b) CHAOS 

 

 

 
(a) 

 
(b) 

 

Figure 9. Performance analysis of epoch vs. loss of (a) LiTS17 (b) CHAOS 

 

 

4.2.  Comparative analysis 

Table 7 represents a comparative analysis of existing methods using the LiTS17 and CHAOS 

datasets. When compared to the existing methods like DS-AI-CRF [19], APESTNet [21], IPNN-BO [22], and 
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RMS-UNet [26], the proposed GGCN-CLREN achieves a better accuracy of 99.80% and 99.96% for both 

datasets. The proposed approach employs an advanced GCN to effectively capture spatial relationships and 

integrates it with CLREN to dynamically optimize learning rates, so as to augment the model’s performance 

in liver tumors. 

 

 

Table 7. Comparative analysis of existing methods 
Methods Dataset Accuracy (%) Precision (%) Recall (%) Dice (%) VOE (%) RVD (%) 

DS-AI-CRF [19] LiTS17 N/A N/A N/A 97.62 4.64 0.42 

APESTNet [21] 95.62 98.32 94.62 N/A N/A N/A 

IPNN-BO [22] 99.25 N/A 98.63 N/A N/A N/A 

Proposed GGCN-CLREN 99.80 99.52 99.50 98.50 4.33 0.11 

AIM-UNet [23] CHAOS 99.75 99.69 96.39 97.86 N/A N/A 
RMS-UNet [26] N/A N/A N/A 95.49 10.87 1.2 

Proposed GGCN-CLREN 99.96 99.89 99.90 97.95 3.78 0.13 

 

 

4.3.  Discussion 

The advantages of the proposed method and the limitations of existing methods are discussed in 

this section. The existing method limitations, like DS-AI-CRF [19], face over or under-segmentation 

errors when level tumors are situated at the boundaries due to their complex spatial relationships and 

variations. APESTNet [21] faces challenges in adapting to different tumor appearances and anatomical 

variations due to the capturing of subtle features specific to different tumor types. IPNN-BO [22] struggles 

with intricate interactions among tumor characteristics due to complex and non-linear relationships among 

various features. AIM-UNet [23] suffers from increased memory usage and potential overfitting due to a 

large number of parameters introduced by the Inception modules, which impact the model’s performance. 

RMS-UNet [26] faces challenges in training stability due to complex interactions among the residual and 

multi-scale components, which lead to convergence problems. The proposed GGCN-CLREN overcomes 

these existing method limitations. This approach effectively captures spatial dependencies and complex 

structures within images by using GCN, which improves segmentation accuracy through modeling 

complex tissue patterns and boundaries. Also, the CLREN adjusts learning rates dynamically, while also 

improving training efficiency and convergence speed, outperforming traditional methods in terms of 

classification performance. 

 

 

5. CONCLUSION 

In this research, the GGCN-CLREN is proposed to accurately segment and classify liver tumors. 

This approach assists EfficientNet in effectively learning complex features, which in turn improve 

classification accuracy and robustness. CLR obtains an optimal learning rate in liver tumors by fluctuating 

between the maximum learning rate and a base learning rate with the step size. Further, the GGCN conserves 

the structural data by representing the image as a graph and modeling the relationships between the 

neighborhood pixels or regions, giving rise to a more accurate segmentation. ResNext50 extracts features 

effectively by using grouped convolutions that improve feature extraction efficiency and model scalability. 

GSGWO incorporates both local and global search abilities, and ensures an accurate and optimal tumor 

delineation. By performing all these processes, GGCN-CLREN achieves a commendable accuracy of 99.80% 

and 99.96%, as opposed to the existing techniques, APESTNet and AIM-UNet, respectively. In the future, a 

hybrid method will be considered to further improve the model’s outcomes. 
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