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 The rapid growth of the green internet of things (GIoT) in recent years 

signifies a transformative shift in internet of things (IoT) solution 

development. This evolution is driven by technological advancements, 

heightened environmental awareness, and a global imperative to combat 

climate change. Ensuring the reliability of GIoT applications is crucial for 

their success. This study identifies critical features for predicting IoT device 

failures, enabling early detection and intervention. Using datasets from 

industry, energy, and agriculture sectors, we employ a feature selection 

strategy to analyze extensive data from diverse GIoT deployments. Our 

analysis identifies significant features and integrates key insights from 

existing literature. Our findings support enhanced predictive maintenance 

strategies, reduced downtime, and improved overall performance of 

sustainable IoT solutions. 
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1. INTRODUCTION 

In recent years, the internet of things (IoT) has seen substantial growth and integration across various 

facets of daily life [1]. As IoT continues to expand into numerous industries, the reliability and performance of 

IoT devices have become increasingly crucial. The IoT concept aims to use microcontrollers, transceivers, and 

protocol stacks for connectivity and combine everyday objects with the internet. By connecting everyday 

objects and devices to the digital world, the IoT has an extensive number of uses in daily life, from precision 

agriculture that optimizes farming practices to industrial IoT that revolutionizes manufacturing and production 

processes. IoT has created an interconnected network of smart devices, embedded sensors, and cloud 

computing, revolutionizing a variety of industries, including smart traffic [2], [3], healthcare [4], [5], 

agriculture [6], [7], and Industry 4.0. The IoT assists the current energy sector [8]. The integration of IoT 

technology with green energy applications marks a transformative leap toward a more sustainable future of 

renewable energy sources [9]. IoT technology facilitates connecting all the components of energy production 

and consumption, getting insight into the processes, and giving actual control at every stage of the energy 

flow, from exploitation to delivery to end users. 

Predicting failures in green internet of things (GioT) application offers several advantages. First, it 

enhances system resilience by enabling rapid responses to potential disruptions, ensuring continuous 

operation in critical applications like smart grids, environmental monitoring, and healthcare systems, where 

https://creativecommons.org/licenses/by-sa/4.0/
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downtime can have severe consequences. Early intervention improves system stability, allowing IoT 

infrastructure to recover quickly from potential failures. Secondly, it facilitates proactive maintenance 

strategies, reducing energy consumption and preventing unnecessary downtime [10]. Additionally, failure 

prediction extends the lifecycle of IoT devices, decreasing the need for frequent replacements and supporting 

sustainability efforts. By ascertaining key factors contributing to failures, researchers can further optimize 

design and manufacturing processes, resulting in more durable and efficient IoT solutions. 

This study has been structured into six sections. Section 1 is the introductory phase, which presents 

the evolution of IoT and addresses the associated challenges. Section 2, sheds light on the background of IoT 

and GIoT. In section 3, the focus has been only on the literature review related to the green energy field. 

Section 4 highlights the challenges and techniques involved in feature selection for optimizing energy 

efficiency and resource consumption in GIoT. Results, challenges, and future research directions of the 

modern day have been discussed in section 5. Section 6 is the concluding portion of the research article. The 

articles have been extracted based on the highest number of citations over the past few years. 

 

 

2. BACKGROUND 

2.1.  Internet of things architecture and components 

The IoT is a global network infrastructure consisting of various connected devices that rely on 

sensors. It operates through a four-step architecture, as illustrated in Figure 1. Each stage in this process is 

interconnected, enabling data captured or processed at one stage to provide value to the next [5]. 

The following is a simplified representation of a typical IoT workflow. End devices: this phase 

involves the deployment of IoT devices or sensors at various locations to collect data from the physical 

environment. These devices consist of sensors, actuators, cameras, or other hardware that gather relevant 

data. They are responsible for collecting and transmitting data to the following phase. 

Data preprocessing: the data collected by IoT devices is preprocessed before being effectively 

analyzed. This step includes data cleaning, filtering, and normalization to improve data reliability and accuracy. 

The data is modified or improved to render it suitable for analysis. Sensors or other devices frequently send 

back analog data, which need to be integrated and converted to digital format for further processing. 

Data storage: after preprocessing, the combined and digitalized data needs to be properly stored in 

an appropriate repository for further analysis. This phase involves selecting a suitable storage solution, such 

as databases or data lakes while considering scalability, and data reliability. Additionally, the standardized 

data is transferred to the selected data center or cloud infrastructure for effective and secure storage. 

Data analysis: in this stage, a variety of approaches are applied to the stored IoT data to extract 

relevant insights and knowledge. The data is examined for patterns, trends, correlations, and anomalies 

applying techniques including statistical analysis, data mining, artificial intelligence, and machine learning. 

The objective is to generate practical understandings to promote informed decisions. 
 

 

 
 

Figure 1. The four phases of IoT solutions 
 

 

2.2.  Green internet of things applications 

GIoT applications have extensive effects across several areas, significantly advancing sustainability 

and efficiency. In energy management, Farhan et al. [11] have examined energy efficiency strategies and 

electric power systems for GIoT networks, highlighting the importance of sustainable practices. In smart 

agriculture, IoT devices can optimize agricultural practices, increase crop yields, and reduce environmental 

impact [12], [13]. In waste management, IoT technologies, such as smart bins equipped with sensors and 

solar power [14], promote environmentally friendly practices. Mohammadi et al. [15] state that a holistic 

approach integrates waste collection and sorting, reducing costs and minimizing social and environmental 

impacts. GIoT also enhances sustainable transportation by implementing technologies that reduce emissions 

and improve efficiency. Furthermore, environmental monitoring leverages IoT devices to provide real-time 

data for managing and protecting natural resources, as shown in studies [16]. These applications underscore 

the transformative potential of GIoT in fostering sustainable development. 
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3. RELATED WORK 

The number of survey papers on GIoT that have attracted attention in recent years has increased. 

Alsharif et al. [17] advocates for the adoption of eco-friendly IoT solutions by thoroughly exploring energy-

efficient practices and strategies which presents four principles/frameworks to achieve that vision by tackling 

the energy efficiency issues related to hardware such as machine-to-machine communication, radiofrequency 

identification, microcontroller units, wireless sensor networks, integrated circuits, embedded systems, and 

processors. The objective is to advance sustainable and energy-efficient IoT technologies, contributing to the 

next generation of eco-friendly implementations. Albreem et al. [18] examined effective behavioral change 

models to raise awareness about energy conservation among IoT users and service providers. This article 

delves into the key elements driving the development of the GIoTs, emphasizing energy efficiency hardware 

design, data-center strategies, and software-based data traffic management. Almalki et al. [19] are motivated 

by pursuing a sustainable smart world and delves into various technologies and considerations related to 

GIoTs to reduce energy consumption. The study systematically examines key green information and 

communication technologies (ICTs), including green radio frequency identification, green wireless sensor 

networks, green cloud computing, green machine-to-machine, and green data centers, while distilling general 

principles for green ICT. Varjovi and Babaie [20] examines the necessary measures to implement GIoT 

across various levels, including hardware, software, communication, and network architecture. Along with 

highlighting the significance of GIoT for environmental preservation, it also examines the prospects, 

difficulties, and uses of this technology. Leading IT organizations' business models are examined, and 

unresolved problems including standardization, technical difficulties, security, and innovations are examined 

to inform future studies. In order to lower energy usage and CO2 emissions, the study emphasizes the 

necessity of solutions at every stage of the GIoT life cycle, from design and production to use and recycling. 

 

 

4. METHODOLOGY 

This study provides a comprehensive approach to addressing IoT-based predictive maintenance 

challenges. The workflow focuses on the problem of predicting IoT device failures and extracting a list of 

essential features. Figure 2 illustrates the proposed methodology comprises three essential steps. Each step is 

elaborated in more detail as follows: 

− Step 1: data collection. The first step involves collecting pertinent data from IoT devices, such as sensor 

readings, device logs, and historical maintenance records. This data serves as the foundation for building 

accurate predictive models. Preprocessing techniques are then applied to clean the data, handle missing 

values, and normalize the features, ensuring the data is suitable for analysis. By actively monitoring and 

analyzing this data, patterns, and anomalies can be detected, enabling the prediction of potential failures 

or malfunctions in IoT systems. 

− Step 2: domains extraction. In IoT failure prediction, it is essential to identify and analyze the relevant 

domains or areas of focus within an IoT system that are prone to failures or malfunctions. Understanding 

the specific domains affected by failures makes it possible to develop more targeted and accurate failure 

prediction models. This step involves conducting domain-specific analysis and identifying the key factors 

or variables contributing to each domain's failures. 

− Step 3: feature selection. In this step, we select and extract the dataset’s most relevant and informative 

features. Feature selection methods, such as principal component analysis (PCA) and correlation analysis, 
are applied to identify the most influential features that significantly contribute to failure prediction. By 

focusing on the most important features, we can optimize the predictive models and enhance the accuracy 

of failure predictions. 

 

 

 
 

Figure 2. IoT-based predictive maintenance workflow 
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4.1.  Data collection 

Data collection provides a pivotal role in predicting IoT device failures. Several e-resources were 

identified, as presented in Table 1. Kaggle and IEEE DataPort emerged as the primary repositories employed 

in this research, as illustrated in Figure 3. Targeted keywords were used across multiple domains to facilitate 

comprehensive data collection. Examples of these keywords include "IoT failure in {domain}" and 

"monitoring IoT device failures”. 

 

 

Table 1. List of e-resources for dataset discovery 
No. E-resources Content 

1 https://www.kaggle.com/ Databases 

2 https://ieee-dataport.org/subscribe 

3 https://zenodo.org/ 

4 https://archive.ics.uci.edu/ml/datasets.php 

5 https://github.com/ 

 

 

 
 

Figure 3. Distribution of e-resources used in the study, highlighting Kaggle and IEEE DataPort  

as primary sources 

 

 

The size of the dataset has a significant impact on the results of the implemented models. Thus, in 

this study, we considered the datasets' sizes an important key feature. The dataset sizes varied significantly, 
ranging from 6.11 kB to 6 GB. Figure 3 illustrates the use of Kaggle and IEEE DataPort as primary sources, 

highlighting their importance in providing relevant and high-quality datasets for IoT failure prediction 

research, followed by Zenodo, GitHub, UCI, and other similar sources. These sources offer a wide range of 

datasets encompassing different domains, which enables us to examine failure patterns, identify key features, 

and develop accurate predictive models across diverse IoT applications. 

 

4.2.  Domaine extraction 

The exploration of IoT across various applications has revealed significant opportunities to develop 

advanced systems in diverse domains. Predicting IoT device failures offers considerable benefits in these 

areas. Figure 4 illustrates the distribution of datasets used for IoT failure prediction in various domain 

applications. A total of 32 datasets, 19 from the industry sector, 5 from agriculture, and 6 from energy. 

However, some data contain unclear labels and abbreviations, which can lead to confusing the context and 

understanding of the dataset. A rigorous data preprocessing approach will be put in place to overcome these 

challenges. These include the elimination of confusing datasets, maintaining well-defined features, and 

renaming labels to enhance the dataset's comprehensibility. In the next section, a feature selection strategy 

was applied to identify the key features of this study. 
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Figure 4. The distribution of collection data by domain 
 

 

4.3.  Feature selection strategy 

In this section, we explore a range of feature selection methods, each adapted to the specific 

approach for identifying essential features. Feature selection plays a pivotal role in identifying the key 

contributors to IoT device failures. The objectives are to understand the data, reduce computational demands, 

mitigate the effects of the curse of dimensionality, and enhance the performance of predictive models [21]. 

Feature selection aims to choose a subset of relevant variables from the input data. This process involves 

minimizing the influence of noise or irrelevant variables while ensuring that the selected features contribute 

to accurate predictions and optimized computational efficiency. Effective feature selection can significantly 

improve model performance, reduce overfitting, and lower the computational cost associated with processing 

large datasets. Feature selection methods are generally classified into two categories: supervised and 

unsupervised methods, as shown in Figure 5. 
 

 

 
 

Figure 5. Overview of feature selection techniques 
 

 

Supervised feature selection targets classification tasks by leveraging the relevance or correlation 

between features and class labels. The objective is to identify an optimal subset of features that enhances 

classification accuracy. Various supervised techniques have been developed for that purpose [22]. Filter 

methods are preprocessing processes for evaluating features, selecting those with high relevance scores based 

on mutual information and correlation measurements [23]. On the other hand, wrapper methods apply 

sequential or heuristic search techniques to identify the feature subset that maximizes performance through 

embedding the predictor within a search algorithm. Embedded methods include feature selection directly 

within the training process, eliminating the need for splitting data into separate training and testing sets. 

Additionally, hybrid approaches and ensemble techniques combine filter and wrapper models, typically 

involving two stages: initially reducing the feature space using the filter, and then employing the wrapper to 

determine the most effective subset among the remaining features [21]. 

Other approaches highlight the important features of lacking dataset labels for unsupervised 

learning. Clustering is a typical approach that groups similar data points. Clustering techniques, such as 
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hierarchical clustering and density-based clustering, organize data into clusters based on their proximity, 

revealing underlying patterns without predefined classifications [24]. By applying these advanced feature 

selection methods, we aim to enhance the accuracy and reliability of predictive models, ultimately improving 

the effectiveness of IoT device failure predictions. In this study, the dataset goes through several stages. After 

the preprocessing phase, exploratory data analysis (EDA) is applied. EDA provides valuable details about the 

dataset, exposing distribution patterns and correlations between important characteristics. EDA serves as a 

crucial guide for the next stages, assisting in data selection and facilitating the execution of machine learning 

tasks [25]. After preprocessing, a feature selection strategy is applied to create a representative subset of 

features critical for predictive modeling with AI methods. Performing EDA prior to feature selection is 

essential for understanding dataset characteristics and identifying potential relationships between input 

features and target variables [26]. This comprehensive approach ensures the selection of meaningful features 

for effective modeling. 

The feature selection strategy begins with an EDA to assess the characteristics and correlations 

among the original features. This is followed by the implementation of advanced selection techniques, 

including feature importance, information gain, Chi-square test, Fisher’s score, mutual information gain, 

recursive feature elimination, and PCA. These methods are used for supervised learning, else other feature 

selection methods are adopted for unsupervised learning. Variance threshold, mean absolute difference 

(MAD), clustering k-means, hierarchical clustering, density-based clustering, PAM, Gaussian mixture model 

(GMM), and self-organized maps (SOM) were implemented to eliminate the irrelevant original features. The 

study is implemented in Python along with the required libraries, such as scikit-learn, Matplotlib, and 

Skfeature. The feature selection strategy eliminates irrelevant original features, revealing deeper insights 

within the remaining dataset.  
 
 

5. RESULTS AND DISCUSSION 

5.1.  Results of feature selection strategy 

A rigorous feature selection strategy was implemented to identify critical variables in our research.  

EDA and other methods were employed to select important features. Table 2 presents an overview of the results, 

highlighting the contributions and application domains of each selected dataset. There is no unified feature 

selection strategy that can select important features in the application, we need to select the most appropriate 

methods among a range of different methods to achieve the best performance. Features selection is an important 

step in failure prediction problems, especially in GIoT applications. By applying the feature selection strategy 

outlined in the previous section, the number of selected features was reduced by more than half. Thus, combining 

these selected features can help generate new, original features for training models in future work. 
 

 

Table 2. Datasets features selection 
ID Contribution Application Features selection results 

1 Predictive maintenance dataset Industry Torque, tool wear, rotation speed, air temperature, process temperature 

2 Machine failure dataset Leakage, risk_MM, max_temp, parameter1_speed, electricity, 

evaporation, min_temp 

3 Predictive maintenance using 

Microsoft case study 

Pressure, rotate, voltage, vibration 

4 Elevator predictive maintenance 

dataset 

Vibration, revolutions 

5 Preventive to predictive 

maintenance 

Dust_feed, differential_pressure, time 

6 AnoML-IoT Light, humidity, loudness, temperature 
7 Predicting machine failures Temperature, humidity, hours since previous failure, date.day-of-month, 

date.day-of-week, date. month, date. hour. 

8 Distributed transformer 

monitoring 

Energy Oil temperature indicator, winding temperature indicator, ambient 

temperature indicator, oil level indicator, oil temperature indicator alarm, 

oil temperature indicator trip, magnetic oil gauge indicator, voltage 
9 MetroPT: a benchmark dataset 

for predictive maintenance 

gpsSpeed, gpsLat, gpsLong, Tp2, oil_temperature, flow meter, 

motor_current, gpsQuality, H1, Tp3, DV_pressure, COMP, 

caudal_impulses, MPG 

10 Smart home dataset with weather 

information 

Wind Bearing, dew point, apparent temperature, temperature, well, 

pressure, wind speed, humidity, house overall, solar, visibility, furnace, 
wine cellar, precipIntensity, precipProbability 

11 Real-time pond water dataset for 

fish framing 

Agriculture pH, temperature 

12 Smart agricultural production 

optimizing engine 

Potassium, rainfall, temperature, humidity, phosphorus, nitrogen, pH 

13 Intelligent irrigation system Humidity, temperature, watering 

14 Sensor-based aquaponics Temperature, turbidity, dissolved oxygen, pH, ammonia, nitrate 
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5.2.  Critical features for failure prediction 

The primary goal of this study is to identify the critical features for predicting failures in GIoT 

applications. Table 3 provides an overview of the extracted features from various research articles, including 

their contributions and domains of application. An analysis of the data presented in Tables 2 and 3, 

complemented by Figures 6 and 7, reveals significant patterns in feature usage across different datasets. 

 

 

Table 3. Key features identified in the literature and their domains of application 
References Contribution Application Sensors/actuators Features selection results 

[27] Prediction of 

machine failure in 

Industry 

Industry - Voltage, pressure, vibration, 

rotation, machine age, error 

type, number of components, 

model type and failure 

[28] Predictive 
maintenance analytics 

of autoclave sterilizer 

- Temperature, vibration, two 
current 

[29] Rail transit vehicles - vibration 

[30] MEP components 

HVAC systems 

Temperature sensor, pressure sensor, flow 

rate sensor  

Sensor name, sensor id, sensor 

value, sensor type 
[31] Industrial equipment 

monitoring: electrical 

motors 

ADXL345, ACS712, temperature sensor, 

MLX90614 Infra-red thermometer, SHT21 

digital humidity and temperature sensor 

Vibration measurement, 

temperature, voltage 

[32] Wind turbines Energy - Wind speed, power output, oil 

temperature, bearing 
temperature 

[33] Fault detection and 

power prediction of 

photovoltaic plants 

Temperature sensor, humidity sensor, 

irradiance sensor, voltage sensor, current 

sensor 

Temperature, irradiance, 

power, voltage, humidity, 

current 
[34] IoT smart home Temperature sensors, humidity, leak, water, 

smoke, air sensor, light sensors, dry contact 

sensors, smart plugs, current transformers, 

AC/DC voltage sensors, power synching 

sensors, smart home monitoring kits 

- 

[35] Smart framing Agriculture CO2 sensor, UV sensor, luminance sensor, 

soil sensor, barometric pressure sensor, 

moisture, temperature, electrical 

conductivity (EC), pH sensors 

- 

[36] Smart framing: 
calibrationTalk 

Soil sensors, temperature, EC, moisture 
sensors, humidity sensor, nitrogen, 

phosphorus, potassium 

- 

[37] IoT-based 

monitoring system: 

aeroponics 
greenhouse 

Temperature: MLX90614(TS1ca), humidity: 

HTU21D(HS1c), humidity of the 

environment: HTU21D(HS1a), luminous 
sensor: BH1750(IS1a), webcam: LC4, IP 

camera UC4 

Temperature, environmental 

temperature relative humidity, 

luminosity, pH level, EC 
(electrical conductivity), level 

and nutrient solution 

temperature, RGB and 

thermographic images 

[38] Smart framing: 
greenhouse 

Temperature/humidity: E+E elektronik 
EE160, electrical connectivity: B&C 

electronics 2731312-31/3-017T, pH: B&C 

electronics SZ 1093, level controller: 

Omron K8AK-LS1, liquid counter: ARAD 

SF 15, flow meter: Gems FT110 G3/8, solar 
radiation: Apogee, Instruments Inc. SP110 

Temperature, humidity, 
electrical connectivity, pH, 

level controller, liquid counter, 

flow meter, solar radiation, 

CO2, nitrogen, sulphur, 

phosphorus, calcium, 
potassium, iron, copper, 

manganese, boron, zinc, 

molybdenum 

[39] Smart sensors in 

agriculture 

Leaf sensor, temperature sensor, crop 

sensor, disease sensor, pest sensor, nutrient 
sensor, soil moisture sensor, acoustic-based 

sensor, electromagnetic sensors, 

electrochemical sensors: volatile organic 

compound sensor, humidity sensor, nutrient 

sensor, pesticide sensor, O3 sensor, NO2 
sensor, light detection and ranging 

(LiDAR), optical sensors, field 

programmable gate array (FPGA) based 

sensors, Eddy covariance (EC) based 

sensors, Mechanical and mass flow sensors, 
flexible and wearable sensors, battery-free 

and self powered sensors 

- 
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Figure 6. Study’s key features variety 
 

 

 
 

Figure 7. Study’s features frequency 
 

 

Figure 6 categorizes these features using standardized terms, highlighting their broad applications 

and variations. For example, the term “temperature” is consistently represented in various forms such as “oil 

temperature” and “air temperature”, demonstrating its fundamental role in different contexts. Similarly, the 

term “Wind” appears in multiple forms, including “wind bearing”, “wind speed”, and “wind temperature 

indicator”, indicating its importance in capturing diverse atmospheric conditions. The term “speed” also 

shows considerable variation, with instances such as “rotation speed”, “GPS speed”, and “wind speed”, 

reflecting its application across different measurement scenarios. Additionally, “Light” is denoted by various 

descriptors including “luminosity”, “luminous sensor”, and “light sensor”, while “soil nutrient” covers 

specific elements such as “zinc”, “nitrogen”, “CO2”, and “sulphur”. The term “solar” includes “solar 

radiation” and “UV sensor”, highlighting its relevance to solar energy studies. 

This analysis underscores the necessity for standardized feature terminology to improve data 

consistency and comparability. By aligning terminology across datasets, researchers can ensure more 

accurate and coherent data integration, facilitating better comparative analyses and enhancing the robustness 

of predictive models. This approach streamlines data processing and improves the reliability of insights 

derived from diverse research studies and application domains. 
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The high frequency of certain terms in this study strongly indicates their importance.  

This recurrence shows the significance of these features across various datasets and applications in predictive 

analysis. The frequency of the most cited terms from Tables 2 and 3 is shown in Figure 7. For instance, 

terminology such as “temperature”, “humidity”, “pressure”, “voltage”, “pH” and “vibration” appear 

frequently. With over thirty citations “temperature” is referenced, followed by “humidity” which indicates 

their importance in the datasets analyzed. The recurrence of these terminologies across multiple studies and 

datasets substantiates their indispensability, which are key indicators for monitoring and predicting IoT 

device performance. 

 

 

6. CONCLUSION 

The present study reviews the crucial features for predicting failures in GIoT applications in 

significant sectors, including agriculture, industry, and energy. A variety of datasets and research papers 

focus on these features' critical role in predictive maintenance. Features such as temperature, humidity, 

voltage, vibration, and pH are highlighted through a workflow process of data collection, domain extraction, 

and feature selection. In future work, we will focus on developing predictive models using the most crucial 

features within each domain. We aim to implement a robust model capable of predicting failures before they 

can occur, optimizing performance, and reducing downtime. This study will contribute to developing reliable 

and sustainable GIoT technologies, supporting environmental sustainability, and advancing the capabilities of 

IoT systems in various domains. 
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