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 Pap-smear image quality is crucial for cervical cancer detection. This study 

introduces an optimized hybrid approach that combines the Perona-Malik 

diffusion (PMD) filter with contrast-limited adaptive histogram equalization 

(CLAHE) to enhance pap-smear image quality. The PMD filter reduces the 

image noise, whereas CLAHE improves the image contrast. The hybrid 

method was optimized using spider monkey optimization (SMO PMD-

CLAHE). Blind/reference-less image spatial quality evaluator (BRISQUE) 

and contrast enhancement-based image quality (CEIQ) are the new objective 

functions for the PMD filter and CLAHE optimization, respectively. The 

simulations were conducted using the SIPaKMeD dataset. The results 

indicate that SMO outperforms state-of-the-art methods in optimizing the 

PMD filter and CLAHE. The proposed method achieved an average 

effective measure of enhancement (EME) of 5.45, root mean square (RMS) 

contrast of 60.45, Michelson’s contrast (MC) of 0.995, and entropy of 6.80. 

This approach offers a new perspective for improving pap-smear image 

quality. 
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1. INTRODUCTION 

Cancer continues to be a global health concern, with cervical cancer posing a significant health 

risk, especially in developing countries [1]. In 2020, Indonesia reported 36,633 cases of cervical cancer, 

trailing only breast cancer [2]. The Global Cancer Observatory predicted 570,000 new cases and 311,000 

deaths globally in 2018 [3]. Approximately 90% of cervical cancer-related deaths occur in developing 

countries [4]. Efforts to reduce cervical cancer mortality include incorporating information technology and 

artificial intelligence into screening procedures [5]. Noise reduction and contrast enhancement enhance 

medical image quality classification [6]. The Perona-Malik diffusion (PMD) filter minimizes image noise 

and enhances image smoothness while retaining key details and edges [7]. PMD uses a modified Gaussian 

function to weigh each pixel value, with higher values at the center and lower values at the periphery [8]. 

Studies have shown that PMD filters extract and identify malignant tumors in medical images [9]. In 

addition, the PMD filter has improved the deep learning performance in cervical cancer classification  [10]. 

However, the PMD filter performance relies on the fine-tuning of its parameters. Tsiotsios and Petrou [11] 

chose the PMD filter parameter iteratively. The other research uses particle swarm optimization (PSO) to 

select PMD parameters and improve the PMD filter performance [12]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Contrast-limited adaptive histogram equalization (CLAHE) is a variant of adaptive histogram 

equalization (AHE) that limits contrast enhancement [13]. CLAHE effectively improves pap-smear images 

and enhances VGG16, InceptionV3, and EfficientNet performance in cervical cancer classification [14]. 

CLAHE has demonstrated effectiveness in enhancing image quality and improving the performance of 

various machine learning algorithms in cervical cancer classification tasks, including k-nearest neighbors 

(KNN) and artificial neural networks (ANN). Additionally, CLAHE has enhanced the detection accuracy 

of the you only look once (YOLO) algorithm in night-time road marking recognition, improved the 

performance of convolutional neural networks (CNNs) in lung cancer segmentation from computed 

tomography (CT) scan images, and contributed to water image classification tasks [15]–[19]. However, the 

effectiveness of CLAHE depends on its parameters, i.e., clip limit and tile size. Qassim et al. [16] set up a 

clip limit of 0.01 and a tile size of 8×8 to get the best CLAHE performance, enhancing dental digital X-ray 

images. Several studies have applied different heuristic optimization algorithms to improve CLAHE 

performance. 

PSO was used to optimize CLAHE performance with multi-objective functions, i.e., entropy and 

structure similarity index measure (SSIM). This approach maximized image contrast while minimizing 

distortion in X-ray medical images [17]. Fawzi et al. [18] applied the whale optimization algorithm 

(WOA) to optimize CLAHE performance with DataSignal as the objective function. The DataSignal 

results from multiplying the entropy by the peak signal-to-noise ratio (PSNR). It effectively enhances 

image contrast across datasets like faces-1999, BraTS, and Pasadena-houses 2000 [18]. The research in 

[19] employed the cuckoo search algorithm (CSA) with entropy and fast noise variance estimation 

(FNVE) as objective functions. This study showed superior performance in CLAHE optimization on the 

contrast enhancement evaluation 2016 (CEED2016) dataset compared to the bat firefly and flower 

pollination algorithms (FPA) [19]. In 2022, FPA optimized CLAHE with entropy and FNVE as objective 

functions. This study achieved notable noise reduction and contrast enhancement on the Pasadena-houses 

2000 and diabetic retinopathy detection (DIARETDB0) datasets [20]. 

Surya and Muthukumaravel [21] used adaptive sailfish optimization (ASFO) to enhance CLAHE 

performance. This study focuses on maximizing contrast and entropy with successful enhancement 

outcomes on mammogram images from the mammographic image analysis society (MIAS) database [21]. 

Cat swarm optimization (CSO) is also used to enhance CLAHE performance with entropy and FNVE as 

objective functions. This approach outperformed traditional methods like hue, saturation, and lightness 

(HSL), European commission (EC), histogram equalization (HE), and CLAHE-CSA on the CEED2016 

dataset [22]. In 2024, Haddadi et al. [23] introduced the pelican optimization algorithm (POA) to optimize 

CLAHE performance with several metrics, including PSNR, mean squared error (MSE), entropy, and 

SSIM as objective functions. This study uses a private dataset and outperforms the existing image 

enhancement techniques [23]. 

In this study, we aimed to enhance cervical image quality using a hybrid PMD filter-CLAHE. The 

PMD filter is used for noise reduction, and CLAHE is used for contrast enhancement. The spider monkey 

optimization (SMO) algorithm optimized the proposed method (hybrid PMD filter-CLAHE). SMO 

performs best in optimizing UCAV path-planning problems compared to other metaheuristic algorithms 

[24]. A new objective function was introduced in this study. The blind/reference-less image spatial quality 

evaluator (BRISQUE) is a new objective function for PMD filter optimization. BRISQUE is highly 

competitive with this no-reference image quality assessment (NR-IQA) approach. It is also statistically 

better than the popular full-reference image quality assessment (FR-IQA), such as PSNR and SSIM [25]. 

Contrast enhancement-based image quality (CEIQ) is a new objective function for CLAHE optimization. 

The CEIQ is computed using the histogram’s characteristics of entropy, cross-entropy, and SSIM [26]. 

CEIQ identifies that the improved image exhibits contrast distortion [27]. 

This study used several metrics to evaluate the image denoising and contrast enhancement. MSE, 

SSIM, PSNR, CEIQ, entropy, enhancement measure estimation (EME), Michelson contrast (MC),  and root 

mean square (RMS) contrast were used. These metrics evaluate image clarity, detail preservation, and 

contrast improvement. The proposed approach operates in the CIELAB color model of pap-smear images 

and offers several contributions. 

First, hybrid SMO PMD-CLAHE provides the advantages of reducing noise and increasing 

contrast because most pap-smear images are noisy and have low contrast [28]. Second, BRISQUE and 

CEIQ are the new objective functions for the PMD filter and CLAHE optimization. BRISQUE was 

statistically better than PSNR and SSIM [25]. CEIQ can evaluate image contrast deformation [27]. Third, 

the SMO-PMD filter and SMO CLAHE outperformed state-of-the-art methods. This study offers a new 

perspective for improving cervical image quality and contributes to more accurate cervical cancer 

detection. 
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2. METHOD 

Figure 1 illustrates the procedure for enhancing cervical images using a hybrid PMD filter-CLAHE 

optimized using the SMO algorithm. The input was a color image from the SIPaKMeD dataset. The 

SIPaKMeD dataset contains 4,049 annotated cervical cell images in five classes. Each class represents 

distinct morphological features vital for medical classification. Its primary characteristics include high 

variability in cell shapes, textures, noise, and contrast levels. This variability poses challenges in accurate 

classification [29]. The color image is split into lightness (L), green-red (A), and blue-yellow (B) color 

channels in the CIELAB color space. The CIELAB color space is designed to resemble the human visual 

system (HVS) [30]. Each channel underwent separate processing steps: 

‒ Denoising: the A, B, and L channels are individually denoised using the SMO-PMD filter, which aims 

to reduce noise while preserving important image features such as edges;  

‒ Contrast enhancement: after denoising, the L channel was further enhanced using SMO-CLAHE, which 

improved the local contrast and highlighted finer details. 

Once all channels (L, A, and B) were processed (denoised and contrast-enhanced), they were recombined 

into the final enhanced pap-smear image. This enhanced image should exhibit an improved visual quality, 

reduced noise, and better contrast. 

 

 

 
 

Figure 1. Flowchart of pap-smear image enhancement using SMO PMD filter-CLAHE 

 

 

The hybrid PMD-CLAHE process was optimized using the SMO algorithm. The SMO optimizer 

was configured with 10 iterations and a population size of 50 to balance exploration and computational 

efficiency. The number of iterations (Niter) was set between 5 and 30 to control the degree of denoising. The 

diffusion coefficient (κ) ranged from 10 to 100 to adjust the smoothing intensity, while the gradient threshold 

(λ) was set between 0.1 and 0.25 to preserve image edges. The clip limit was set between 0.01 and 4 to 

manage contrast enhancement, and the tile size ranged from 2 to 16 to determine the local contrast regions. 

This configuration effectively balances the noise reduction and contrast enhancement. 

 

2.1.  Perona-Malik diffusion filter 

A PMD filter was employed to minimize image noise while preserving the edges. This anisotropic 

diffusion process adjusts the diffusion coefficient according to the gradient of the image, thus facilitating 

edge-preserving smoothing [8]. Given an image 𝐼(𝑥, 𝑦, 𝑡), where x and y are spatial coordinates and t is the 

diffusion time (or iteration). The partial differential in (1) governed the evolution of the image under the 

PMD. 
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𝜕𝐼

𝜕𝑡
= 𝛻 ⋅ (𝑐(∥ 𝛻𝐼 ∥)𝛻𝐼) (1) 

 

where 
𝜕𝐼

𝜕𝑡
 represents the change in pixel intensity over time. 𝑐(∥ 𝛻𝐼 ∥) is the diffusion coefficient, which 

controls the amount of diffusion based on the gradient magnitude. The critical aspect of the PMD is the 

choice of diffusion 𝑐(∥ 𝛻𝐼 ∥). The two common forms of diffusion coefficients are exponential and inverse 

quadratic [31]. This study used the exponential form of (2). 

 

𝑐(∥ 𝛻𝐼 ∥) = 𝑒−(
|𝛻𝐼|

𝐾
)

2

 (2) 

 
where K is a parameter that controls the sensitivity of the diffusion process to edges. Small values of K result 

in more aggressive edge preservation, while larger values allow more smoothing. This iterative process is 

performed until a convergence condition is reached or a certain number of iterations is determined [32]. The 

edge-preserving property of the PMD filter comes from the behavior of the diffusion coefficient 𝑐(∥ 𝛻𝐼 ∥). 

Noise reduction is desired without blurring critical structural features, such as edges [33]. 

 
2.2.  Contrast-limited adaptive histogram equalization 

CLAHE is a popular image enhancement technique that improves local contrast by dividing an 

image into smaller regions (tiles) and applying HE to each tile independently. This approach enhances 

contrast in areas with different brightness levels. To prevent excessive amplification in uniform regions, 

CLAHE uses a limiting mechanism that preserves fine details while reducing artifacts [34]. The adjusted 

grayscale value 𝐾𝑖 resulting from the histogram equalization process is computed using (3). 

 

𝐾𝑖 = 𝑟𝑜𝑢𝑛𝑑 (
𝐶𝑖 (2𝑘−1)

𝑤 ℎ
) (3) 

 
where 𝐶𝑖 denotes the cumulative distribution function (CDF) of the i-th grayscale value in the original image, 

k represents the number of grayscale intensity levels, and w and h are the width and height of the image, 

respectively. In CLAHE, two main parameters govern the contrast quality of the resulting image: tile size and 

the clip limit. The tile size defines the dimensions of each sub-region, while the clip limit restricts the 

maximum slope of the CDF to avoid over-enhancement of noise. The clip limit β is defined as (4). 

 

𝛽 =
𝑃

𝑄
(1 +

𝛼

100
(𝑆𝑚𝑎𝑥 − 1)) (4) 

 
where P is the tile area, Q is the total number of grayscale levels (typically 256), 𝑆max represents the 

maximum allowable slope in the CDF, and α is the clip factor ranging from 0 to 100. This mechanism 

effectively reduces noise amplification and prevents the formation of artifacts in the enhanced image [35]. 

 
2.3.  Spider monkey optimization 

The SMO algorithm is a global optimization method inspired by the social behavior of spider 

monkeys during foraging and exploration. SMO seeks an optimal solution to complex optimization problems 

by mimicking spider monkeys’ collaborative and adaptive behaviors [36]. In SMO, each spider monkey in a 

group is represented as 𝑆𝑀𝑘(𝑘 = 1,2, … , 𝑁), serves as a potential solution. Each position vector of 𝑆𝑀𝑘 in a 

D-dimensional space represents possible solutions, initialized using (5). 

 

𝑆𝑀𝑘,𝑗 = 𝑆𝑀𝑚𝑖𝑛,𝑗 +  𝑅 (𝑆𝑀𝑚𝑎𝑥,𝑗 − 𝑆𝑀𝑚𝑖𝑛,𝑗) (5) 

 
R is a random value between 0 and 1, and 𝑆𝑀𝑚𝑎𝑥  and 𝑆𝑀𝑚𝑖𝑛 upper and lower bounds are for each 

dimension. In the LL phase, each monkey's position is updated based on the local leader's guidance as in (6). 

 

𝑆𝑀𝑛𝑒𝑤 𝑖,𝑗 = 𝑆𝑀𝑖,𝑗 + 𝑅 (𝐿𝑒𝑎𝑑𝑒𝑟𝑘,𝑗 − 𝑆𝑀𝑖,𝑗) + 𝑈 (𝑆𝑀𝑟,𝑗 − 𝑆𝑀𝑖,𝑗) (6) 

 
where 𝐿𝑒𝑎𝑑𝑒𝑟𝑘,𝑗 is the local leader, r is a randomly selected group member, and U is a uniform random 

variable in the range [-1,1]. If the new position improves the solution, it is accepted; otherwise, it is 

discarded. 
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The global leadership (GL) phase updates positions based on global leader, where the probability 

𝑝𝑟𝑜𝑏𝑖  is calculated using (7). 

 

𝑝𝑟𝑜𝑏𝑖 = 0.9 ×
𝑓𝑖𝑡𝑖

𝑚𝑎𝑥𝑓𝑖𝑡
+ 0.1 (7) 

 

with the highest-fitness monkey serving as the global leader. After each iteration, leaders are updated through 

greedy selection in the L and GL phases. The local leader decision (LLD) phase prevents local leaders from 

stagnation by enforcing random position updates if a threshold (LocalLeaderLimit) is reached. Similarly, the 

global leader decision (GLD) phase splits the group if the GlobalLeaderLimit threshold is met, thus 

encouraging further exploration. 

 

2.4.  Image quality assessment 

IQA is the process of assessing or evaluating the quality of a digital image. Three IQA models can 

be used: reduced reference (RR-IQA), FR-IQA, and NR-IQA [37]. This study used MSE, SSIM, and PSNR 

to evaluate image denoising [38]. CEIQ, practical measure of EME, MC, RMS contrast, and entropy are also 

used to evaluate image contrast enhancement. EME is applied to quantify contrast-image enhancement, 

particularly for local contrast. It was calculated by dividing the image into blocks and considering the 

logarithmic ratio of the maximum and minimum intensities within each block. 

 

𝐸𝑀𝐸 =
1

𝑀×𝑁
∑ ∑ 20𝑙𝑜𝑔 (

𝐼𝑚𝑎𝑥(𝑖,𝑗)

𝐼𝑚𝑖𝑛(𝑖,𝑗)
)𝑁

𝑗=1
𝑀
𝑖=1  (8) 

 

M and N are the number of blocks in the vertical and horizontal directions, respectively. (𝐼𝑚𝑎𝑥(𝑖, 𝑗)) and 

(𝐼𝑚𝑖𝑛(𝑖, 𝑗))  the maximum and minimum pixel intensities in the i and j block of the image. The logarithmic 

term helps measure contrast enhancement [39]. 

MC is a simple contrast measure defined as the difference between an image's maximum and 

minimum intensity, divided by their sum(𝐼𝑚𝑎𝑥) and (𝐼𝑚𝑖𝑛) are the image's maximum and minimum pixel 

intensity [39]. 

 

MC =
𝐼𝑚𝑎𝑥−𝐼𝑚𝑖𝑛

𝐼𝑚𝑎𝑥+𝐼𝑚𝑖𝑛
 (9) 

 

The RMS contrast measures the overall contrast in an image by calculating the standard deviation of pixel 

intensities. 𝐼(𝑖, 𝑗) is the intensity at the pixel location (𝑖, 𝑗). 𝐼 ̅is the mean intensity of the entire image, and M 

and N are the image dimensions. The RMS contrast provides a single number that represents the contrast in 

an image, considering the variability in intensity values [39]. 

 

𝑀𝑆 𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = √
1

𝑀𝑁
∑ ∑ (𝐼(𝑖, 𝑗) − 𝐼)̅2𝑁

𝑗−𝑖
𝑀
𝑖=𝑗  (10) 

 

The entropy measures the amount of information or randomness in an image. It is often used to 

assess texture or complexity. 

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = ∑ 𝑝𝑖𝑙𝑜𝑔2(𝑝𝑖)𝐿−1
𝑖=0  (11) 

 

L is the total number of possible intensity levels. 𝑝𝑖  is the probability (normalized histogram) of the 

occurrence of intensity level (𝑖). The entropy values range from 0 to log2(𝐿), with higher values indicating 

more complexity and randomness in the image [16]. 

The coefficient of correlation (CoC) measures the correlation between pixel intensities in an original 

image and a processed image. A high correlation indicates that the processed image retains the structural 

information of the original. CoC determines how well image enhancement preserves the original structural 

details as in (12). 

 

𝐶𝑜𝐶 =
∑(𝐼𝑥−μx)(𝐼𝑦−μy)

√∑(𝐼𝑥−μx)2(𝐼𝑦−μy)2
 (12) 

 

Ix and Iy are pixel intensities in the original and enhanced images. μx  and  μy are mean intensities of the 

original and enhanced images. 
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Standard deviation (Std-dev) measures the spread of intensity values around the mean, reflecting the 

contrast variability in the image. Std-dev quantify intensity variation and contrast. 

 

𝑆𝑡𝑑 − 𝑑𝑒𝑣 = √
1

𝑁
∑ (𝐼𝑖 − μ)2𝑁

𝑖=1  (13) 

 

N is the total pixels in the image. Ii is the intensity of the i-th pixel. μ is the mean intensity of the image. 

 

2.5.  Contrast enhancement-based image quality 

CEIQ is an image quality assessment technique that leverages contrast enhancement for evaluation 

[26]. This method employs histogram equalization to analyze and quantify image contrast. This process 

involves dividing the image histogram into multiple bins and calculating the average intensity value for each 

bin. Subsequently, these average values assign new intensity values to pixels within each corresponding bin. 

Figure 2 shows the CEIQ evaluation model. CEIQ has two aspects of image quality assessment: 

‒ The image similarity measures the similarity of the original image to that of the contrast-enhanced 

image. The image similarity was SSIM. 

‒ Histogram entropy and cross-entropy measure an even distribution of the image histogram. The entropy 

(E) equation is defined as (11). Cross-entropy (Exy) can be performed using the histogram equalization 

method. The cross-entropy values were calculated using (14). 

 

𝐸𝑥,𝑦 = − ∑ ℎ𝑥(𝑖)𝑙𝑜𝑔𝑏
𝑖=0 ℎ𝑦(𝑖) (14) 

 

hx is the histogram of the original image and hy the histogram of the contrast-enhanced image. 

 

 

 
 

Figure 2. CEIQ evaluation model 

 

 

2.6.  Blind/reference-less image spatial quality evaluator 

BRISQUE is a model that calculates features directly from image pixels, unlike other methods that 

rely on transformations to different spaces, such as wavelets or discrete cosine transformations (DCT).  

Its efficiency does not require these transformations to extract features. BRISQUE assesses the image quality 

by comparing the input image to a model trained on images with similar distortions. It is trained on a 

database of natural scene images with known distortions and incorporates subjective quality scores, making it 

opinion-aware. Lower BRISQUE values indicate better perceptual image quality [25]. 

 

 

3. RESULTS AND DISCUSSION 

This section presents the performance results of the SMO-PMD filter, SMO-CLAHE, and hybrid 

optimization of the PMD filter and CLAHE with SMO, referred to as SMO-PMD-CLAHE. Each method was 

specifically optimized to improve image-quality metrics for effective noise reduction, improved contrast, and 

enhanced image clarity. 

 

3.1.  Spider monkey optimization-Perona-Malik diffusion filter 

Table 1 shows the PMD filter optimization simulation results using PSO and SMO on ten images 

from SIPaKMeD. Overall, the SMO optimizer demonstrated superior performance across several key metrics 
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compared with the PSO optimizer. Regarding MSE, SMO achieved a lower average error of 0.0456 

compared with 0.0572 for PSO, indicating that SMO is more effective in optimizing the PMD filter and 

minimizing the error between the original and denoised images. Similarly, SSIM is slightly higher for SMO 

(0.9984 compared to 0.9981 for PSO), suggesting that SMO produces images with structural quality that 

closely resemble the original images. Regarding PSNR, SMO again outperforms PSO in optimizing the PMD 

filter, with an average of 62.26 dB, indicating that SMO yields images with less noise, whereas PSO’s 

average is 61.00 dB. Both methods exhibited nearly identical entropy values, indicating that the 

informational content and details within the images were well-preserved in both cases. In the BRISQUE 

score as an objective function, SMO produces a slightly lower value (36.8561) than PSO (37.3073), 

signifying that SMO provides a marginally better subjective visual quality. 

 

 
Table 1. Result simulation in optimizing PMD filter using PSO and SMO 

Images Methods MSE SSIM PSNR Entropy BRISQUE 

013_02 PSO 0.043947645 0.996258439 61.70144756 4.571843131 0.686698775 

SMO 0.043389455 0.996305898 61.75696163 4.571857288 0.644838024 
018_03 PSO 0.058383599 0.998492275 60.46789499 5.311107028 59.56556031 

SMO 0.025031866 0.999318272 64.14587134 5.311234326 57.95722145 

019_01 PSO 0.126389165 0.996250434 57.11370518 5.498297928 54.46574524 
SMO 0.126785392 0.996229567 57.10011145 5.498286588 54.30521213 

020_06 PSO 0.071592774 0.997519753 59.58211168 4.918457352 16.16094189 

SMO 0.071446865 0.99752755 59.59097187 4.918444596 16.14697568 
023_01 PSO 0.053882471 0.998797808 60.81632858 5.705432895 82.87267047 

SMO 0.04483273 0.998983647 61.61485178 5.705490005 82.28349823 

029_01 PSO 0.027944359 0.999283549 63.66786213 5.770480683 38.16081019 
SMO 0.026237661 0.999327682 63.94155247 5.770483568 38.09620783 

039_01 PSO 0.035305231 0.99859665 62.65241301 5.430661391 33.79115112 

SMO 0.019000417 0.999242818 65.34317228 5.430631534 33.04454181 
043_01 PSO 0.071355015 0.998425385 59.59655859 5.960775239 49.34384299 

SMO 0.039904779 0.999094202 62.12055451 5.96146055 48.20374569 

048_01 PSO 0.056730497 0.999230125 60.59263776 6.316787802 34.89882012 
SMO 0.035746326 0.999523087 62.59848949 6.316873752 34.85028191 

050_06 PSO 0.026868811 0.998198142 63.83831907 4.766578449 3.126566942 

SMO 0.023824182 0.998404514 64.36062355 4.766553067 3.028702503 
Average PSO 0.057239957 0.998105256 61.00292786 5.42504219 37.3072808 

SMO 0.045619967 0.998395724 62.25731604 5.425131527 36.85612253 

 

 
These results suggest that SMO generally delivers a better image quality than PSO when optimizing 

the PMD filter. SMO consistently outperforms PSO in critical metrics, such as MSE, SSIM, PSNR, and 

BRISQUE. SMO-PMD filter offers new insight for applications requiring high image processing accuracy. 

Although the entropy values are similar between the two methods, SMO’s consistent superiority in reducing 

error and noise. 

 
3.2.  Spider monkey optimization-contrast-limited adaptive histogram equalization 

The simulation results for CLAHE optimization using the POA and SMO algorithms on 10 images 

from the SIPaKMeD dataset can be seen in Figure 3. These results show relatively small differences across 

key metrics such as entropy, EME, RMS contrast, CoC, Std-dev, CEIQ, and processing time. Regarding 

entropy, the results were almost identical for both methods across all images, suggesting that the POA and 

SMO maintained similar levels of pixel intensity information. A similar trend is observed in the EME and 

RMS contrasts, where there is no significant difference between the two methods, indicating that both handle 

contrast enhancement similarly. 

One of the primary differences between the two methods is the processing time. SMO consistently 

outperformed POA in terms of speed. The average processing time for SMO was 7.5470 s, compared with 

7.7650 s. This highlights the efficiency of SMO in terms of computational time, making it preferable in 

scenarios in which rapid image processing is essential, particularly for large-scale image datasets.  

The simulation results provide valuable insights into the performance of the POA and SMO in optimizing 

CLAHE on cervical images. Both methods showed comparable results in maintaining the image quality, as 

reflected in the near-identical values of entropy, EME, and RMS contrast. These metrics confirm that both 

POA and SMO can effectively enhance the contrast without significant loss of information. However,  

for practical implementation, processing time is a crucial factor. Therefore, SMO-CLAHE was more 

effective for cervical cancer detection. 
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Figure 3. Average results of CLAHE optimization using POA and SMO 

 

 

3.2.1. Hybrid SMO PMD-CLAHE 

The average results for each evaluation metric on 10 cervical images using the SMO-PMD,  

SMO-CLAHE, and hybrid SMO PMD-CLAHE algorithms can be seen in Figure 4. The metrics used in this 

evaluation are EME, MC, RMS contrast, entropy, and CEIQ. The SMO PMD method achieved the lowest 

EME value of 1.23, indicating limited effectiveness in enhancing illumination quality. SMO CLAHE 

demonstrated a significant improvement with an EME value of 3.85, while the combination of SMO  

PMD-CLAHE achieved the highest value of 5.45. This confirms that combining PMD and CLAHE has a 

synergistic effect, resulting in images with superior illumination quality. For Michelson contrast, SMO PMD 

and SMO PMD-CLAHE achieved nearly optimal values of 1.00 and 0.99, respectively, indicating excellent 

contrast distribution. On the other hand, SMO CLAHE produced a lower MC value of 0.85, indicating 

slightly reduced contrast compared to the different methods. 

 

 

 
 

Figure 4. The average result on PMD, CLAHE, and Hybrid PMD-CLAHE optimization using SMO 

 

 

The SMO PMD method had the lowest RMS contrast value of 30.36, suggesting limited 

enhancement capability. In contrast, SMO CLAHE showed a significant improvement with a value of 55.83, 

while SMO PMD-CLAHE achieved the highest value of 60.45. This demonstrates that combining PMD and 

CLAHE provides richer and more optimal contrast in the resulting images. The entropy values reflect the 

diversity of information in the images. SMO PMD recorded the lowest value of 5.42, indicating less detailed 

images. SMO CLAHE achieved a higher entropy value of 6.59. At the same time, the combination of SMO 

PMD-CLAHE excelled with the highest entropy value of 6.80, indicating that this method produced images 

with the richest information details. Regarding CEIQ, SMO PMD had the lowest value of 3.39, indicating 

suboptimal enhancement of contrast quality. SMO CLAHE achieved a higher CEIQ value of 3.87, while the 

combination of SMO PMD-CLAHE delivered the best results with a CEIQ value of 3.97. 

The results demonstrate that the combination of SMO PMD-CLAHE delivers the best performance 

across almost all evaluation metrics. This combination effectively improves illumination, contrast, and image 

information details. It outperforms both SMO PMD and SMO CLAHE when applied individually. In medical 

image analysis, optimal image quality is crucial for supporting more accurate diagnostic processes, 
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particularly for pap-smear images. Therefore, the SMO PMD-CLAHE combination is recommended to 

enhance overall image quality. This approach can potentially be applied to other scenarios in medical image 

processing, where improving image quality plays a vital role in supporting clinical decision-making.  

 

 

4. CONCLUSION 

This study presents a practical noise-reduction and contrast-enhancement framework for pap-smear 

images. The proposed method thoroughly evaluates image quality improvement by focusing on clarity, detail 

preservation, and contrast enhancement. A hybrid PMD-CLAHE method was optimized using the SMO 

algorithm to overcome the common problems of noise and low contrast in the pap-smear images. The hybrid 

SMO-PMD-CLAHE leverages the noise reduction capabilities of the PMD filter while maximizing contrast 

enhancement through CLAHE. The SMO algorithm consistently provides superior results in optimizing the 

PMD filter and CLAHE compared with the PSO and POA algorithms. BRISQUE is introduced as a new 

objective function for PMD filter optimization. BRISQUE performs significantly better than traditional 

metrics, such as PSNR and SSIM. Similarly, CEIQ is used as a new objective function for CLAHE 

optimization. CEIQ is a comprehensive assessment of contrast enhancement using a combination of entropy, 

cross-entropy, and SSIM. The SMO-PMD-CLAHE hybrid approach achieved the highest performance across 

all evaluated metrics compared with SMO-PMD or SMO-CLAHE. The proposed method, SMO PMD-CLAHE, 

significantly improved the pap-smear image quality with noise reduction and contrast enhancement. 
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