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 This work investigates the potential of ChatGPT, a cutting-edge large 

language model (LLM), for software design analysis specifically in detecting 

architectural patterns and tactics. The evaluation involves comparing 

ChatGPT’s performance with that of Archie, a traditional Eclipse plugin 

designed for architectural analysis. The study uses the source code of five 

open-source software systems as the testing ground. Results reveal that 

ChatGPT achieves noteworthy performance in both pattern and tactic 
detection tasks. Specifically, for pattern detection, ChatGPT demonstrates an 

accuracy of up to 47.06%, while for tactic detection, it achieves a precision 

of 28.25%. While ChatGPT’s current capabilities are not yet a replacement 

for specialized tools like Archie, it offers significant potential as a 
complementary tool in architectural analysis workflows. By bridging the gap 

between natural language understanding and software engineering, ChatGPT 

could pave the way for more intelligent and automated solutions in the field. 

However, a key limitation is its difficulties in handling foundational or 
traditional tactics, resulting in a lower detection rate in certain areas. This 

research contributes valuable insights into the application of LLMs in 

software engineering, highlighting both the strengths and the limitations of 

ChatGPT in addressing complex architectural tasks. 
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1. INTRODUCTION 

Software architecture plays a crucial role in determining software systems’ maintainability, 

scalability, and overall quality. It encompasses architectural patterns, tactics, and quality attributes. 

Architectural patterns [1] are reusable, high-level design solutions that provide structured approaches to 

organizing software systems, often derived from proven best practices in framework development such as 

broker pattern [2] and layer pattern [3]. Tactics [4] are design decisions that influence the control of a 

system’s quality attributes [5], such as performance, security, or modifiability, which collectively define the 

system’s structure, design, and behaviour. Identifying these elements in existing codebases is critical for 

architectural reviews, quality assessments, system re-engineering, and refactoring tasks. Traditionally, this 

identification process relies heavily on expert knowledge and manual analysis, which can be time-consuming 

and error-prone, such as the traditional tool Archie [6]–[8]. Traditonal tools like Archie depend on predefined 

rules and static heuristics to detect patterns/tactics, making them inflexible when analyzing systems. Archie 

also has a limitation in its ability to interpret code comments, documentation, or implicit design intent 

https://creativecommons.org/licenses/by-sa/4.0/
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because of the lack of natural language processing (NLP) [9]. Additionally, these tools also require manual 

updates to their rule sets to add new patterns, which can be time-consuming. While Archie is good at 

detecting traditional tactics such as Kerberos and authentication, it misses modern tactics such as circuit 

breakers and retry logic, which are critical tactics in cloud-native or AI-driven systems. All of these 

limitations highlight the need for more adaptive solutions and motivate us to establish this work. 

Recent advances in NLP [9] and the emergence of large language models (LLM) [10] like ChatGPT 

[11] have opened new avenues for automating software analysis tasks. While these technologies have applied 

to different areas such as requirements extraction [12] and bug detection [13], their application to software 

architecture analysis-specifically in detecting patterns and tactics-remains underexplored. A more cohesive 

integration between NLP capabilities and architectural analysis could bridge this gap, resulting in more 

intelligent and context-aware automation. ChatGPT, with its deep understanding of human language and  

pre-trained knowledge of programming constructs, can assist in extracting and reasoning about architectural 

patterns, tactics, and quality attributes directly from the source code. However, the effectiveness of such 

language models in performing these specific tasks remains relatively unexplored.  

The exploration of ChatGPT’s capabilities extends across various domains. For instance, Tan [14] 

highlights its ability to extract design concepts from narratives, showcasing it is transformative potential in 

creative fields. Similarly, Gilson et al. [15] emphasize NLP’s role in identifying quality attributes from user 

stories, aiding early architectural decisions. Further, Das et al. [16] streamline goal modeling processes by 

automating the extraction of goals from unstructured requirements, improving stakeholder alignment.  

In healthcare, Huang et al. [17] demonstrate ChatGPT’s proficiency in clinical data extraction, outperforming 

traditional methods. Moreover, Sun et al. [18] leverage ChatGPT for pharmacovigilance event extraction, 

and Mohajer et al. [19] reveal it is effectiveness in static analysis for bug detection. Terzi et al. [20] analyze 

developer interactions with ChatGPT’s code suggestions, showing improved outcomes with refined prompts. 

Mahmoudi et al. [21] propose ChatGPT-based frameworks for systematic reviews, while Pragyan et al. [22] 

highlight its potential in automating use case extractions. Ahmad et al. [23] examine how the AI can assist 

software architects by fostering collaboration throughout the design process. Despite this growing 

interest, limited work has focused on applying ChatGPT to the conceptual elements of software architecture, 

such as identifying patterns and tactics. This gap represents an opportunity to extend the capabilities of  

AI models into impactful areas, contributing novel insights to the field. 

This paper aims to evaluate the effectiveness of ChatGPT in identifying architectural patterns and 

tactics from software systems’ source code. Specifically, we address two key research questions: 

RQ1: how effective is ChatGPT in extracting architectural patterns from software systems’ source code? 

RQ2: how effective is ChatGPT in extracting architectural tactics from software systems’ source code? 

By answering these questions, this research seeks to provide insights into the capabilities and limitations of 

using ChatGPT for architectural analysis, potentially informing the design of more intelligent, automated 

tools for software engineering tasks. Our contributions to this work are:  

− Conducting experiments to extract architectural patterns and tactics from the source code of five open-

source systems using ChatGPT which are: Apache Storm [24], Apache Flink [25], Apache Spark [26], 

Gradle [27], and Maven [28]. 

− Performing a comparative analysis of ChatGPT's performance against Archie, a traditional architectural 

analysis tool. 

− Measuring and evaluating ChatGPT's performance through precision, recall, and accuracy metrics. 

− Addressing the defined research questions by analyzing the experimental results. 

The remainder of this paper is organized as follows: section 2 details the research methodology 

employed. Our results and discussions are presented and analyzed in section 3. Section 4 addresses potential 

threats to validity. Finally, section 5 concludes the paper and outlines directions for future research. 

 

 

2. METHOD 

2.1.  Overview 

Figure 1 provides an overview of the pipeline used in our work. The process is structured into four 

main steps: 

i) Input source code:  

‒ Inputs: the pipeline begins with two types of input: the complete source code (zipped) and selected 

code snippets and  

‒ These inputs are used as prompts for ChatGPT, initiating the process of identifying architectural 

patterns and tactics. However, only the complete source code (zipped) is used as input for Archie. 

ii) Extract patterns and tactics: 
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‒ Archie: the source code undergoes preprocessing, followed by training, and then detection proper 

and this results in two outputs: extracted patterns and extracted tactics. 

‒ ChatGPT: the input is processed through pre-trained understanding, analysis, and recognition stages 

and ChatGPT produces two similar outputs: extracted patterns and extracted tactics. 

iii) Compare results: the patterns and tactics identified by Archie and ChatGPT are compared to analyze 

their similarities, differences, and effectiveness in identifying these elements. 

iv) Calculate accuracy: the final step involves calculating the accuracy of the outputs from both Archie and 

ChatGPT to evaluate their performance in extracting architectural patterns and tactics from the given 

source code. 
 

 

 
 

Figure 1. The overview of our work 
 

 

2.2.  Prompting Engineering Strategies 

In this study, we utilized specific prompts to extract architectural patterns and tactics using 

ChatGPT. For Figures 2 and 3, the entire source code file of each system was provided, and ChatGPT was 

tasked with identifying patterns and tactics from the full codebase. In Figure 4, we supplied selected snippets 

of the code and requested ChatGPT to extract patterns and tactics based solely on these excerpts. 

Additionally, we asked ChatGPT to extract specific code snippets from the system’s source code and then 

determine the architectural patterns and tactics based on the extracted portions. Figure 4(a) shows the prompt 

used after providing the code snippets, while Figure 4(b) presents the prompt before any snippets were given. 
 

 

 
 

Figure 2. Prompt utilizing the entire source code to identify architectural patterns 
 

 

 
 

Figure 3. Prompt utilizing the entire source code to identify architectural tactics 
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(a) (b) 

 

Figure 4. Prompt using specific snippets of code: (a) after providing snippets of code and (b) before 

providing snipptes of code 

 

 

2.3.  Evaluation metrics 

In this study, we evaluate the performance of ChatGPT using recall, precision, and accuracy metrics 

to assess the effectiveness of our experiments. For this purpose, we calculate the true positives (TP), false 

positives (FP), and false negatives (FN) required for these metrics. However, we do not compute the FN as 

all patterns and tactics were evaluated and accounted for during detection. Specifically:  

− TP: the number of patterns or tactics correctly identified by ChatGPT or Archie. 

− FP: the number of patterns or tactics incorrectly identified by ChatGPT or Archie. 

− FN: the number of patterns or tactics missed by ChatGPT or Archie. 

 

 

3. RESULTS AND DISCUSSION 

3.1.  RQ1: how effective is ChatGPT in extracting architectural patterns from software systems source code? 

To address this question, we utilized ChatGPT to identify patterns from the complete codebase and 

compared the results with those from the traditional tool Archie. We present the results of pattern and tactic 

detection in Apache Flink using both tools. Table 1 summarizes the comparison of pattern detection outcomes 

between Archie and ChatGPT, while Figure 5 illustrates the percentage of patterns detected by each tool.  

As observed, ChatGPT achieved a pattern detection rate of 55.6%, compared to Archie’s rate of 44.4%. 

 

 

Table 1. Comparison results of the patterns detection for Apache Flink 
Architectural tactic Also known as Archie ChatGPT 

Pipeline pattern Streaming pipeline ❌ ✔ 

Master-slave pattern  ❌ ✔ 

Layered architecture Multitier architecture ❌ ✔ 

Event-driven architecture Message-driven architecture ❌ ✔ 

Service component pattern  ❌ ✔ 

Layers Tiered system ✔ ❌ 

Broker Message broke ✔ ❌ 

Observer/publish-subscribe  ✔ ❌ 

Pipes and filters  ✔ ❌ 

Shared-repository Common data repository ❌ ❌ 

 

 

 
 

Figure 5. Patterns detection percentages for ChatGPT and Archie for Apache Flink 
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3.2.  RQ2: how effective is ChatGPT in extracting architectural tactics from software systems source code? 

To address this question, we used ChatGPT to identify tactics from the full codebase and compared 

its performance to the traditional tool Archie. We present the results of tactic detection in Apache Flink by 

both tools are presented. Table 2 provides a comparison of the tactics detected by Archie and ChatGPT, 

while Figure 6 illustrates the detection percentages. As shown, ChatGPT detected 25.0% of the tactics, 

whereas Archie achieved a higher detection rate of 75.0%. This is expected, as Archie was specifically 

designed to identify traditional tactics, whereas ChatGPT is more capable of discovering modern tactics. 
 

 

Table 2. The comparison results of the tactics detection for Apache Flink 
Architectural tactic Also known as Archie ChatGPT 

Kerberos   ✔ ✔ 

Heartbeat  ✔ ✔ 

Ping/Echo Connectivity probe ✔ ❌ 

Exception handling Error handling/fault handling ✔ ❌ 

Authenticate  ✔ ❌ 

Time stamp  ✔ ❌ 

Resource pooling Resource sharing ✔ ❌ 

Audit trail  ✔ ❌ 

PBAC Policy-based access control ✔ ❌ 

RBAC Role-based access control ✔ ❌ 

Resource scheduling Task scheduling ✔ ❌ 

Session management  ✔ ❌ 

Load balancing Load management ✔ ❌ 

Restart System reboot ✔ ❌ 

Time-out  ✔ ❌ 

Cancel  ✔ ❌ 

Active redundancy Data duplication ✔ ❌ 

Checkpoint  ✔ ❌ 

Retry  ✔ ❌ 

Retry logic for fault tolerance  ❌ ❌ 

Data partitioning for scalability  ❌ ✔ 

Resource pooling for efficient resource use Resource sharing ❌ ✔ 

Circuit breaker for fault isolation  ❌ ✔ 

 

 

 
 

Figure 6. Tactics detection percentages for ChatGPT and Archie 
 

 

Tables 3 and 4 present the results for TP, true negative (TN), FP, and FN for both Archie and 

ChatGPT. ChatGPT identified 5 patterns and 6 tactics, demonstrating its strength in detecting modern 

architectural patterns and tactics, such as fault-tolerance strategies. In contrast, Archie identified 4 patterns 

and 18 tactics, showcasing its proficiency in recognizing traditional architectural elements. 

ChatGPT missed 5 patterns and 17 tactics (FN), underscoring its limitations in identifying 

foundational or traditional tactics. On the other hand, Archie missed 6 patterns and 5 tactics, highlighting its 

challenges in detecting modern or nuanced techniques. ChatGPT also falsely identified 4 patterns and  

16 tactics (FP), whereas Archie falsely identified 5 patterns and 4 tactics. Since all patterns and tactics were 
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evaluated, TN are not applicable in this context. The results for the remaining systems will be available 

online (i.e., attached to the submission paper at the submission website). 
 

 

Table 3. Metrics results of Archie Table 4. Metrics results of ChatGPT 
Archie detection 

metrics 

Architectural 

patterns 

Architectural 

tactics 

TP 4 18 

TN 0 0 

FP 5 4 

FN 6 5 
 

ChatGPT detection 

metrics 

Architectural 

patterns 

Architectural 

tactics 

TP 5 6 

TN 0 0 

FP 4 16 

FN 5 17 
 

 

 

4. THREATS TO VALIDTY 

This section outlines the potential threats to the validity of the findings in this study. While the 

research explores the capabilities of ChatGPT in architectural analysis, certain limitations could impact the 

robustness, reliability, and generalizability of the results. These threats are categorized into three main types: 

construct validity, focusing on the design and measurement of the study; internal validity, addressing factors 

that could influence the interpretation of results; and external validity, concerning the applicability of 

findings to broader contexts. Each category highlights specific challenges and areas for improvement, 

ensuring a balanced evaluation of the study's strengths and limitations.  
 

4.1.  Construct validity 

One of the threats of this work is that the study uses precision, recall, and accuracy to evaluate 

performance but omits metrics like F1-score, which could better balance the trade-off between precision and 

recall. We mitigate this threat by clearly define the calculation methods for each metric and ensure they align 

with standard practices in architectural analysis. Another threat is that the effectiveness of ChatGPT heavily 

depends on prompt quality, and variations in prompt design might influence results. The lack of detailed 

discussion about prompt optimization could affect reproducibility. We mitigate this by use a standardized 

prompt evaluation framework to ensure consistency and reproducibility. The also paper might not cover all 

possible architectural patterns and tactics comprehensively, potentially leading to biased results. We mitigate 

this threat by consult domain experts to ensure the selected patterns and tactics represent a comprehensive 

and balanced subset of architectural elements. 
 

4.2.  Internal validity 

One of the internal threats of this work is that the choice of five open-source systems might not 

generalize to other types of software systems, limiting the scope of the findings. We mitigate this threat by 

selecting one project from different domain, so we cover most of the software engineering domains.  

The method for manually verifying TP and FP isn’t explicitly detailed, leaving room for subjectivity and 

potential error. We mitigate this threat by judging what are TP and FP. 
 

4.3.  External validity 

One of the generalizability threats is that the findings are based on specific open-source projects, 

and the results may not be applicable to proprietary or less-structured codebases. We have s future work to 

expand the study to include proprietary systems and unstructured codebases to assess generalizability. Other 

threat is that since the study evaluates ChatGPT (a specific LLM), the results may not generalize to other 

LLMs or AI-based tools for architectural analysis. We have another future work to evaluate the performance 

of other LLMs and AI-based tools to provide a broader perspective. 
 

 

5. CONCLUSION  

This work explored the effectiveness of ChatGPT, a modern LLM, in identifying architectural 

patterns and tactics within software systems, comparing it is performance to that of the traditional tool 

Archie. The findings highlight the unique strengths and limitations of both tools. ChatGPT demonstrated a 

strong capability in detecting modern architectural concepts, such as fault-tolerance strategies, reflecting its 

ability to adapt to evolving software practices. However, it struggled with foundational or traditional tactics, 

resulting in a lower detection rate in certain areas. In contrast, Archie excelled in identifying traditional 

architectural elements but showed limitations in addressing modern, nuanced techniques. These results 

underscore the complementary nature of ChatGPT and Archie in software design analysis. While Archie 

remains highly effective in its niche, ChatGPT’s NLP capabilities provide significant potential for extending 

architectural analysis workflows, especially in contexts requiring a broader understanding of contemporary 

patterns and tactics. Future work could focus on enhancing ChatGPT’s training data to improve its 
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recognition of traditional tactics, as well as integrating the capabilities of both tools to create a hybrid 

solution. Such advancements could pave the way for more intelligent, automated systems that bridge the gap 

between natural language understanding and software engineering tasks, ultimately contributing to improved 

software maintainability and scalability.  
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